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Abstract

The general form of order automorphisms of effect algebras has been
known in the complex case. We present a much simpler proof based on
projective geometry which works also in the real case. As an application
we classify order isomorphic pairs of matrix intervals and describe the
general form of order isomorphisms for any pair of isomorphic matrix
intervals.
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1 Introduction

Let H be a real or complex Hilbert space, dimH ≥ 2. We denote by B(H) and
S(H) ⊂ B(H) the algebra of all bounded linear operators on H and the subset
of all self-adjoint operators, respectively. An operator A ∈ S(H) is said to be
positive, A ≥ 0, if 〈Ax, x〉 ≥ 0 for every x ∈ H. We write A > 0 when A ≥ 0
and A is invertible. For A,B ∈ S(H) we define A ≤ B ⇐⇒ B − A ≥ 0 and
similarly, A < B ⇐⇒ B − A > 0. It is well-known that if H is a complex
Hilbert space and A ∈ S(H) is positive, then there exists a unique positive
square root A1/2. It is less known that this is true in the real case as well, see
for example [23]. Let M,N ⊂ S(H) be any subsets. A map φ : M → N is
an order isomorphism if it is bijective and for every pair X,Y ∈ M we have
X ≤ Y ⇐⇒ φ(X) ≤ φ(Y ).

The general form of order automorphisms of S(H) in the complex case was
described by Molnár [13]. Assume that H is a complex Hilbert space with
dimH ≥ 2 and φ : S(H) → S(H) is an order automorphism. Molnár proved
that then there exist an invertible bounded linear or conjugate-linear operator
T : H → H and S ∈ S(H) such that

φ(X) = TXT ∗ + S
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for every X ∈ S(H). We continue with the cones of positive operators and
positive definite operators. For them we use the interval notation, that is,

[0,∞) = {A ∈ S(H) : A ≥ 0}

and
(0,∞) = {A ∈ S(H) : A > 0}.

In [13] it was proved that for every order automorphism φ of [0,∞) there exists
an invertible bounded linear or conjugate-linear operator T : H → H such
that φ(X) = TXT ∗ for every X ∈ [0,∞). Similarly, a map φ is an order
automorphism of (0,∞) if and only if there exists an invertible bounded linear
or conjugate-linear operator T : H → H such that φ(X) = TXT ∗ for every
X ∈ (0,∞) [15].

It was much more difficult to describe the general form of automorphisms
of [0, I] = {A ∈ S(H) : 0 ≤ A ≤ I}. We first need to introduce a family
of bijective monotone increasing functions of the unit interval onto itself. For
every real number p < 1 we define such a function fp : [0, 1]→ [0, 1] by

fp(x) =
x

px+ (1− p)
, x ∈ [0, 1].

The following result was proved in [24, 25]. Let H be a complex Hilbert space,
dimH ≥ 2, and φ : [0, I] → [0, I] an order automorphism. Then there exist
real numbers p, q ∈ (−∞, 1) and a bijective linear or conjugate-linear bounded
operator T : H → H with ‖T‖ ≤ 1 such that

φ(X) = fq

(
(fp(TT

∗))
−1/2

fp(TXT
∗) (fp(TT

∗))
−1/2

)
, X ∈ [0, I]. (1)

This is quite a mysterious formula. For example, if we take a compositum of
two maps of the form (1), then the new map is again an order automorphism of
[0, I], and therefore it must be of the same form. But it seems to be impossible
to deduce this fact directly from (1).

The final step was to develop the general theory of order isomorphisms of
operator intervals, see [27].

In the mathematical foundations of quantum mechanics the operator interval
[0, I] is called the effect algebra on a Hilbert space H. It plays the central role in
Ludwig’s axiomatic formulation of quantum mechanics, see [2], [3], [9], [10], and
[11]. Symmetries of effect algebras, that is, automorphisms of effect algebras
were studied a lot, see [4], [6], [8], [12], [14], [17], [18], [19], [20], [24], [25], [26],
and the references therein. One assumes that φ : [0, I] → [0, I] is a bijective
map which preservers certain operations and/or relations that are relavant in
mathematical foundations of quantum mechanics and then the goal is to describe
the general form of such maps. In most cases the description of such maps is
very simple. Therefore the converse statement in such cases is trivial and it is
easy to deduce that the set of symmetries is a group. This is not the case with
the description of order automorphisms of [0, I] given by (1).
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This difficulty was resolved by the following characterization of order auto-
morphisms of effect algebras [21, Theorem 7.3] which is much nicer than the
one given by the formula (1). Let H be a complex Hilbert space, dimH ≥ 2,
and φ : [0, I] → [0, I] an order automorphism. Then there exists a bijective
linear or conjugate-linear bounded operator T : H → H that is unique up to a
multiplication with a complex number of modulus one, such that

φ(X) = φT (X) = T (X(T ∗T − I) + I)
−1
XT ∗ (2)

for every X ∈ [0, I].
Our paper was motivated by the following natural question: does the above

theorem holds true also in the real case? Of course, in the real case we need
to replace “linear or conjugate-linear” by “linear” and “a complex number of
modulus one” by “±1”. Our main result gives the affirmative answer. If we re-
strict to the finite-dimensional case then real symmetric n×n matrices equipped
with the partial order ≤ are at least as important for applications as complex
hermitian matrices. Thus, we believe that our question is interesting at least in
the finite-dimensional case. This might not be true in the infinite-dimensional
case where self-adjoint operators on complex Hilbert spaces equipped with the
partial order ≤ are of basic importance in mathematical foundations of quan-
tum mechanics while self-adjoint operators on infinite-dimensional real Hilbert
spaces seem to be of limited interest. The reason that we will not restrict to the
finite-dimensional case is that our approach gives a new much simpler proof of
the main theorem also in the complex case.

The proof of the above theorem given in [21] depends heavily on the fact
that the underlying Hilbert space is over the complex field. Let us explain this
briefly. Assume that H is a complex Hilbert spce. Let U ⊂ S(H) be an operator
domain, that is, an open connected subset of S(H). We denote by Π(H) the
set of all operators X + iY ∈ B(H), where X,Y ∈ S(H) and Y is positive and
invertible. The Loewner’s theorem for maps on operator domains proved in [21]
states that a map φ : U → S(H) is a local order isomorphism if and only if φ has
a unique continuous extension to U ∪Π(H) that maps Π(H) biholomorphically
onto itself. It is possible to use results from infinite dimensional holomorfy [7]
to obtain a nice formula that describes biholomorphic automorphisms of Π(H).
The above nice description of order automorphisms of [0, I] is a rather simple
corollary. Obviously, this method does not work in the real case.

To answer our question we need a new approach. It is based on the projective
geometry and works in both the complex and the real case. At first glance it
seems impossible to deduce (2) from the fundamental theorem of projective
geometry. Namely, in the conclusion of the fundamental theorem of projective
geometry a semilinear map appears while the map φ in the formula (2) is far
from being additive. But if we restrict our attention just to projections then
we shall see that φ in (2) is induced by a linear map in the real case and by
a linear or conjugate-linear map in the complex case. Indeed, let P ∈ [0, I] be
any projection. First we need to verify that P (T ∗T − I) + I is invertible and
φ(P ) is self-adjoint. Assume for a moment that this is true (a much stronger
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statement will be proved later, see the first two paragraphs of the proof of
Theorem 3.1). Let us verify that φ(P ) is an idempotent. We first claim that
for every A ∈ S(H), A > −I (note that A = T ∗T − I satisfies this condition),
we have (P − I)(PA + I)−1P = 0. All we need to do to verify this claim is to
represent all operators as 2×2 operator matrices with respect to the orthogonal
direct sum decomposition H = ImP ⊕KerP , that is,

P =

[
I 0
0 0

]
, P − I =

[
0 0
0 −I

]
,

and

PA+ I =

[
A1 + I A2

0 I

]
,

which yields that (PA+ I)−1 is of the form

(PA+ I)−1 =

[
∗ ∗
0 I

]
.

The desired equality (P −I)(PA+I)−1P = 0 can now be verified by a straight-
forward computation. It follows that

φ(P )2 = T (P (T ∗T − I) + I)
−1

(PT ∗T ) (P (T ∗T − I) + I)
−1
PT ∗

= T (PT ∗T − P + I)
−1

((PT ∗T − P + I) + (P − I)) (P (T ∗T − I) + I)
−1
PT ∗

= T (P (T ∗T − I) + I)
−1
PT ∗ = φ(P ),

as desired. Hence, for every projection P ∈ [0, I] the operator φ(P ) is a pro-
jection, too. Let us next consider the kernel of φ(P ). Let x ∈ H. Since T

and (P (T ∗T − I) + I)
−1

are invertible we have x ∈ Kerφ(P ) if and only if

PT ∗x = 0. Equivalently, the kernel of φ(P ) is equal to (T ∗)
−1

(KerP ). There-
fore,

Imφ(P ) = (Kerφ(P ))⊥ =
((
T−1

)∗
(KerP )

)⊥
= T (ImP ). (3)

Hence, if we restrict the map φ given by (2) to the set of all projections and
if we, as usual, identify projections with their images, then this restriction is
induced by the linear (or conjugate-linear) bounded invertible operator T . This
observation indicates that trying to solve our problem by using the fundamental
theorem of projective geometry makes sense. There is one limitation of such an
approach, that is, the special case when dimH = 2 needs to be treated sepa-
rately because the assumption that dimH ≥ 3 is essential in the fundamental
theorem of projective geometry.

In the next section we will present some lemmas that will be needed for
the proof of our main theorem. The proof of the main theorem in the case
that dimH ≥ 3 will be given in the third section and in the fourth section we
will treat the two-dimensional case. The last section will be devoted to order
isomorphisms of matrix intervals. The question is which matrix intervals are
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order isomorphic and in the case when two matrix intervals are order isomorphic
we would like to have a description of all order isomorphisms. We will treat only
the real case since the complex case has been considered already in [27]. Here
we will use a completely different approach which will clearly show that our
main result is the cruical step in developing the theory of order isomorphisms
of matrix or operator intervals.

2 Preliminary results

Let H be a real or complex Hilbert space. The following notion is an extension of
the definition of the strength of an effect along a ray given in [1]. Let A ∈ S(H)
be positive and P : H → H a projection of rank one. Then the strength α(A,P )
of A along P is defined as

α(A,P ) = sup{t ∈ R : tP ≤ A} = max{t ∈ R : tP ≤ A}.

Clearly, 0 ≤ α(A,P ) ≤ ‖A‖.
The next lemma and its proof are slight modifications of [1, Theorem 1].

Recall that if Q is a rank one projection whose image is spanned by a unit
vector u and z is any unit vector, then 〈Qz, z〉 = |〈u, z〉|2. This is well-known
and easy to verify.

Lemma 2.1. Let A,B ∈ S(H) be positive. Then the following two statements
are equivalent.

1. A ≤ B.

2. For every rank one projection P : H → H we have α(A,P ) ≤ α(B,P ).

Proof. The implication (1)⇒ (2) is trivial. To prove the converse assume that
the second condition is fulfilled and take any unit vector x ∈ H. If 〈Ax, x〉 = 0
then clearly, 〈Ax, x〉 ≤ 〈Bx, x〉. So, assume that 〈Ax, x〉 > 0. Let Q be the rank
one projection whose image is spanned by Ax and set

t =
‖Ax‖2

〈Ax, x〉
.

We will prove that
tQ ≤ A. (4)

Assume for a moment that this has been already proved. Then, by our assump-
tion, tQ ≤ B. It follows (see the remark before the formulation of our lemma)
that

〈Ax, x〉 =
‖Ax‖2

〈Ax, x〉

〈
Ax

‖Ax‖
, x

〉2

= t〈Qx, x〉 ≤ 〈Bx, x〉,

as desired.
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It remains to prove (4). To this end chose any unit vector z ∈ H. Then

t〈Qz, z〉 =
‖Ax‖2

〈Ax, x〉

∣∣∣∣〈 Ax

‖Ax‖
, z

〉∣∣∣∣2 =
1

〈Ax, x〉
|〈Ax, z〉|2 ,

and because A ≥ 0 and 〈Ax, x〉 > 0, the Cauchy-Schwarz’s inequality yields

t〈Qz, z〉 ≤ 1

〈Ax, x〉
〈Ax, x〉〈Az, z〉 = 〈Az, z〉.

As a trivial consequence we see that if A,B ∈ S(H) are positive, then
A = B if and only if for every rank one projection P : H → H we have
α(A,P ) = α(B,P ). This further implies that if A ∈ S(H) is positive and A
is not the zero operator or a rank one operator, then there exist two different
rank one projections P,Q and two real numbers t, s > 0 such that tP ≤ A and
sQ ≤ A (of course, in the complex case we see this directly from the spectral
theorem for bounded self-adjoint operators).

Lemma 2.2. Let H be a real or complex Hilbert space, dimH ≥ 2, and P,Q
a pair of projections of rank one with P 6= Q. Assume that A ∈ S(H) is
an operator such that P ≤ A ≤ I and Q ≤ A ≤ I. We denote by K the
two-dimensional subspace of H spanned by the images of P and Q. Then the
operator matrix representation of A with respect to the orthogonal direct sum
decomposition H = K ⊕K⊥ is of the form

A =

[
IK 0
0 B

]
,

where IK stands for the identity operator on K, and B : K⊥ → K⊥ is a positive
operator with B ≤ IK⊥ .

Proof. Let x ∈ H be a unit vector that spans the image of P . We have

1 = 〈Px, x〉 ≤ 〈Ax, x〉 ≤ ‖Ax‖ ‖x‖ ≤ 1,

which means that all inequalities are actually equalities and then by the Cauchy-
Schwarz theorem we see that Ax and x are linearly depenedent. Because Ax is
a unit vector and A is positive we have Ax = x. Similarly, Ay = y for a unit
vector y that spans the image of Q. It follows that Au = u for every u ∈ K.
Using the fact that I −A has the operator matrix representation

I −A =

[
0 ∗
0 ∗

]
and I −A ∈ S(H) we immediately see that

A =

[
IK 0
0 B

]
,

for some linear self-adjoint bounded operator B : K⊥ → K⊥. From 0 ≤ A ≤ I
we conclude that B has the desired properties.
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Lemma 2.3. Let H be a real or complex Hilbert space, dimH ≥ 2, and A,B ∈
[0, I] with A ≤ B. Then the following are equivalent.

• There exists a real number t ≥ 0 and a rank one projection P such that
B = A+ tP .

• For every pair C,D ∈ [0, I] satisfying A ≤ C,D ≤ B we have C ≤ D or
D ≤ C.

Proof. Let us first assume that A,B ∈ [0, I] and B = A + tP for some real
number t ≥ 0 and a rank one projection P . It is rather trivial to verify that if
C,D ∈ [0, I] satisfy A ≤ C,D ≤ B, then C = A+ pP and D = A+ qP for some
real numbers p, q belonging to the interval [0, t]. It is clear that then C and D
are comparable.

To prove the other direction we assume that dim Im (B − A) ≥ 2. Then by
the remark following Lemma 2.1, we see that there exist two different rank one
projections P,Q and two positive real numbers p, q such that C = A+ pP ≤ B
and D = A+ sQ ≤ B. Since obviously A ≤ C,D ≤ B, and neither C ≤ D nor
D ≤ C, the proof of the lemma is completed.

Lemma 2.4. Let H be a real or complex Hilbert space, dimH ≥ 2, R any
projection of rank one, and s a real number, 1/2 < s < 1. Then there exists a
pair of orthogonal rank one projections P,Q such that for every real number p
we have

pR ≤ (1/2)P +Q ⇐⇒ p ≤ s.

Proof. The numerical range of R is the closed unit interval [0, 1]. It follows from
1/2 < s < 1 that

0 <
1− s
s

< 1.

Hence, we can find a unit vector x ∈ H such that 〈Rx, x〉 = (1−s)/s. We further
find a unit vector y that is orthogonal to x such that ImR ⊂ span {x, y}. Then
with respect to the orthogonal direct sum decomposition H = span {x, y} ⊕
{x, y}⊥ the rank one projection R has the matrix representation

R =

[
R1 0
0 0

]
with R1 being a 2× 2 rank one projection of the form

R1 =

[
1−s
s ∗
∗ 1− 1−s

s

]
.

It is clear that from now on we can work with 2 × 2 matrices. Thus R equals
the above projection R1 and set

P =

[
1 0
0 0

]
and Q =

[
0 0
0 1

]
.
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Obviously, if C is a 2×2 self-adjoint matrix of rank at most one, then C ≤ I
if and only if trC ≤ 1. Hence, for a real number p we have

pR ≤ (1/2)P +Q =

[
1/2 0
0 1

]
if and only if [√

2 0
0 1

] (
p

[
1−s
s ∗
∗ 1− 1−s

s

]) [√
2 0

0 1

]
≤
[√

2 0
0 1

] [
1/2 0
0 1

] [√
2 0

0 1

]
,

which is equivalent to

tr

([√
2 0

0 1

] (
p

[
1−s
s ∗
∗ 1− 1−s

s

]) [√
2 0

0 1

])
≤ 1.

Therefore we have pR ≤ (1/2)P +Q if and only if

p

(
2(1− s)

s
+ 1− 1− s

s

)
≤ 1

which happens if and only if p ≤ s.

The following lemma and its proof are very similar to [22, Lemma 3.44].

Lemma 2.5. Let H be a two-dimensional real or complex Hilbert space, P a
rank one projection on H, and A ∈ S(H). Then the following are equivalent.

• There exists a rank one projection Q such that tr (PQ) = 1/2 and A =
(1/3)Q+ (I −Q).

• There exist nonnegative real numbers t1, t2, t3 and rank one projections
R1, R2, R3 such that

A = (1/2)P + t1R1, A = (1/2)(I − P ) + t2R2, and A = I − t3R3.

Proof. We identify operators on H with 2× 2 matrices. Assume that A and P
satisfy the first condition. Then, after applying an appropriate unitary similarity
we may assume that

Q =

[
1 0
0 0

]
and A =

[
1/3 0
0 1

]
.

From tr (PQ) = 1/2 we conclude that both diagonal entries of P are equal to
1/2. From P ∈ S(H) and detP = 0 we see that the off-diagonal entries of P
have absolute value 1/2. After applying yet another unitary similarity we may
assume with no loss of generality that

P =

[
1/2 1/2
1/2 1/2

]
.
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Then

A− (1/2)P =

[
1/12 −1/4
−1/4 3/4

]
is obviously a rank one positive matrix. Similarly, both A − (1/2)(I − P ) and
I−A are positive matrices of rank one. This completes the proof in one direction.

Assume next that the second condition is fulfilled. With no loss of generality
we can assume that

P =

[
1 0
0 0

]
.

We have

A =

[
a α
α b

]
for some real numbers a and b and a real or complex number α (of course, in
the real case α = α). By the second condition we have det(A − (1/2)P ) =
det(A− (1/2)(I − P )) = 0 which gives

(a− 1/2)b = |α|2 and a(b− (1/2)) = |α|2.

It follows that a = b and
a2 − (1/2)a = |α|2. (5)

From det(I − A) = 0 we get (1 − a)2 = |α|2 which together with (5) yields
a = 2/3 and α = (1/3)z where in the complex case z is a complex number of
modulus one while in the real case z ∈ {−1, 1}. Thus,

A =

[
2/3 (1/3)z

(1/3)z 2/3

]
= (1/3)Q+ (I −Q),

where

Q =

[
1/2 −(1/2)z

−(1/2)z 1/2

]
is a rank one projection satisfying tr (PQ) = 1/2.

In the rest of this section we will restrict our attention to real matrices.
For any positive integer n we denote by Sn the set of all n× n real symmetric
matrices. Let [0, I] ⊂ S2 be the set of all 2× 2 real effects. By D we denote the
set of all diagonal effects,

D =

{[
s 0
0 t

]
: 0 ≤ s, t ≤ 1

}
.

For every X ∈ D, X = diag (s, t), we will denote by X] the effect

X] = s

[
1/2 1/2
1/2 1/2

]
+ t

[
1/2 −1/2
−1/2 1/2

]
. (6)

Let A ∈ [0, I] ⊂ S2. We set

DA = {X ∈ D : X ≤ A}.
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We further denote by R ⊂ [0, I] the set of all rank one effects with nonzero
off-diagonal entries.

Lemma 2.6. Let A,B ∈ [0, I] ⊂ S2. The following are equivalent.

• DA = DB.

• A = B or A,B ∈ R ∪ {0} or A = JBJ , where

J =

[
1 0
0 −1

]
.

Proof. We first note that a 2×2 symmetric matrix is positive if and only if both
diagonal entries are nonengative and its determinant is nonnegative. Indeed,
assume first A ∈ S2 is positive. Let {e1, e2} be the standard basis of R2. Then
〈Ae1, e1〉 ≥ 0 and 〈Ae2, e2〉 ≥ 0 and this tells us that the diagonal entries of
A are nonnegative. Since both eigenvalues of A are nonnegative we conclude
that detA ≥ 0. Assume next that both diagonal entries of A are nonnegative
and detA ≥ 0. From the nonnegativity of the determinant we infer that both
eigenvalues of A are nonnegative or both are nonpositive and at least one is
negative. In the second case the trace of A would be negative contradicting
our assumption. Thus, both eigenvalues are nonegative and therefore A ≥ 0, as
desired.

In the next step we will describe the set of maximal elements of DA for any
A ∈ [0, I]. Let us start with the simplest case that A ∈ D. Then obviously, the
set of maximal elements of DA is the singleton {A}. Thus we assume from now
on that the off-diagonal entries of A are nonzero,

A =

[
t u
u s

]
with u 6= 0. Since A ≥ 0 we have ts − u2 ≥ 0. By the first paragraph of the
proof we know that for a pair of real numbers p, q ∈ [0, 1] we have[

p 0
0 q

]
≤
[
t u
u s

]
if and only if 0 ≤ p ≤ t and 0 ≤ q ≤ s and

(t− p)(s− q)− u2 ≥ 0. (7)

The first case that we will treat is that A is of rank one and has nonzero off-
diagonal entries. Then ts = u2 6= 0. If at least one of the nonnegative numbers
p, q, p ≤ t, q ≤ s, is positive then

(t− p)(s− q)− u2 < ts− u2 = 0.

It follows that DA = {0}.
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It remains to consider the case that

A =

[
t u
u s

]
∈ [0, I]

is not diagonal and is of rank two. We claim that the set S of all maximal
elements of DA is equal to

S =

{[
p 0
0 q

]
: 0 ≤ p ≤ t and 0 ≤ q ≤ s and (t− p)(s− q) = u2

}
.

Let diag (p, q) ∈ S. Then clearly diag (p, q) ≤ A. Take any diag (p′, q′) ∈ D such
that diag (p′, q′) ≥ diag (p, q) and diag (p′, q′) 6= diag (p, q). In order to prove
that diag (p, q) is a maximal element of DA we need to verify that

diag (p′, q′) 6≤ A. (8)

If p′ > t or q′ > s then the verification of (8) is trivial. So, we may assume that
p′ ≤ t and q′ ≤ s. We have p′ > p or q′ > q and therefore (t − p′)(s − q′) <
(t− p)(s− q) = u2 yielding that the determinant of A− diag (p′, q′) is negative,
and consequently, (8) holds in this case, as well. Hence, every element of S is a
maximal element of DA.

Consider now diag (p, q) ∈ DA such that diag (p, q) 6∈ S. Then (t−p)(s−q) >
u2 yielding that p < t and q < s. Then we can find p′, p < p′ < t such that
(t− p′)(s− q) > u2 which implies that diag (p′, q) ∈ DA. Thus, diag (p, q) is not
a maximal element of DA. The claim that the set of maximal elements of DA
coincides with S has been proved.

We are now ready to prove our equivalence. Assume first that A and B
satisfy the second condition. It is clear that if A = B then DA = DB . If A,B ∈
R ∪ {0} then DA = DB = {0}. So, assume that A = JBJ . Then obviously
B = JAJ . If X ∈ DA then X ≤ A and therefore X = JXJ ≤ JAJ = B. The
proof in one direction is completed.

Hence, assume that DA = DB . We start with the possibility that DA =
DB = {0}. Then we know that A,B ∈ R ∪ {0}. Next, if the set of all maximal
elements of DA coincides with the set of all maximal elements of DB and this
set is a singleton {C}, C 6= 0, then we have already shown that A = B = C is
a diagonal matrix. It remains to consider the case when the set of all maximal
elements of DA, which is equal to the set of all maximal elements of DB , is an
infinite set. Then both A and B are invertible matrices with nonzero off-diagonal
entries,

A =

[
t u
u s

]
and B =

[
t′ u′

u′ s′

]
.

The set of maximal elements of DA is the same as the set of maximal elements
of DB , that is, the two sets below

{(p, q) : 0 ≤ p ≤ t and 0 ≤ q ≤ s and (t− p)(s− q) = u2}

and
{(p, q) : 0 ≤ p ≤ t′ and 0 ≤ q ≤ s′ and (t′ − p)(s′ − q) = u′2}
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are the same. From here one can easily conclude that t = t′, s = s′ and u = ±u′.
It follows that A = B or A = JBJ .

Lemma 2.7. Let O and L be 2× 2 orthogonal matrices. Assume that for every
pair X,Y ∈ D we have

X ≤ OY Ot ⇐⇒ X ≤ LY Lt (9)

and
X] ≤ OY Ot ⇐⇒ X] ≤ LY Lt. (10)

Then LY Lt = OY Ot for every Y ∈ D.

Proof. The assumption (9) can be rewritten as DOY Ot = DLY Lt , Y ∈ D. By
Lemma 2.6 we see that for every Y ∈ D of rank two we have either

OY Ot = LY Lt, or OY Ot = JLY LtJ, (11)

where

J =

[
1 0
0 −1

]
.

Set

J] =

[
1/2 1/2
1/2 1/2

]
−
[

1/2 −1/2
−1/2 1/2

]
and

D] =

{
s

[
1/2 1/2
1/2 1/2

]
+ t

[
1/2 −1/2
−1/2 1/2

]
: 0 ≤ s, t ≤ 1

}
.

Applying Lemma 2.6 once more, this time with D] instead of D and (10) instead
of (9), we conclude that for every Y ∈ D of rank two we have either

OY Ot = LY Lt, or OY Ot = J]LY LtJ]. (12)

Assume first that L is a diagonal orthogonal matrix. Then JLY LtJ = LY Lt

and by (11) we have OY Ot = LY Lt for every Y ∈ D of rank two. Since the set
of rank two diagonal effects is dense in the set of all diagonal effects we have
OY Ot = LY Lt for all Y ∈ D, as desired.

Hence, from now on we can assume that L 6∈ D. If we have OY Ot 6= LY Lt

for some Y ∈ D with two different nonzero eigenvalues, then (11) and (12) imply
that JLY LtJ = J]LY LtJ], or equivalently,

LY Lt(JJ]) = (JJ])LY Lt.

Hence, LY Lt commutes with

JJ] =

[
0 1
−1 0

]
.

A straighforward computation shows that then LY Lt = sI for some real number
s contradicting our assumption that Y has two different eigenvalues.

Hence, we have OY Ot = LY Lt for all Y ∈ D with two different nonzero
eigenvalues, and consequently, OY Ot = LY Lt for all Y ∈ D.

12



The proof of the following lemma is easy and is left to the reader.

Lemma 2.8. Let s be a real number, 1/2 ≤ s ≤ 1, and

A =

[
s 0
0 1

]
.

Assume that a 2× 2 real matrix P is a projection of rank one with the property
that for every real number p > 1/2 we have pP 6≤ A. Then s = 1/2 and

P =

[
1 0
0 0

]
.

3 Order automorphisms of [0, I]

The symbol F will stand for either the real field, or the complex field. Let H
be a real or complex Hilbert space. A map T : H → H is called a bounded
bijective semilinear operator if it is bijective, continuous, and linear in the real
case, and linear or conjugate-linear in the complex case. We should remark
that this does not conflict the usual definition of semilinear maps. Indeed, we
call a map T : H → H semilinear if there exists an automorphism f : F → F
such that for every x, y ∈ H and λ ∈ F we have T (x + y) = Tx + Ty and
T (λx) = f(λ)Tx. It is well-known that in the real case a map T is semilinear if
and only if it is linear. There are exactly two continuous automorphisms of the
complex field, that are f(λ) = λ, λ ∈ C, and f(λ) = λ, λ ∈ C, but there exist
many automorphisms of the complex field that are neither the identity nor the
complex conjugation. Clearly, if H is a complex Hilbert space and a nonzero
map T : H → H is semilinear with respect to the field automorphism f and T
is continuous, then f must be continuous, too.

Let us recall that if H is a complex Hilbert space and T : H → H a bounded
conjugate-linear operator then T ∗ : H → H is the unique conjugate-linear
bounded operator such that 〈Tx, y〉 = 〈x, T ∗y〉, x, y ∈ H. Clearly, if T : H → H
is a bijective bounded conjugate-linear operator and A ∈ S(H) positive then
T ∗AT is a bounded linear positive operator. In particular, T ∗T is a linear
operator and T ∗T > 0. Further, if H is a real or complex Hilbert space and
A,B ∈ B(H), then we know that AB + I is invertible if and only if BA + I is
invertible. Indeed, one can easily verify that if AB + I is invertible and C is its
inverse, then I −BCA is the inverse of BA+ I.

Theorem 3.1. Let H be a real or complex Hilbert space with dimH ≥ 3. Then
the map φ : [0, I]→ [0, I] is an order automorphism if and only if there exists a
bijective semilinear bounded operator T : H → H such that

φ(X) = φT (X) = T (X(T ∗T − I) + I)
−1
XT ∗

for every X ∈ [0, I]. If T, S : H → H are invertible bounded semilinear operators
and φT (X) = φS(X), X ∈ [0, I], then T = cS for some c ∈ F with |c| = 1.
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Proof. In the first part of the proof we will not use the assumption that dimH ≥
3. We start by assuming that T : H → H is a bijective semilinear bounded
operator. We first need to show that X(T ∗T − I) + I is invertible for every
X ∈ [0, I]. Actually we will prove a little bit more. Since T ∗T > 0 we can find a
real number δ ∈ (0, 1) such that T ∗T > δI. Then ε = δ

1−δ > 0 and we will show
that X(T ∗T − I)+ I is invertible for every X ∈ [0, (1+ε)I) = {Z ∈ S(H) : 0 ≤
Z < (1 + ε)I}. In what follows we will use the observations formulated in the
last paragraph before the formulation of our theorem. So, let X ∈ [0, (1 + ε)I).
We have T ∗T − I > −(1− δ)I which clearly yields

X1/2(T ∗T − I)X1/2 ≥ −(1− δ)X.

Because 1− δ > 0 and −X > −(1 + ε)I we further see that

X1/2(T ∗T − I)X1/2 > −(1− δ)(1 + ε)I = −I.

This yields that X1/2(T ∗T − I)X1/2 + I is invertible which further implies that
X(T ∗T − I) + I is invertible, as desired.

In order to see that φT is well-defined we also need to verify that for ev-
ery X ∈ [0, I] the operator (X(T ∗T − I) + I)−1X is self-adjoint. The short
computation below is copied from [21]. We have

(X(T ∗T − I) + I)−1X

= (X(T ∗T − I) + I)−1X((T ∗T − I)X + I)((T ∗T − I)X + I)−1

= (X(T ∗T − I) + I)−1(X(T ∗T − I) + I)X((T ∗T − I)X + I)−1

= X((T ∗T − I)X + I)−1,

as desired.
So far we have shown that φT is a well-defined map from [0, (1 + ε)I) to

S(H). Let us next prove that for any pair X,Y ∈ [0, I] we have X ≤ Y ⇒
φT (X) ≤ φT (Y ). Let us start with the case that 0 < X ≤ Y < (1 + ε)I. It is
well-known that from X ≤ Y it follows that Y −1 ≤ X−1 which further yields
T ∗T − I + Y −1 ≤ T ∗T − I +X−1. We have

T ∗T − I + Y −1 > δI − I +
1

1 + ε
I = 0,

and consequently,(
T ∗T − I +X−1

)−1 ≤ (T ∗T − I + Y −1
)−1

.

Thus, (X(T ∗T − I) + I)−1X ≤ (Y (T ∗T − I) + I)−1Y which finally implies
φT (X) ≤ φT (Y ). Hence, if X,Y ∈ [0, I] and X ≤ Y then for any positive
integer n large enough we have 0 < X + (1/n)I ≤ Y + (1/n)I < (1 + ε)I
and therefore, φT (X + (1/n)I) ≤ φT (Y + (1/n)I). By the continuity we have
φT (X) ≤ φT (Y ). Since φT (0) = 0 and φT (I) = I we conlude that φT maps the
effect algebra [0, I] to itself and it preserves order in one direction. It remains
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to show that φT : [0, I] → [0, I] is bijective and that X,Y ∈ [0, I] and X ≤ Y
yield φ−1T (X) ≤ φ−1T (Y ).

Let S,R : H → H be bijective bounded semilinear operators. For any
X ∈ [0, I] we have

φS(φR(X)) =

S
[
R(X(R∗R− I) + I)−1XR∗(S∗S − I) + I

]−1
R[X(R∗R− I) + I]−1XR∗S∗

= S
(
(X(R∗R− I) + I)R−1

[
R(X(R∗R− I) + I)−1XR∗(S∗S − I) + I

])−1
XR∗S∗

= S
(
XR∗(S∗S − I) +XR∗ −XR−1 +R−1

)−1
XR∗S∗

= SR(XR∗S∗SR−X+I)−1XR∗S∗ = (SR) (X((SR)∗(SR)− I) + I)
−1
X(SR)∗

= φSR(X).

Because φI(X) = X, X ∈ [0, I], we conclude that φT : [0, I]→ [0, I] is bijective
and φ−1T = φT−1 . We already know that φT−1 preserves order. This completes
the proof of one direction.

We have

φT ((1/2)I) = T (I + T ∗T )−1T ∗ =
(
(T ∗)−1(I + T ∗T )T−1

)−1
= (I + S)−1,

where S = (TT ∗)−1 runs over all positive invertible linear operators as T runs
over all semilinear bounded invertible operators on H. Hence, φT ((1/2)I) ∈
(0, I) and for every C ∈ (0, I) we can find an invertible linear bounded operator
T : H → H such that φT ((1/2)I) = C. It follows easily that for every semilinear
bounded invertible operator T : H → H we have φT ((0, I)) = (0, I).

Assume now that φ : [0, I] → [0, I] is an order automorphism. We already
know that there is no loss of generality in assuming that φ((1/2)I) = (1/2)I.

By Lemma 2.3, an operator A ∈ [0, I] is of rank at most one if and only if
for every pair C,D ∈ [0, I] satisfying C,D ≤ A we have C ≤ D or D ≤ C. This
characterization of effects of rank at most one and φ(0) = 0 imply that φ maps
the set of rank one effects onto itself.

Clearly, the set of projections of rank one is the set of maximal elements in
the set of all rank one effects with respect to the order ≤.

Thus, if we denote by P1 ⊂ [0, I] the set of all projections of rank one, then
there exists a bijective map ϕ : P1 → P1 such that φ(P ) = ϕ(P ) for every
P ∈ P1. It follows that the set of effects A satisfying A ≤ P is mapped onto the
set of effects B satisfying B ≤ φ(P ) = ϕ(P ), or equivalently, for every P ∈ P1

there exists a bijective increasing function fP : [0, 1]→ [0, 1] such that φ(tP ) =
fP (t)ϕ(P ), 0 ≤ t ≤ 1. Further, for any real t, 0 ≤ t ≤ 1, and any P ∈ P1 we
have tP ≤ (1/2)I if and only if fP (t)ϕ(P ) ≤ φ((1/2)I) = (1/2)I, which gives
us fP (1/2) = 1/2, that is, for every P ∈ P1 we have φ((1/2)P ) = (1/2)ϕ(P ).

In the next step we will see that the set of projections of rank two is mapped
by φ bijectively onto the set of projections of rank two and if R is a projection
of rank two then φ((1/2)R) = (1/2)φ(R). Take any projection of rank two. It
can be written as P +Q where P,Q is an orthogonal pair of projections of rank
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one. Then ϕ(P ), ϕ(Q) ≤ φ(P +Q) ≤ I, and clearly, ϕ(P ) 6= ϕ(Q). By Lemma
2.2 we have

φ(P +Q) =

[
IK 0
0 B

]
,

where IK stands for the identity operator on K = Imϕ(P ) ⊕ Imϕ(Q) (note
that at the moment we do not know whether this direct sum is orthogonal), and
B : K⊥ → K⊥ is a positive operator with B ≤ IK⊥ . Using the same arguments
for the order automorphism φ−1 we see that

φ−1
([
IK 0
0 0

])
=

[
IL 0
0 R

]
,

where L = ImP ⊕ ImQ and R is a positive operator. Furthermore,[
IL 0
0 R

]
= φ−1

([
IK 0
0 0

])
≤ φ−1

([
IK 0
0 B

])
=

[
IL 0
0 0

]
,

which yields that R = 0 and

φ−1
([
IK 0
0 0

])
= φ−1

([
IK 0
0 B

])
.

It follows that B = 0. Thus, φ(P +Q) is a projection of rank two.
Set R = P +Q. Then (1/2)P, (1/2)Q ≤ (1/2)R ≤ (1/2)I, and consequently,

φ((1/2)R) ≤ φ(R) is of rank two and satisfies

(1/2)ϕ(P ), (1/2)ϕ(Q) ≤ φ((1/2)R) ≤ (1/2)I.

Using a slight modification of Lemma 2.2 we see that φ((1/2)R) is a rank two
projection onto the two-dimensional subspace spanned by the images of ϕ(P )
and ϕ(Q) multiplied by 1/2. It follows that φ((1/2)R) = (1/2)φ(R).

We consider P,Q ∈ P1 that are orthogonal and denote A = (1/2)P + Q.
Then (1/2)φ(P +Q) = φ((1/2)(P +Q)) ≤ φ(A) ≤ φ(P +Q). Therefore,

φ(A) = sR+ tR′,

where 1/2 ≤ s ≤ t ≤ 1, and R,R′ is a pair of orthogonal rank one projections
such that the image of R+R′ is the two-dimensional subspace spanned by the
images of ϕ(P ) and ϕ(Q). Note that the possibility that s = t = 1 cannot occur
because we know that φ(A) is not a projection of rank two. We further know
that ϕ(Q) ≤ φ(A) ≤ I which yields that t = 1 and R′ = ϕ(Q). It follows from
pϕ(P ) 6≤ φ(A) whenever p > 1/2 and Lemma 2.8 that φ(A) = (1/2)ϕ(P )+ϕ(Q)
and ϕ(P ) ⊥ ϕ(Q).

So far we have not used the assumption that dimH ≥ 3 and everything above
holds in the case when dimH = 2 as well. But in the next step the assumption
that dimH ≥ 3 is essential. Uhlhorn’s theorem, which is a straightforward
consequence of the fundamental theorem of projective geometry, see for example
[5]), states that if ϕ : P1 → P1 is a bijective map such that for every pair
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P,Q ∈ P1 we have P ⊥ Q ⇐⇒ ϕ(P ) ⊥ ϕ(Q), then in the complex case there
exists a unitary or antiunitary operator U : H → H such that ϕ(P ) = UPU∗,
P ∈ P1, while in the real case there exists an orthogonal operator O : H → H
such that ϕ(P ) = OPO∗, P ∈ P1. Thus, we can assume with no loss of
generality that φ(P ) = P for every P ∈ P1 and φ((1/2)P + Q) = (1/2)P + Q
for every orthogonal pair P,Q ∈ P1.

We claim that
φ(I − P ) = I − P (13)

for every P ∈ P1. Indeed, for every rank one projection Q that is orthogonal to
P we have Q ≤ I−P and therefore Q ≤ φ(I−P ). This yields I−P ≤ φ(I−P )
which further implies that φ(I−P ) = (I−P )+ tP for some t ∈ [0, 1]. For every
real s ∈ (0, 1] we have sP 6≤ I −P and consequently, for every real p ∈ (0, 1] we
have pP 6≤ φ(I − P ). This shows that t = 0, as desired.

Using Lemma 2.4 we see that φ(tR) = tR for every R ∈ P1 and every real
t ∈ [1/2, 1].

We introduce a new map τ : [0, I]→ [0, I] defined by τ(X) = I − φ(I −X),
X ∈ [0, I]. This is again an order automorphism of [0, I] satisfying τ((1/2)I) =
(1/2)I. It follows from (13) that τ(P ) = P for every P ∈ P1. But then we
know that τ(tR) = tR for every R ∈ P1 and every real t ∈ [1/2, 1]. This further
implies that φ(I − tR) = I − tR for every R ∈ P1 and every real t ∈ [1/2, 1].

Let s ∈ [0, 1/2] and let R be any projection of rank one. Then t = 1 − s ∈
[1/2, 1]. For every real p ∈ [0, 1] we have p ≤ s if and only if pR ≤ I − tR which
is further equivalent to fR(p)R ≤ I − tR. Hence, for every real p ∈ [0, 1] we
have p ≤ s if and only if fR(p) ≤ 1− t = s. Thus, fR(s) = s.

We have shown that φ(tR) = tR for every R ∈ P1 and every real t ∈ [0, 1].
Using Lemma 2.1 we immediately get that φ(X) = X for every X ∈ [0, I].

Finally, suppose that T, S : H → H are invertible bounded semilinear op-
erators and φT (X) = φS(X), X ∈ [0, I]. We need to show that there ex-
ists c ∈ F such that |c| = 1 and T = cS. (While proving this fact we
will also explain the formula (2). At first glance this formula that describes
the general form of order automorphisms of effect algebras looks quite sur-
prising. A careful reader will notice that it is related to the fact that the
group of order automorphisms of the set of all positive invertible operators
coincides with the set of all congruences X 7→ TXT ∗ where T is an invert-
ible bounded semilinear operator on H.) We already know φT ((0, I)) = (0, I)
and φS((0, I)) = (0, I). We will use the same symbols φT and φS to de-
note the restrictions of φT and φS to (0, I), respectively. Obviously, the map
ψ : (0,∞) → (0, I) defined by ψ(X) = (I + X)−1, X ∈ (0,∞), is an order
anti-isomorphism, that is, ψ is bijective and for every pair X,Y ∈ (0,∞) we
have X ≤ Y ⇐⇒ ψ(Y ) ≤ ψ(X). Its inverse ψ−1 : (0, I) → (0,∞) is given
by ψ−1(X) = X−1 − I, X ∈ (0, I). Set T ′ = (T ∗)−1 and S′ = (S∗)−1 and
define order automorphisms ξT ′ , ξS′ : (0,∞)→ (0,∞) by ξT ′(X) = T ′XT ′∗ and
ξS′(X) = S′XS′∗, X ∈ (0,∞). For every X ∈ (0, I) we have

(ψ◦ξT ′ ◦ψ−1)(X) = ψ
(
(T ∗)−1(X−1 − I)T−1

)
=
(
I + (T ∗)−1(X−1 − I)T−1

)−1
17



=
(
(T ∗)−1

(
T ∗T + (X−1 − I)

)
T−1

)−1
= T

(
T ∗T − I +X−1

)−1
T ∗

= T
(
X−1 (X(T ∗T − I) + I)

)−1
T ∗ = T (X(T ∗T − I) + I)

−1
XT ∗ = φT (X).

Therefore φT (X) = φS(X), X ∈ (0, I), yields that ξT ′(X) = ξS′(X), X ∈
(0,∞), or equivalently,

T ′XT ′∗ = S′XS′∗

for every X ∈ (0,∞). It is very easy to conlude that T ′ = cS′ for some c ∈ F
with |c| = 1. The desired equality T = cS is an easy consequence.

4 Two-dimensional case

In this section we will deal with the two-dimensional case. In the finite-dimensio-
nal case we usually identify operators with matrices. Therefore we will formulate
the two theorems below in the language of matrices.

Theorem 4.1. Let 0 and I denote the 2× 2 zero matrix and the 2× 2 identity
matrix, respectively, and let [0, I] be the matrix interval in S2. Then the map φ :
[0, I]→ [0, I] is an order automorphism if and only if there exists an invertible
2× 2 real matrix T such that

φ(X) = T
(
X(T tT − I) + I

)−1
XT t

for every X ∈ [0, I].

Theorem 4.2. Let 0 and I denote the 2× 2 zero matrix and the 2× 2 identity
matrix, respectively, and let [0, I] be the matrix interval in H2, the set of all
2 × 2 complex hermitian matrices. Then the map φ : [0, I] → [0, I] is an order
automorphism if and only if there exists an invertible 2 × 2 complex matrix T
such that either

φ(X) = T (X(T ∗T − I) + I)
−1
XT ∗

for every X ∈ [0, I]; or

φ(X) = T
(
Xt(T ∗T − I) + I

)−1
XtT ∗

for every X ∈ [0, I].

Note that for every complex hermitian matrix X we have Xt = X, where X
is the matrix obtained from X by aplying the complex conjugation entrywise.
This explains the appearance of Xt in one of the formulae describing order
automorphisms of effect algebras in the finite-dimensional case when we use the
matrix language rather than speaking of linear or conjugate-linear operators.

Note that the above two theorems are generalizations of the main theorem
in [19].

Again we could have proved both theorems simultaneously. But since The-
orem 4.2 is already known, see [21], and the proof of Theorem 4.2 can be easily
obtained by just slightly modifying the proof of Theorem 4.1, we will give just
the proof of the real case.
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Proof of Theorem 4.1. We need to prove just one direction. So, assume that φ :
[0, I]→ [0, I] is an order automorphism. We already know that there is no loss of
generality in assuming that φ((1/2)I) = (1/2)I. Once we restrict ourseleves to
this special case we further know that there exists a bijective map ϕ : P1 → P1

such that φ(P ) = ϕ(P ) and φ((1/2)P ) = (1/2)ϕ(P ), P ∈ P1, and for every
pair of orthogonal rank one projections P,Q ∈ P1 we have ϕ(P ) ⊥ ϕ(Q) and
φ((1/2)P + Q) = (1/2)ϕ(P ) + ϕ(Q). Moreover, for every P ∈ P1 there exists
a bijective increasing function fP : [0, 1]→ [0, 1] such that φ(tP ) = fP (t)ϕ(P ),
0 ≤ t ≤ 1.

Our next goal is to prove that for every rank one projection Q we have
φ((1/3)Q) = (1/3)ϕ(Q). Set A = (1/3)Q+(I−Q) and find a rank one projection
P such that tr (PQ) = 1/2. Then by Lemma 2.5 there exist nonnegative real
numbers t1, t2, t3 and rank one projections R1, R2, R3 such that

A = (1/2)P + t1R1, A = (1/2)(I − P ) + t2R2, and A = I − t3R3.

Using Lemma 2.3 three times together with the fact that φ : [0, I]→ [0, I] is an
order automorphism we see that there exist nonnegative real numbers s1, s2, s3
and rank one projections R′1, R

′
2, R

′
3 such that

φ(A) = (1/2)ϕ(P ) + s1R
′
1, φ(A) = (1/2)(I − ϕ(P )) + s2R

′
2,

and
φ(A) = I − s3R′3.

Applying Lemma 2.5 once more we conclude that

φ(A) = φ((1/3)Q+ (I −Q)) = (1/3)Q′ + (I −Q′)

for some rank one projection Q′ satisfying

tr (ϕ(P )Q′) = 1/2.

Because I −Q ≤ A we have

I − ϕ(Q) ≤ φ(A) = (1/3)Q′ + (I −Q′).

It follows that I −Q′ = I − ϕ(Q), or equivalently, Q′ = ϕ(Q).
We know that there exists a bijective increasing function k : [0, 1] → [0, 1]

such that φ(tQ) = k(t)Q′. Further, we have

t ≤ 1/3 ⇐⇒ tQ ≤ A ⇐⇒ k(t)Q′ ≤ (1/3)Q′ + (I −Q′),

and consequently, k((1/3)) = 1/3, that is, φ((1/3)Q) = (1/3)ϕ(Q).
Because Q is an arbitrary projection of rank one it follows trivially that

φ((1/3)I) = (1/3)I.
Note that we have also shown the following: If P,Q are projections of rank

one then
tr (PQ) = 1/2⇒ tr (ϕ(P )ϕ(Q)) = 1/2. (14)
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As in the previous section we introduce a new map τ : [0, I]→ [0, I] defined
by τ(X) = I − φ(I − X), X ∈ [0, I]. Clearly, τ((1/2)I) = (1/2)I. By the
previous step of the proof we conclude that τ((1/3)I) = (1/3)I, or equivalently,
φ((2/3)I) = (2/3)I. From here we immediately get that for every rank one
projection Q we have φ((2/3)Q) = (2/3)ϕ(Q).

Let us summarize what we have obtained so far. We have assumed that
φ : [0, I] → [0, I] is an order automorphism and φ(tI) = tI for t = 0, 1/2, 1. It
follwows that there exists a bijective map ϕ : P1 → P1 such that ϕ(I − P ) =
I − ϕ(P ), P ∈ P1, and

φ(tI) = tI and φ(tP ) = tϕ(P )

for every t = 0, 1/3, 1/2, 2/3, 1 and every P ∈ P1.
This further yields that for any pair of real numbers a, b, 0 ≤ a < b ≤ 1, the

following holds true: Assume that φ(tI) = tI for t = a, (1/2)(a+ b), b. Then

φ(tI) = tI

for every t = a, (2/3)a+(1/3)b, (1/2)(a+b), (1/3)a+(2/3)b, b, and consequently,

φ(tP ) = tϕ(P )

for every t = a, (2/3)a+(1/3)b, (1/2)(a+b), (1/3)a+(2/3)b, b, and every P ∈ P1.
We apply the above statement to matrix intervals [0, (2/3)I], [(1/3)I, (2/3)I],

and [(1/3)I, I] to conclude that

φ(tI) = tI and φ(tP ) = tϕ(P )

for every t = 0, 2/9, 3/9, 4/9, 5/9, 6/9, 7/9, 1 and every P ∈ P1.
We have shown that if φ : [0, I] → [0, I] is an order automorphism and

φ(tI) = tI for t = 0, 1/2, 1, then for t1 = 0, t2 = 2
9 , t3 = 4

9 , t4 = 3
9 , t5 = 5

9 ,
t6 = 7

9 , t7 = 5
9 , t8 = 7

9 , and t9 = 1 we have

[0, 1] = [t1, t3] ∪ [t4, t6] ∪ [t7, t9],

t3k+3 − t3k+1 =
4

9
and t3k+2 =

t3k+1 + t3k+3

2
, k = 0, 1, 2,

and
φ(tmI) = tmI and φ(tmP ) = tmϕ(P ), m = 1, . . . , 9,

for every P ∈ P1.
From here one can easily see that for any pair of real numbers a, b, 0 ≤ a <

b ≤ 1, the following holds true: Assume that φ(tI) = tI for t = a, (1/2)(a+b), b.
Then there exist real numbers s1, . . . , s9 such that

[a, b] = [s1, s3] ∪ [s4, s6] ∪ [s7, s9],

s3k+3 − s3k+1 =
4

9
(b− a) and s3k+2 =

s3k+1 + s3k+3

2
, k = 0, 1, 2,
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and
φ(smI) = smI and φ(smP ) = smϕ(P ), m = 1, . . . , 9,

for every P ∈ P1.
A simple inductive argument shows that for every positive integer r there

exist real numbers tr,1, . . . , tr,3r+1 such that

[0, 1] =

3r−1⋃
j=0

[tr,3j+1, tr,3j+3] ,

tr,3j+3−tr,3j+1 =

(
4

9

)r
and tr,3j+2 =

tr,3j+1 + tr,3j+3

2
, j = 0, 1, . . . , 3r−1,

and

φ(tr,mI) = tr,mI and φ(tr,mP ) = tr,mϕ(P ), m = 1, . . . , 3r+1,

for every P ∈ P1.
The subset T ⊂ [0, 1] given by

T =

∞⋃
r=1

{
tr,1, tr,2, . . . , tr,3r+1

}
is dense in the unit interval [0, 1]. Moreover, we have

φ(tI) = tI and φ(tP ) = tϕ(P )

for every t ∈ T and every P ∈ P1. It follows that for every P ∈ P1 and every
t ∈ [0, 1] we have φ(tI) = tI and φ(tP ) = tϕ(P ).

Let A ∈ [0, I] be any effect. We know that A = tQ + s(I − Q) for some
rank one projection Q and some real numbers s, t ∈ [0, 1]. We claim that
φ(A) = tϕ(Q) + s(I−ϕ(Q)). We already know that this is true when t = s. So,
assume that t 6= s. Without loss of generality we can assume that t < s. We
know that for p ∈ [0, 1] we have pI ≤ A if and only if p ≤ t. Further, pI ≥ A if
and only if p ≥ s. It follows that for every p ∈ [0, 1] we have

pI ≤ φ(A) ⇐⇒ p ≤ t

and
pI ≥ φ(A) ⇐⇒ p ≥ s.

From here it is easy to conclude that there exists a rank one projection Q′ such
that φ(A) = tQ′+ s(I−Q′). We further use the fact that for every real number
p from the unit interval we have pϕ(Q) ≤ φ(A) if and only if p ≤ t to show that
φ(A) = tϕ(Q) + s(I − ϕ(Q)), as desired.

After replacing the map φ by the map X 7→ Oφ(X)Ot, X ∈ [0, I], where
O is an appropriate orthogonal 2 × 2 matrix, we can assume with no loss of
generality that φ(X) = X for every X ∈ D. Recall that the symbol D stands
for the set of all diagonal effects.
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It follows from (14) that either

φ

([
1/2 1/2
1/2 1/2

])
=

[
1/2 1/2
1/2 1/2

]
,

or

φ

([
1/2 1/2
1/2 1/2

])
=

[
1/2 −1/2
−1/2 1/2

]
.

After replacing φ by the map

X 7→
[
1 0
0 −1

]
φ(X)

[
1 0
0 −1

]
, X ∈ [0, I],

if necessary, we may assume with no loss of generality that we have the first
possibility. It follows that for every X ∈ D we have φ(X]) = X], where X] is
defined as in (6).

Moreover, we know that for every 2× 2 orthogonal matrix O there exists a
2× 2 orthogonal matrix L such that

φ(OXOt) = LXLt

for every X ∈ D. Choose and fix O and L as above. Then for every pair of
diagonal effects X,Y we have

X ≤ OY Ot ⇐⇒ φ(X) = X ≤ LY Lt

and
X] ≤ OY Ot ⇐⇒ φ(X]) = X] ≤ LY Lt.

By Lemma 2.7 we have φ(OY Ot) = OY Ot for every Y ∈ D. Since O can be
chosen to be any 2× 2 orthogonal matrix we have φ(X) = X, X ∈ [0, I]. This
completes the proof.

In this paper an elementary proof of the description of the group of or-
der autoumorphisms of operator/matrix interval [0, I] has been given. The only
nontrivial tool that we have used is the fundamental theorem of projective geom-
etry. If one would like to have a completely self-contained elementary proof then
one could start with the elemntary self-contained proof of the two-dimensional
case as presented in this section and then deduce the general case in two steps.
Let φ : [0, I]→ [0, I] be an order automorphism. In the first very easy step one
would verify that for every projection P ∈ [0, I] of rank two the effect φ(P ) is
a projection of rank two and φ maps {A ∈ [0, I] : PAP = A} = P [0, I]P onto
φ(P )[0, I]φ(P ) and the restriction of φ to P [0, I]P is an order isomorphisms of
P [0, I]P onto φ(P )[0, I]φ(P ). This restriction can be considered as an order
automorphism of the effect algebra on a two-dimensional Hilbert space and is,
by the main result of this section, of a nice form. In the second step one would
use this nice behaviour on each of the “smal pieces” P [0, I]P , P ∈ P1, to prove
that φ behaves nicely on the whole effect algebra [0, I].
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5 Order isomorphisms of matrix intervals

Throughout this section we will assume that n ≥ 2. Let A,B be real n × n
symmetric matrices such that A < B. Then we define matrix intervals

[A,B] = {C ∈ Sn : A ≤ C ≤ B},

[A,B) = {C ∈ Sn : A ≤ C < B},

and
(A,B) = {C ∈ Sn : A < C < B}.

Similarly, we define
[A,∞) = {C ∈ Sn : C ≥ A},

(A,∞) = {C ∈ Sn : C > A},

and Sn = (−∞,∞). The notations (A,B], (−∞, A], and (−∞, A) should now
be self-explanatory.

We will first answer the question which of the above matrix intervals are
order isomorphic. In the next step we will describe the general form of all
order isomorphisms between matrix intervals that are order isomorphic. It is
important to note that if matrix intervals I1, I2, J1, J2 are order isomorphic and
the order isomorphisms ϕj : Ij → Jj , j = 1, 2, are given, and we know the
description of the general form of order isomorphisms between I1 and I2, then
we immediately get the general form of order isomorphisms between J1 and J2.
Indeed, each order isomorphism ψ : J1 → J2 is of the form

ψ = ϕ2 φϕ
−1
1 ,

where φ : I1 → I2 is any order isomorphism. Of course, a similar reduction is
possible if we know that certain matrix intervals are order anti-isomorphic. We
have the following reduction principle: if I1 and I2 are order isomorphic matrix
intervals, and J1 and J2 are order isomorphic matrix intervals, and ϕj : Ij → Jj ,
j = 1, 2, are order anti-isomorphisms, then each order isomorphism ψ : J1 → J2
is of the form ψ = ϕ2 φϕ

−1
1 , where φ is an order isomorphism of I1 onto I2.

Let A,B ∈ Sn with A < B. Then φ : [0, I]→ [A,B] given by

φ(X) = (B −A)1/2X(B −A)1/2 +A, X ∈ [0, I],

is an order isomorphism. It follows that all matrix intervals of the form [A,B]
with A < B are isomorphic and we know how to construct an order isomorphism
between two such matrix intervals. Similarly, all matrix intervals of the form
[A,B) with A < B are isomorphic and again it is easy to give a simple explicit
formula of an order isomorphism between two such matrix intervals. Analogous
statements for the operator intervals (A,B] and (A,B) are obviously true.

Clearly, any two distinct matrix intervals from the collection [0, I], [0, I),
(0, I], and (0, I) are order non-isomorphic. Let us show that [0, I) and (0, I)
are not order isomorphic. All we need is to observe 0 ∈ [0, I) has the property
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that 0 ≤ A for every A ∈ [0, I), while there does not exist B ∈ (0, I) such that
B ≤ A for every A ∈ (0, I).

Further, let A ∈ S(H). Then the matrix interval [A,∞) is order isomorphic
to [0,∞) via the translation isomorphism X 7→ X − A. Similarly, for every
A ∈ S(H) the matrix interval (−∞, A] is order isomorphic to (−∞, 0], while
clearly, [0,∞) and (−∞, 0] are not order isomorphic.

The map φ : [0, I)→ [0,∞) given by

φ(X) = (I −X)−1 − I, X ∈ [0, I),

is an example of an order isomorphism of [0, I) onto [0,∞) (one just need to
check that that the map X 7→ −X is an order anti-isomorphism of [0, I) onto
(−I, 0] and that the map Z 7→ Z−1 is an order anti-isomorphism of (0, I] onto
[I,∞) ). In an almost the same way we see that (−∞, 0] is order isomorphic to
(0, I].

Further, the map φ(X) = I − X−1 is an order isomorphism of (0, I) onto
(−∞, 0) and the map φ(X) = (I −X)−1 − I is an order isomorphism of (0, I)
onto (0,∞).

We have shown the following.

Theorem 5.1. Every matrix interval J is isomorphic to one of the following
matrix intervals: [0, I], [0,∞), (−∞, 0], (0,∞), and (−∞,∞).

Let J be any matrix interval. Using the above ideas one can easily construct
an order isomorphism between J and one of the above five matrix intervals.

The matrix intervals (−∞,∞) and (0,∞) are not order isomorphic. This
has been proved in the complex case in [16]. Exactly the same proof works also
in the real case. It follows that any two of the above five matrix intervals are
order non-isomorphic. Further, [0,∞) and (−∞, 0] are obviously order anti-
isomorphic. Hence, to have a full understanding of the structure of all order
isomorphisms between any two order isomorphic matrix intervals one only needs
to describe the general form of order automorphisms of the following four matrix
intervals: [0, I], [0,∞), (0,∞), and (−∞,∞). The main theorem of our paper
characterizes order automorphisms of [0, I]. Let us continue with [0,∞). We
will show that every order automorphism φ : [0,∞) → [0,∞) is a congruence
transformation, that is, there exists a real invertible n × n matrix T such that
φ(X) = TXT t, X ∈ [0,∞).

In order to verify this statement we need some rather easy observations. As
usual we identify vectors in Rn with n × 1 matrices. If x, y ∈ Rn are nonzero
vectors then xyt is a rank one matrix and every rank one matrix can be written
in this form. For nonzero vectors x, y, u, v ∈ Rn we have

(xyt)(uvt) = (ytu)xvt = 〈y, u〉xvt.

It follows that for u, v ∈ Rn satisfying 〈u, v〉 6= −1 the matrix I+uvt is invertible
and

(I + uvt)−1 = I − 1

1 + 〈u, v〉
uvt.
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For every unit vector x ∈ Rn the rank one matrix xxt is a projection. Every
rank one symmetric matrix is of the form txxt for some unit vector x and some
real number t. Let φ : [0, I] → [0, I], [0, I] ⊂ Sn, be an order automorphism.
Then we can find an invertible 2×2 real matrix T such that φ(X) = T (X(T tT−
I) + I)−1XT t, X ∈ [0, I]. Denoting A = At = T tT − I > −I we see that for
every unit vector x ∈ Rn and every real t, 0 < t ≤ 1, we have 〈Ax, tx〉 =
t〈Ax, x〉 > t〈(−I)x, x〉 = −t ≥ −1, and therefore

φ(txxt) = tT (txxtA+ I)−1xxtT t = tT ((tx)(Ax)t + I)−1x(Tx)t

= tT

(
I − 1

1 + t〈Ax, x〉
(tx)(Ax)t

)
x(Tx)t = t(Tx)(Tx)t− t2〈Ax, x〉

1 + t〈Ax, x〉
(Tx)(Tx)t

=
t

1 + t〈Ax, x〉
(Tx)(Tx)t.

Obviously, 〈Ax, x〉 = ‖Tx‖2 − ‖x‖2 = ‖Tx‖2 − 1. If we denote yx = 1
‖Tx‖Tx,

then

φ(txxt) =
t‖Tx‖2

t(‖Tx‖2 − 1) + 1
yxy

t
x.

We have three possibilities. The first one is that A = 0. Then T is an orthogonal
transformation and

φ(X) = TXT t, X ∈ [0, I].

The second one is that there exists a unit vector x such that ‖Tx‖ > 1. For
such an x there exists a unit vector y such that for every real t, 0 ≤ t ≤ 1, we
have

φ(txxt) = f(t)yyt,

where f is a linear rational function which is strictly increasing on the positive
real half-line, f(0) = 0, f(1) = 1, and

lim
t→∞

f(t) <∞.

The third one is that there exists a unit vector x such that ‖Tx‖ < 1. For such
an x there exists a unit vector y such that for every real t, 0 ≤ t ≤ 1, we have

φ(txxt) = f(t)yyt,

where f is a linear rational function which is strictly increasing on some interval
[0, a) with a > 1, f(0) = 0, and limt↑a f(t) =∞.

For every pair A,B ∈ Sn, A > 0 and B > 0, and every order isomorphism
φ : [0, A]→ [0, B] the map

X 7→ B−1/2φ(A1/2XA1/2)B−1/2, X ∈ [0, I],

is an automorphism of [0, I] onto itself. It follows easily that either there exists
an invertible n× n real matrix S such that

φ(X) = SXSt, X ∈ [0, A],
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(actually, we know that S = B1/2OA−1/2 for some orthogonal matrix O but
we do not need this fact for our proof) or there exist unit vectors x, y ∈ Rn
and a linear rational function f which is strictly increasing on the positive real
half-line, f(0) = 0 and limt→∞ f(t) <∞ such that

φ(txxt) = f(t)yyt

for every real t satisfying 0 ≤ txxt ≤ A, or there exist unit vectors x, y ∈ Rn and
a linear rational function f which is strictly increasing on some interval [0, a),
a > α(A, xxt), f(0) = 0 and limt↑a f(t) =∞ such that

φ(txxt) = f(t)yyt

for every real t satisfying 0 ≤ txxt ≤ A.
We are now ready to describe the general form of order automorphisms of

[0,∞) ⊂ Sn. So, assume that φ : [0,∞) → [0,∞) is an order automorphism.
Then there exists a positive integer p such that φ(pI) = Bp > 0. For every
integer n ≥ p we have Bn = φ(nI) > 0 and φ restricted to [0, nI] is an order
isomorphism of [0, nI] onto [0, Bn].

We first assume that there exist unit vectors x, y ∈ Rn and a linear rational
function f which is strictly increasing on the positive real half-line, f(0) = 0
and limt→∞ f(t) = m <∞ such that

φ(txxt) = f(t)yyt (15)

for every real t, 0 ≤ t ≤ p. For every positive integer n > p we consider the
restriction of φ to [0, nI] which is an order isomorphism of [0, nI] onto [0, Bn].
We have three possibilities for the beahviour of the mapping t 7→ φ(txxt), 0 ≤
t ≤ n, and because we know that (15) holds for every real t, 0 ≤ t ≤ p,
we conclude that φ(txxt) = f(t)yyt for every real t, 0 ≤ t ≤ n. But n was an
arbitrary integer greater than p, and thus φ(txxt) ≤ mI for every positive real t.
Since φ is surjective we can find A ∈ [0,∞) such that φ(A) > mI. Consequently,
φ(A) > mI ≥ φ(txxt) for every nonnegative real t implying that txxt ≤ A for
every real t, 0 ≤ t <∞, a contradiction.

The possibility that there exist unit vectors x, y ∈ Rn and a linear rational
function f which is strictly increasing on some interval [0, a), a > p, f(0) = 0
and limt↑a f(t) =∞ such that

φ(txxt) = f(t)yyt

for every real t, 0 ≤ t ≤ p, leads to a contradicition in a similar way.
It remains to consider the case that φ(X) = SpXS

t
p, X ∈ [0, pI], for some

invertible n × n real matrix Sp. But then it follows trivially that for every
integer n, n > p, there exists an invertible n × n real matrix Sn such that
φ(X) = SnXS

t
n, X ∈ [0, nI]. In particular, for any pair of integers m,n > p

and every unit vector x we have

Snxx
tStn = Smxx

tStm
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which yields that Snx = txSmx for some real number tx. It can be easily verified
that tx is independent of x. Thus, we have Sn = tn,mSm for some nonzero real
number tn,m. From SnIS

t
n = SmS

t
m we conclude that tn,m = ±1, and by

absorbing the constant we may assume with no loss of generality that Sn ≡ S
is independent of positive integer n, n > p. Hence, φ(X) = SXS−1 for every
X ∈ [0,∞). Thus, we have the following statement.

Theorem 5.2. Let φ : [0,∞)→ [0,∞) be an order automorphism. Then there
exists a real invertible n× n matrix T such that φ(X) = TXT t, X ∈ [0,∞).

In the next step we will characterize order automorphisms of (0,∞). So, let
φ : (0,∞) → (0,∞) be an order automorphism. We want to show that there
exists a real invertible n × n matrix T such that φ(X) = TXT t, X ∈ (0,∞).
Let A ∈ (0,∞). Then the map φA : [0,∞)→ [0,∞) given by

φA(X) = φ(X +A)− φ(A), X ∈ [0,∞),

is obviously an order automorphism of [0,∞), and therefore we can find an
invertible n× n matrix TA such that

φA(X) = TAXT
t
A, X ∈ [0,∞).

For symmetric matrices A,B satisfying 0 < B ≤ A and for every X ≥ 0 we
have

TAXT
t
A+φ(A) = φ(X+A) = φ((X+A−B) +B) = TB(X+A−B)T tB +φ(B)

= TBXT
t
B + TB(A−B)T tB + φ(B).

Choosing X = 0 we see that

φ(A)− φ(B) = TB(A−B)T tB . (16)

It follows that
TAXT

t
A = TBXT

t
B , X ∈ [0,∞). (17)

For every nonzero vector x the matrix xxt is positive. From (17) we get that
for every x ∈ Rn there exists a real number tx such that TAx = txTBx. As
before we see that TA = tTB for some nonzero real number t. Inserting X = I
in (17) we conclude that ‖TA‖ = ‖TB‖. Hence, t = ±1, and by absorbing the
constant we may assume with no loss of generality that TA ≡ T is independent
of A, A ∈ (0,∞). Replacing the map φ by the map X 7→ T−1φ(X)(T t)−1,
X ∈ (0,∞), and using (16) we can assume with no loss of generality that

φ(A)− φ(B) = A−B

holds true for every pair A,B satisfying 0 < B ≤ A. Applying the fact that φ
is an order automorphism of (0, I) we easily conclude that for any decreasing
sequence (Bn) ⊂ (0,∞) with limBn = 0 we have limφ(Bn) = 0. It follows that
φ(A) = A for every A ∈ (0,∞), as desired. Hence, we have the following result.
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Theorem 5.3. Let φ : (0,∞)→ (0,∞) be an order automorphism. Then there
exists a real invertible n× n matrix T such that φ(X) = TXT t, X ∈ (0,∞).

It remains to consider order automorphisms of (−∞,∞). Assume that φ :
Sn → Sn is an order automorphism. Then the map X 7→ φ(X)−φ(0), X ∈ Sn,
is an order automorphism that maps 0 to 0. Consequently, its restriction to
[0,∞) is an automorphism of [0,∞) onto itself. It follows that there exists an
invertible real matrix T such that φ(X) = TXT ∗ + S, X ∈ [0, I). Here, S
denotes S = φ(0). In a similar way as in the previous paragarph we can now
prove the next theorem.

Theorem 5.4. Let φ : Sn → Sn be an order automorphism. Then there exist
an invertible n×n real matrix T and a symmetric n×n real matrix S such that

φ(X) = TXT t + S, X ∈ Sn.

References

[1] P. Busch and S.P. Gudder, Effects as functions of projective Hilbert space,
Lett. Math. Phys. 47 (1999), 329–337.

[2] P. Busch, P. Lahti, J.-P. Pellonpää, and K. Ylinen, Quantum measurement,
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[27] P. Šemrl, Order isomorphisms of operator intervals, Integral Equations Op-
erator Theory 89 (2017), 1–42.

29


