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Abstract

Let S(H) be the set of all self-adjoint bonded linear operators on H
and V C S(H) a subset that is pertinent in mathematical foundations of
quantum mechanics. A symmetry is a bijective map ¢ : V — V which is
an automorphism with respect to one or more relations and/or operations
on V that are relevant in mathematical physics. We will explain several
ideas that can be used when studying the general form of symmetries.
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1 Introduction

Let H be a complex Hilbert space, dimH > 2. We denote by B(H) and
S(H) C B(H) the algebra of all bounded linear operators on H and the subset of
all self-adjoint operators, respectively. In mathematical foundations of quantum
mechanics bounded observables are represented by self-adjoint operators. There
are several subsets of S(H) that are important in mathematical formalization
of quantum mechanics. Let A € S(H). Then A > 0 if (Az,x) > 0 for every
x € H. Such operators are called positive operators. When A > 0 and A is
invertible we say that A is a positive definite operator and write A > 0. The
set of all positive operators S>(H) = {A € S(H) : A > 0} and the set of all
positive definite operators Ss (H) = {4 € S(H) : A > 0} play important roles
in physics. The effect algebra E(H) = {Ae€ S(H) : A>0 and I — A >0} is
of basic importance in Ludwig’s axiomatic formulation of quantum mechanics,
see [1], [2], [16], [17], and [18]. We denote by P(H) the set of all projections
on H, P(H) = {A € S(H) : A2 = A = A*}. Pure states are repreented by
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projections of rank one. We denote by Pi(H) = {P € P(H) : dimIm (P) =1}
the set of all pure states.

On the set S(H) or its subsets we can define several operations and re-
lations that are relevant in mathematical foundations of quantum mechanics.
Let A,B € S(H). Then A < B if and only if B — A > 0, and similarly,
A< B <= B—A>0. For bounded observables A, B € S(H) we have A < B
if and only if the mean value (expectation) of A in every state is less than or
equal to the mean value of B in the same state. The relation < on S(H) is
often called Loewner order. Two bounded observables are compatible if they
can be measured jointly. If A, B are the corresponding self-adjoint operators
then the two bounded observables are compatible if and only the operators A
and B commute. The situation is more involved in the case of effect algebras.
Two effects that can be measured together by applying a suitable apparatus are
called coexistent effects. When we switch to the language of mathematics this
translates into the following definition: Two effects A, B € E(H) are said to be
coexistent if there exist effects E, F, G € E(H) such that

A=E+G and B=F+G and E+F+G e E(H).

For any effect A we denote by AL the orthocomplent of A, A+ = I — A. For
two self-adjoint operators A and B the product AB is in not always self-adjoint.
But S(H) is closed for the Jordan product Ao B = (1/2)(AB + BA) as well as
for the triple Jordan product Ao B = ABA. In the setting of effect algebras a
more natural concept is the sequential product defined by Ao B = AY/2BA'/2.
On the set of positive operators an important operation is the geometrical mean
defined by A§B = AY/2(A=1/2BA~1/2)1/2A1/2_ Transition probability between
pure states P,@ € P;(H) is defined as tr (PQ), where tr A stands for the trace
of matrix A. In particular, the transistion probability between P and @ is zero
if tr (PQ) = 0, which is easily seen to be equivalent to PQ = QP = 0. In this
case we write P L Q. It is also easy to see that P 1 @ if and only if P # @
and P and () commute. We can extend the notion of orthogonality to arbitrary
projections. For P,Q € P(H) we write P L @ if the images of P and @ are
orthogonal which is equivalent to PQ = QP = 0.

There are many more subsets of S(H) and relations and operations on these
subsets that are relevant in mathematical physics. Let V be a subset of S(H)
and o a binary operation on V. We say that a map ¢ : V — V preserves the
operation o if

p(AoB)=¢(A)o¢p(B), A ,BeV.

Assume that ~ is a relation on V. Then a map ¢ : V — V preserves the relation
~ if for every pair A, B € V we have

A~ B < §(4) ~ 6(B).

A bijective map ¢ : V — V that preserves a certain operation o is called a
symmetry of V with respect to the operation o. Similarly, a bijective map
¢ :V — V preserving ~ is called a symmetry of V with respect to the relation



~. Sometimes we are interested in symmetries that preserve more than just one
operation or relation. For example, a bijective map ¢ : E(H) — E(H) with the
property that for every pair A, B € E(H) we have

A<B < ¢(A) < ¢(B) (1)

and

P(AT) = p(A)* (2)
is called a symmetry of the effect algebra with respect to Loewner order and
orthocomplementation. We could have defined symmetries shortly: We assume
that V is a subset of S(H) and that on this subset we have certain relations
and/or certain operations. A symmetry of V with respect to these relations
and operations is an automorphism of V equipped with these relations and
operations. In particular, a bijective map ¢ : E(H) — E(H) satisfying (1) and
(2) is called an ortho-order automorphism of the effect algebra E(H).

Let us give a few examples of symmetries. First we need to recall a definiton
of a conjugate-linear operator on H. A map T : H — H is a bounded conjugate-
linear operator if it is continuous and for every pair x,y € H and every complex
number A\ we have T'(x 4+ y) = Tx + Ty and T'(A\x) = AXT'z. For every bounded
conjugate-linear operator T': H — H there esists a unique bounded conjugate-
linear operator T* : H — H such that for every pair x,y € H we have

(Tx,y) = (z,T*y) = (T"y,z).

In the case that a conjugate-linear operator 7' is a bijective isometry we say that
it is an antiunitary operator, that is, a conjugate-linear operator U : H — H is
antiunitary if it is bijective and

(Uz,Uy) = (y,x), x,y€ H.

Let T': H — H be an invertible bounded linear or conjugate-linear operator.
A map ¢ : S>(H) — S>(H) defined by

¢(A) =TAT*, Ac S>(H), (3)

is a symmetry of S>(H) with respect to Loewner order. Similarly, the congru-
ence transformation ¢ : Ss (H) — S (H) defined by

p(A) =TAT*, AeS.(H), (4)

is an order automorphism of S (H). Let further S € S(H) be any self-adjoint
operator. Then the map ¢ : S(H) — S(H) given by

$(A) =TAT*+5, AeS(H), (5)

is a symmetry of S(H) with respect to Loewner order. Let U : H — H be
a unitary or antiunitary operator. Then the unitary-antiunitary similarity ¢ :
E(H) — E(H) defined by

O(A) = UAU*, A€ E(H), (6)



is an order automorphism of the effect algebra.

Similarly, every unitary-antiunitary similarity A — UAU*, A € S(H), is a
symmetry of S(H) with respect to commutativity (=compatibility in the lan-
guage of quantum mechanics) and also with respect to Jordan product. Every
unitary-antiunitary similarity is a symmetry of P;(H) with respect to the tran-
sition probability, that is, for every unitary or antiunitary operator U : H — H
the map ¢ : Pi(H) — P1(H) given by ¢(P) = UPU*, P € Pi(H), is bijective
and

tr(¢(P)¢(Q)) = tr (PQ), P,Q € Pi(H). (7)

The usual goal when studying symmetries is to describe the general form
of these maps. Above we have given a few easy examples of symmetries. It
is somewhat surprising that in many cases there are no other symmetries. For
example, if ¢ is a symmetry of S>(H) with respect to Loewner order then it
has to be of the form (3) for some invertible bounded linear or conjugate-linear
operator T : H — H, and similarly, if ¢ is a bijective map of S~ (H) onto itself
which preserves Loewner order then there exists an invertible bounded linear
or conjugate-linear operator T': H — H such that (4) holds [20]. Moreover,
every symmetry of S(H) with respect to > is of the form (5) [19]. Every
ortho-order automorphism of the effect algebra E(H) is a unitary-antiunitary
similarity [17]. And finally, if ¢ : Pi(H) — Pi(H) is a bijective map such
that for every pair P,Q € P;(H) we have (7) then there exists a unitary or
antiunitary operator U : H — H such that ¢P) = UPU*, P € P;(H). This
is the famous Wigner’s unitary-antiunitary theorem, one of the most important
results in the mathematical foundations of quantum mechanics.

In some other cases the structure of symmetries is much more complicated.
For example, if A, B € S(H) commute then A% — 54 + 2 and B? commute
as well. This quickly implies that besides unitary-antiunitary similarities there
are other symmetries of S(H) with respect to commutativity. At this point the
natural conjecture is the following: Let ¢ : S(H) — S(H) be a bijective map
with the property that for each pair of operators A, B € S(H) we have

AB = BA <= ¢(A)¢(B) = 6(B)p(A).

Then there exists a unitary or antiunitary operator U : H — H and for every
A € S(H) there is a real valued bounded Borel function f4 defined on the
spectrum of A such that

P(A) =Ufa(A)U".

And indeed, this conjecture was confirmed in the case when H is a separable
Hilbert space with dim H > 3, see [22].

The following example given in [21] shows that the structure of symmetries
of E(H) with respect to Loewner order is quite complicated. Let T € E(H) be
invertible. Then the map

o ~1/2 2 e
Ay (HYLTQ) (I =T*+ T +A)~'T)~ = 1) (gIT_Tz) ®



is an automorphism of (E(H),<). In order to verify this we recall the well-
known fact that if A, B > 0, then we have A < B if and only if B~! < A~1.
Further, for E,F € S(H) with E < F we define [E,F] = {C € S(H) : E <
C < F}. Let E;,F; € S(H) satisty E; < Fj, j = 1,2. A bijective map
¢ : [E1, F1] — [Esq, F3] is called an order anti-isomorphism if for every A, B €
[E1, F1] we have A < B < ¢(B) < ¢(A).

Let S € S(H) be any self-adjoint operator. Then the transformation

A— A+ S

is an order isomorphism of [E, F] onto [E + S, F + S]. Further, if S: H - H
is any bounded invertible linear or conjugate-linear map, then the map

A— SAS*

is an order isomorphism of [F, F| onto [SES*,SFS*]. And finally, assume that
0 < E < F. Then the transformation

A A1

is an order anti-isomorphism of [E, F| onto [F~1, E~1].
It is now not difficult to understand the above example. The map 7 given
by
A 7(A)= (I -T>+T(I+A)7'T) " —1
is easily seen to be a compositum of a few order isomorphisms and exactly two
order anti-isomorphisms as follows:

AT+ A= (T+A) =TI+ AT
I-T>4+TI+A) T T -T*+T(I+A)'T) =
(I-T*+T(I+A)'T)' -1

Hence, 7 is an order isomorphism of E(H) onto [7(0),7(I)]. Obviously, 7(0) =0
and 7(I) = T%(2I — T?)~'. The map (8) can be rewritten as

T2 —1/2 T2 —1/2
A <2I—T2) 7(4) <QI—T2>

and is therefore an order automorphism of E(H). Let us just mention that the
problem of describing the general form of symmetries of effect algebras with
respect to Loewner order has been solved in [23] and [25].

By now a lot of results have been proved on the structure of symmetries. At
first glance the proofs of different results seem to be quite unrelated. Still, there
are some general ideas that were used repeatedly in this active research area. It
is the aim of this expository paper to explain three approaches that might be
used when trying to solve a problem of desribing the general form of symmetries.
It should be mentioned that the techniques we will explain are quite often just
the first step in the study of certain symmetries. Thus, the ideas that we will
present might be of some help when one starts to work on such a problem but
in each specific case quite a lot of additional work might be needed to solve the
problem completely.



2 A method based on adjacency preservers

Two operators A, B € S(H) are said to be adjacent if the difference B — A
is an operator of rank one. Quite a few results describing the general form of
symmetries were proved by reducing the original problem to the problem of
describing the general form of maps preserving adjacency, see [26], [27], and
the references therein. We want to present here just the main idea without
paying too much attention to technical details. In order to make our explanation
as simple as possible we restrict ourselves to the finite-dimensional case. An
interested reader can see what kind of ideas are needed to extend our method
from the finite-dimensional case to the infinite-dimensional setting in [26].

When we are dealing with self-adjoint operators on a Hilbert space H with
dim H = n < oo, we identify them with n x n hermitian matrices. We denote
the set of all n x n hermitian matrices by H,,. We need the following result from
[15].

Theorem 2.1. Let n > 2 be an integer and ¢ : H, — H, a map such that for
every pair A, B € H,, the matrices A and B are adjacent if and only if $(A) and
¢(B) are adjacent. Then there exist ¢ € {—1,1}, an invertible n x n complex
matriz T, and S € H,, such that either

6(A) = cTAT* + S, Ac H,,

or
G(A) = cTA'T* + S, A€ H,.

Here, At denotes the transpose of A.

Actually, the main theorem in [15] is much stronger but the above weaker
version is all that we need. It should be mentioned that the study of adjacency
preserving maps was initiated by L. K. Hua in a series of papers [7] - [14].

We will start by sketching the proof of the structural theorem for symmetries
of H, with respect to Loewner order <.

Theorem 2.2. Let n > 2 be an integer and ¢ : H, — H,, a bijective map such
that for every pair A, B € H,, we have

A< B < ¢(A) < ¢(B).

Then there exist an invertible n x n complex matriz T and S € H, such that
either
$p(A)=TAT*+S, Ae€H,,

or

P(A) =TAT* + S, AcH,.

The idea that we would like to explain in this section is to reduce a given
problem concerning symmetries to the problem of describing maps preserving
adjacency. Once we do such a reduction we can apply Theorem 2.1. In our



special case we will characterise the adjacency relation by the relation <. So, if
our map preservers < then it has to preserve adjacency and therefore it has to
be of the nice form described in Theorem 2.1.

After this short explanation we start with the sketch of the proof of Theorem
2.2. Assume first that A, B € H,, are adajcent. Then B — A is of rank one,
that is, there exist a rank one projection P € H,, and a nonzero real number
t such that B — A = tP. Clearly, if t > 0, then B > A, and if ¢ is negative,
then B < A. Thus, A and B are comparable, that is, A < B or B < A.
Let us consider only the case that ¢t > 0. Take any pair C, D € H,, satisfying
A<C,D<B=A+tP. It is easy to see that C = A+pP and D = A+ qP for
some real numbers p, g € [0,¢]. Clearly, we have C < D or D < C depending on
which of the real numbers p, g is larger. We have started with the assumption
that A and B are adjacent and we have seen that in this case the following is
true:

(t) A and B are comparable and any two hermitian matrices C, D that are in
between A and B are comparable.

Let us now consider A, B € H,,, A # B, such that A and B are not adjacent. We
will show that the condition (t) is not satisfied. If A and B are not comparable
we are done. So, we may assume that A < B or B < A. Again we will
consider just the first possibility. Thus, B — A is positive and is of rank at least
two. It follows that there exist rank one projections P, Q, P # @, and positive
real numbers p, ¢ such that pP,qQ < B — A. Note that neither pP < ¢Q nor
qQ < pP. Clearly, A < A+ pP,A+qQ < B and A+ pP, A+ qQ are not
comparable, and therefore A and B do not satisfy (f).

We have shown that if A, B € H,, and A # B, than A and B are adjacent
if and only if (f) holds true. Let ¢ : H, — H, be a bijective map such that
for every pair A, B € H,, we have A < B <= ¢(A) < ¢(B). Then it is clear
that for every pair of matrices A, B € H,,, A # B, the pair A, B satisfies (})
if and only if the pair ¢(A), ¢(B) satisfies (). This implies that for every pair
A, B € H,, the matrices A and B are adjacent if and only if ¢(A) and ¢(B) are
adjacent. By Theorem 2.1 there exist ¢ € {—1,1}, an invertible n X n complex
matrix T, and S € H,, such that either ¢(4) = ¢cTAT* + S for every A € H,,
or ¢(A) = ¢TA'T* + S for every A € H,. Applying the fact that ¢ preserves
Loewner order we see that in both cases ¢ = 1. This completes the proof.

A similar idea works when we want to characterize symmetries of H,, with
respect to the triple Jordan product. Our goal is to verify the following state-
ment.

Theorem 2.3. Let ¢ : H, — H, be a bijective map with the property that for
every pair A, B € H, we have

P(ABA) = ¢(A)p(B)o(A).
Then there exist ¢ € {—1,1} and a unitary n x n matriz U such that either

é(A) = cCUAU*



for every A € H,,, or
#(A) = cUA'U*

for every A € H,.

The main steps of the proof are as follows. It is not difficult to check that
¢(0) = 0. It is also rather eays to check that for a nonzero A € H,, the following
are equivalent:

e A is a rank one matrix,

o if Be Hy, and {BCB : C € H,} is a proper subset of {ACA : C € H,},
then B = 0.

It follows that ¢ maps the set H! of rank one matrices onto itself. For A, B € H}
we write A | B if the images of A and B are orthogonal one-dimensional spaces.
This is equivalent to ABA = 0. Thus, for every pair of rank one matrices A, B
we have A L B if and only if ¢(A) L ¢(B).

Let y be a nonzero vector. We denote by R, C H! the set of all rank one
matrices whose images are orthogonal to y. It is clear that for every nonzero
vector y we can find a nonzero vector z such that ¢(R,) = R,. It is not
difficult to verify that for an arbitrary pair A, B € H,, the matrices A and B
are adjacent if and only if there exists a nonzero vector y such that {C' € H} :
CAC = CBC} =R,. Once we have this charaterization of adjacency involving
Jordan triple product we immediately conclude that ¢ preserves adjacency and
then it is easy to complete the proof by applying Theorem 2.1.

Much more examples illustrating the efficency of the method illustrated by
the above two examples can be found in [26, 27].

3 Applying projective geometry to describe the
structure of symmetries

Let H be a Hilbert space. Throughout this section we will assume that dim H >
3. For any nonzero x € H we denote by [z] the one-dimensional subspace
spanned by z. The projective space P(H) is the set of all one-dimensional
subspaces of H, P(H) = {[z] : « € H\ {0}}. Let £ : P(H) — P(H) be a
bijective map such that for every triple x,y,z € H \ {0} we have

[z] € [yl + [2] <= &([z]) < &(ly) + £([=D)- (9)

The fundamental theorem of projective geometry tells that then there exists a
bijective semilinear map T : H — H such that &([z]) = [Tz|, z € H \ {0}, see
[3] for a more general result with a simple proof. Recall that a map T : H — H
is said to be semilinear if there exists a field automorphism f : C — C such that
for all ,y € H and A € C we have

Tx+y)=Tzr+Ty and T(AX)=f(\)T=x.



The special cases of semilinear maps are linear maps and conjugate-linear maps.
But there exist automorphisms of the complex field different from the identity
and the complex conjugation and therefore there exist semilinear maps that are
neither linear nor conjugate-linear. Clearly, we can identify P(H) with Py (H)
in a natural way, that is, we identify [z],  # 0, with the rank one projection
onto [z].

As already mentioned the famous Wigner’s theorem states that for every
bijective map ¢ : Pi(H) — Py(H) satisfying (7) there exists a unitary or an-
tiunitary operator U : H — H such that ¢(P) = UPU* for every P € P(H).
Uhlhorn’s improvement of Wigner’s unitary-antiunitary theorem states that one
gets the same conclusion under the weaker assumption that only the zero tran-
sition probability is preserved. More precisely, we have the following theorem.

Theorem 3.1. Let H be a Hilbert space with dimH > 3 and ¢ : Pi(H) —
Py (H) a bijective map such that for every pair P,Q € P;(H) we have

PQ =0 < ¢(P)¢(Q) = 0. (10)

Then there exists a unitary or antiunitary operator U : H — H such that
¢(P) =UPU* for every P € P,(H).

We will see that this theorem follows quite trivially from the fundamental
theorem of projective geometry. For any subset P C P;(H) we denote by P+
the orthogonal complement of P in P;(H), that is,

Pt ={Q e P(H) : PQ=0 for every P € P}.

Clearly, for every subset P C Py (H) we have ¢(P+) = ¢(P)+. When identifying
Py (H) with P(H) as above we see that ¢ induces in a natural way a map
¢ :P(H) —» P(H). For z,y € H, z,y # 0, we have £([z]) = [y] if and only if
¢(P) = @, where P and @ are rank one projections onto [z] and [y], respectively.
Let x,y,z € H be nonzero vectors and P, Q, R the rank one projections whose
images are spanned by x,y, z, respectively. Then it is easy to see that we have
[z] C [y]+[z] if and only if {Q, R}*+ € {P}+. Thus, our assumptions on ¢ imply
that ¢ satisfies all the assumptions of the fundamental theorem of projective
geometry. Hence, there exists a semilinear bijection U : H — H such that each
rank one projection P is mapped by ¢ to the rank one projection whose image
is U(Im P). It is not difficult to see that the condition (10) yields that U is
actually a unitary or an antiunitary operator multiplied by a nonzero constant.
With no loss of generality we can assume that U is a unitary or an antiunitary
operator. Observing that for every P € P;(H) the rank one projection whose
image is U(Im P) is equal to UPU* we complete the sketch of the proof.

When we speak of applying projective geometry to describe the structure of
symmetries we usually mean the reduction of the given problem to Uhlhorn’s
theorem. Let us illustrate this method by two examples.

Theorem 3.2. Let H be a Hilbert space with dim H > 3 and ¢ : E(H) — E(H)
a bijective map such that (1) and (2) hold true. Then there exists a unitary or



antiunitary operator U : H — H such that
d(A) =UAU"
for every A € E(H).

Let us outline the proof of the above statement which is one of the basic
results in Ludwig’s axiomatic formulation of quantum mechanics. It is clear
that the bijectivity of ¢ and (1) yield ¢(0) = 0 and ¢(I) = I. Now, if A
is a rank one operator in E(H) and B,C € E(H) satisfy B,C < A then B
and C' are comparable. This is a charcateristic property of rank one effects
and therefore ¢ maps the set of rank one effects onto itself. Since rank one
projections are maximal elements in the set of rank one effects we conclude that
¢(P1(H)) = Pi(H). For any pair P,Q € P,(H) we have PQ = 0 if and only if
P < T —Q which is equivalent to ¢(P) < ¢(I — Q) = I — ¢(Q). Thus, PQ =0
holds true if and only ¢(P)¢(Q) = 0. Applying Uhlhorn’s theorem we see that
there is a unitary or antiunitary operator U : H — H such that ¢(P) =UPU*
for every P € Pi(H). After replacing ¢ by the map A — U*¢(A)U we can
assume with no loss of generality that ¢(P) = P, P € P;(H).

The reduction to Uhlhorn’s theorem shows that ¢ has a nice behaviour on
the set of all projections of rank one. The rest of the proof is then rather
easy. One can see that for every P € Py(H) there exists a bijective increasing
function fp : [0,1] — [0, 1] such that ¢(tP) = fp(t)P, 0 <t < 1. We further
have ¢((1/2)I) = ¢(I — (1/2)I) = I — ¢((1/2)I), and consequently, ¢((1/2)I) =
(1/2)I. It follows from (1) that ¢((1/2)P) = (1/2)P for every P € Pi(H).
Using (1) we can further deduce that ¢(R) = R for every projection R of rank
two. The next step is to use the already obtained facts together with the order
preserving property to verify that for every pair P, Q € Py (H) satisfying PQ = 0
we have ¢((1/2)P + Q) = (1/2)P + Q. Now, for every rank one projection R
and every real number s, 1/2 < s < 1, we can find a pair of projections P, Q
such that tR < (1/2)P + Q if and only if ¢t < s. Thus, fr(t)R < (1/2)P + Q
if and only if ¢ < s. This implies that fr(s) = s, 1/2 < s < 1. It is then not
difficult to see that we actually have ¢(tP) = tP for every rank one projection
P and every real number ¢, 0 < ¢t < 1. It is known that for any two effects
A,B € E(H) we have A = B if and only if

max{t : tP < A} = max{t : tP < B}

for every rank one projection P. It follows that for every A € E(H) we have
¢(A) = A, as desired.

As another example illustrating our method we will outline the proof of the
description of symmetries of the set of all projections with respect to commu-
tativity. To make our discussion simpler we will limit ourselves to the finite-
dimensional case. We denote by P, C H,, the set of all n X n projections,

P,={PcH, : P?=P=P},

and by P} the subset of all n x n projections of rank one. Observe first that for
every P € P, and every A € H,, the matrices P and A commute if and only if

10



the projection I — P commutes with A. It follows that each ¢ : P, — P, with
the property that for every P € P,, we have

¢({P, I - P}) ={P,I - P}

is a symmetry of P, with respect to commutativity.
We are now ready to formulate the last result in this section.

Theorem 3.3. Let n > 3 and assume that ¢ : P, — P,, is a bijective map such
that for every pair P,Q € P, we have

PQ=QP < ¢(P)¢(Q) = ¢(Q)o(P).
Then there exists an n X n unitary matrix U such that either
o({P,I — P})={UPU*,I-UPU*}, PEe€P,,

or

o({P,I — P}) = {UP'U*, 1 —UP'U*}, P€P,.

We outline the proof of this statement that is based on the reduction to
Uhlhorn’s theorem. We already know that when dealing with such maps ¢ there
is no distincion between P and I — P. Thus, we should have first introduced
the equivalence transformation on P, defined by P~ Q if P=Q or P+Q = I,
then defined the commutativity relation on the quotient set in the natural way,
and finally defined a new map on the quotient space induced by ¢. As we are
not interested in the detailed proof but only in main ideas we will ignore this
step but we will be aware that if we speak of a rank one projection P we are
actually thinking of the pair consisting of the rank one projection P and the
projection I — P of corank one.

For any set P C P, we denote by P’ the commutant of P in P,,, that is, the
set of all projections @) that commute with every element of P,

P ={Q e P, : QP = PQ for every P € P}.

The commutant of P’ is called the second commutant of P. It is denoted by
P P" = (P"). Of course, for every subset P C P, we have

¢(P') =¢(P) and o(P")=¢(P)". (11)

It is well known and very easy to verify that two hermitian matrices A and

B commute if and only if they are simultaneously unitarily similar to diagonal

matrices. Thus, if P is a projection of rank one and () any projection that
commutes with P, then up to a unitary similarity we have

100 0 0
P=10 0 0| and Q= I o,
00 0 0 0

o O
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where ¢ € {0,1}. Of course, the second row and the second column, or the
third row and the third column in () may be absent. It is easy to see that the
commutant {P, Q}’ consists of all projections of the form

r 0 0
0 Ry 0],
0 0 Ry

where r € {0,1} and R; and Ry are any projections of the appropriate sizes.
From here it is easy to conclude the second commutant {P, @} consists of all
matrices of the form

T1 0 0
0 7"2[ 0 s
0 0 T3I

where 71,79, 73 € {0,1}. Thus, the second commutant {P,Q}” has at most 8
elements.

If, on the other hand, P is a projection that is neither of rank one nor of
corank one then we can find a projection () that commutes with P such that
up to unitary similarity we have

I 00 0 7 00 0
01 00 0000
P=1g 00 0of 2 @=]g 071 0
0000 000 0

and then one can see in the same way as above that the set {P,Q}” contains
16 elements.

The trivial projections 0 and I are the only elements of P, whose commu-
tant is the whole set P,. It follows that ¢({0,I}) = {0,I}. The previous two
paragraphs show that we can chacterize rank one projections (that we identify
with projections of corank one) among all nontrivial projections with the com-
mutativity relation. Using (11) we may assume with no loss of generality that
¢ maps the set of projections of rank one onto itself (of course, here we have
to take care of our identification of each rank one projection P with I — P, but
this is just a minor technical difficulty). Thus, restricting ¢ to P} we arrive at
a bijection of P! onto itself that preserves commutativity. In the next step we
observe that for every pair P,Q € P}, P # @, we have

PQ=QP < PQ=0.

Thus, the restriction of ¢ to P} satisfies all the assumptions of Uhlhorn’s theo-
rem and consequently, after composing ¢ with an appropriate unitary slimilarity
and the transposition, if necessary, we can assume with no loss of generality that
¢(P) = P for every P € P!. Let Q € P, be any projection. Then for every
P € P! we have
PQ=QP <= P¢(Q) = o(Q)P,

which is easily seen to imply ¢(Q) € {Q,I — Q}. This completes the sketch of
the proof.
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4 Reduction technique

In the previous two sections we have seen that many problems of describing the
general form of given symmetries can be reduced to the description of adjacency
preservers or the fundamental theorem of projective geometry. These two special
reduction techniques have been so far the most frequently used general methods
when studying symmetries.

More generally, whenever studying symmetries one of the first questions that
we may ask is whether a given problem can be reduced to some other problem
of a similar nature. It turns out that many structural results on symmetries
have been obtained in this way. Let us illustrate this by three examples.

We will start with the optimal version of Uhlhorn’s theorem in the finite-
dimensional case. We first assume that H is a separable Hilbert space with
dim H > 3. Wigner’s unitary-antiunitary theorem has been improved in many
directions due to its fundamental importance in the mathematical foundations of
quantum mechanics. The non-bijective version of Wigner’s theorem (for a very
simple and elementary proof we refer to [5]) states that if ¢ : Py (H) — Pi(H) is
a map (no injectivity or surjectivity is assumed) satisfying (7), then there exists
a linear or conjugate-linear isometry U : H — H such that ¢(P) = UPU* for
every P € P(H).

We next recall Gleason’s theorem, another important result in mathematical
physics. A density operator D : H — H is defined to be a positive linear
operator whose trace is equal to 1. A subset {Py, Ps,...} C Pi(H) is called
a complete orthogonal system of projections of rank one, COSP, if P; L P;
whenever ¢ # j and there is no rank one projection @ that is orthogonal to each
P;. Gleason’s theorem states that if ¢ : P(H) — [0,1] is a function such that
for every COSP {Py, P»,...} we have

Z@(Pj) =1,

then there is a density operator D : H — H such that
¢(P) = tr (DP)

for every P € Pi(H).

Both Wigner’s theorem and Gleason’s theorem deal with rank one projec-
tions (pure states). While Wigner’s theorem is an almost direct consequence of
the fundamental theorem of projective geometry, Gleason’s theorem is mathe-
matically much deeper and the proof is more involved. It is then natural to ask
if Wigner’s theorem can be deduced from Gleason’s theorem. And if this is the
case, can we obtain in such a way an improvement of Wigner’s theorem?

The answer is positive. We have the following improvement of Uhlhorn’s
theorem in the finite-dimensional case [4, 24].

Theorem 4.1. Let n be an integer, n > 3. Assume that ¢ : P} — Pl is a map
such that for every pair P,Q € P} we have

PQ=0= ¢(P)p(Q) = 0. (12)
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Then there exists an n X n unitary matriz U such that either
¢(P)=UPU*

for every P € P, or
#(P) =UP'U*

for every P € PL.

This is an optimal version of Wigner’s theorem in the finite-dimensional
case. Indeed, like in Uhlhorn’s improvement we replace the assumption (7) by
the weaker assumption that only the zero transition probability is preserved.
In fact, we go one step further and replace the asumption (10) by the weaker
assumption (12). And we do not assume any regularity condition like injectivity
or surjectivity. Let us just mention that in order to get an optimal version of
Wigner’s theorem in the infinite-dimensional case we need to add a certain
rather weak assumption on COSP systems, see [28].

It is clear that under the assumptions of our theorem every COSP is mapped
onto some COSP. We take any density matrix D (a positive matrix with trace
one) and consider the map ¢p : P} — [0, 1] defined by

¢p(P) = tr(D¢(P)), P € P,.

By Gleason’s theorem we see that for every density matrix D there exists a
density matrix E such that

tr (D¢(P)) =tr (EP), P € P
In particular, choosing D = ¢(Q) for some fixed Q € P} we get
tr ((Q)6(P)) = tr (EqP), P e P,
for some density matrix Eg. Set P = @ to conclude that
tr (EqQ) = 1.
It is easy to guess and not difficult to prove that the above equality implies

Eqg=Q.
Hence, for every P € P! we have

tr (¢(Q)o(P)) = tr (QP).

But @ was chosen arbitrarily. Therefore the desired conclusion is a straightfor-
ward consequence of the non-bijective version of Wigner’s theorem.

We continue with symmetries of bounded observables with respect to com-
patibility. Once again we will limit ourselves to the finite-dimensional case.
Then the structural result for such symmetries given in the introduction reads
as follows.
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Theorem 4.2. Let n be an integer, n > 3, and ¢ : H, — H, a bijective map
such that for each pair of hermitian matrices A, B € H,, we have

AB = BA <= ¢(A)p(B) = ¢(B)o(A).

Then there exists an n X n unitary matric U and for every A € H,, there is an
injective real valued function fa defined on the spectrum of A such that either

P(A) =Ufa(A)U"
for every A € H,, or

¢(A) = Ufa(A")U
for every A € H,.

We will call the maps appearing in the conclusion of the above theorem
standard commutativity preservers. When proving this theorem it is easy to
guess that one can reduce it to Theorem 3.3. Let us explain briefly how to do
this. For any A € H,, we denote by A’ the commutant of A in H,,

A ={Be€H, : AB = BA}.

It is rather easy to see that for A,B € H, we have A’ = B’ if and only if
there exist a unitary matrix W and real numbers p1,...,pr, q1, .-, q, such that

pl#pj and Qz#qj7l7]6 {1,...,T},i7éj7 and

I 0 ... 0 @l 0 ... 0
A=w | . T S|l wr oand B=w | . . | ow
0 0 ... plI 0 0 ... qlf

Here, I and 0 stand for identity matrices and zero matrices of the appropriate
sizes. In this case the commutant A’ consists of all hermitian matrices of the
form

*x 0 ... O

0 x ... 0
wl. .. W,

0 0 ... %

where the %’s stand for any hermitian matrices of the corresponding sizes. And
obviously, B = f(A), where f is the injective real valued function defined on
the spectrum of A given by f(p;) =¢q;,j=1,...,r.

It is now clear that for A € H,, we have A’ = H,, if and only if A is a scalar
matrix, that is, A = ¢I for some real number ¢. Since ¢(A4') = ¢(A)', A € H,,
we see that ¢ maps the set of scalar matrices onto itself.

The next important observation is that hermitian matrices with two eigen-
values can be characterized as matrices with maximal commutants among all
nonscalar matrices. Indeed, assume that A € H,, has at least three eigenvalues.
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Then there exist a unitary matrix W and real numbers pq,...,p, such that
r 237 Di #pja Z7] S {15"'7T}7 { 75]7 and

0 ng 0
A=W . | W
0 0 .oped
But then B € H,, given by
pol 0 0
0 ng 0
B=W . | W
0 0 .oped

is a nonscalar matrix, and A’ C B’, and A’ # B’. Tt follows that the set of
matrices with exactly two eigenvalues is mapped by ¢ onto itself.

We introduce an equivalence relation on H,, defined by A ~ B <— A’ =
B’. Tt is clear that in each equivalence class consisting of matrices with two
eigenvalues there are exactly two projections, P and I — P. Thus, the above
arguments show that ¢ induces a bijective map on the set of all projections (once
again we need to deal with the technical detail that P ~ I — P and that ¢ does
not distinguish these two projections) that preserves commutativity. Hence,
we can apply Theorem 3.3 and after composing ¢ with an appropriate standard
commutativity preserver we can assume with no loss of generality that ¢(P) = P
for every P € P,. Using the fact that for every A € H,, and every P € P, we
have AP = PA <= ¢(A)P = P¢(A) we easily conclude that ¢(A) = fa(A)
for some injective real valued function f4 defined on the spectrum of A.

Finally, let H be a Hilbert space and let us consider symmetries of E(H) with
respect to coexistency. This problem is quite difficult and we will go through
the main steps of the proof of the description of such maps very briefly. For
the details we refer to [6]. For A,B € E(H) we write A ~ B if A and B are
coexistent. Further, we introduce the notation A~ = {C € E(H) : C ~ A}
It is not difficult to see that for A € E(H) we have A~ = E(H) if and only if
A is a scalar operator. It is far from trivial to verify that for a pair of effects
A,B € E(H) we have A~ = B~ if and only if B € {4, At} = {A, I — A} or
both A and B are scalar effects.

The crucial step in studying symmetries of E(H) with respect to coexistency
is the introduction of the following somewhat complicated relation on E(H). For
A,B € E(H) we write A < B if and only if for every nonscalar effect C € A™
we can find a nonscalar effect D € B™ such that C~ C D~. Clearly, B < B
and Bt < B. And then one can characterize projections in the following way.
A nonscalar effect A € E(H) is a projection if and only if

card{Be E(H)\{tI : 0<t<1}: B< A} =2
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From here we conlude that ¢ maps the set of nontrivial projections onto itself.
On the set of projections the relation of coexistency coincides with commuta-
tivity. Thus, we have reduced the original problem to Theorem 3.3. Therefore
we know that ¢ has a nice behaviour on the set of all projections. From here
one can see that for every symmetry of E(H) with respect to coexistency there
exist a unitary or antiunitary operator U : H — H and a bijective function
g :[0,1] — [0,1] such that for every nonscalar effect A we have

{#(A),0(AT)} = {UAU*, UATU"}

and
(b(tI) = g(t)Ia te [Oa 1]
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