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Abstract

In the course of extending Grötzsch’s theorem, we prove that every triangle-free
graph without a K5-minor is 3-colorable. It has been recently proved that every
triangle-free planar graph admits a homomorphism to the Clebsch graph. We also
extend this result to the class of triangle-free graphs without a K5-minor. This is
related to some conjectures which generalize the Four-Color Theorem. While we
show that our results cannot be extended directly, we conjecture that every K6-
minor-free graph of girth at least 5 is 3-colorable.

1 Introduction

Graphs in this paper are finite and loopless, they might have multiple edges
in which case we rather use the term multigraph. We will use the standard
notations of graph theory mainly following Diestel [2] and Hell and Nešetřil
[8]. A graph H is said to be a minor of G if it can be constructed from G
by deleting vertices, deleting edges and contracting edges. Given a finite set
M of graphs we define Forbm(M) to be the set of all graphs which have no
minor from M. If M = {H}, then we simply write Forbm(H).

Let G,G′ be two graphs. We say there is a homomorphism of G to G′, and
write G ¹ G′, if there exists a map f : V (G) → V (G′) such that uv ∈ E(G)
implies f(u)f(v) ∈ E(G′). This binary relation is a quasi order on the class
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of all graphs and with this order naturally comes the concepts of bounds,
maximums and cuts. To be precise, given a class C of graphs and a subset A
of C we say A is a cut of C if for every G ∈ C there is an H in A such that
either G ¹ H or H ¹ G. A 1-cut of C is a graph H ∈ C such that A = {H}
is a cut of C. A graph B is a bound for C if for every graph G ∈ C we have
G ¹ B. A bound M for C is called a maximum if it is also an element of C.

The study of cuts and bounds in the homomorphism order of graphs is initiated
by Nešetřil and Ossona de Mendez [12], (see also Chapter 3 of [8]). Using this
terminology some of the most famous theorems and conjectures in the theory
of coloring of graphs can be restated quite nicely. For example, consider the
following classical theorem of Grötzsch:

Theorem 1 Every triangle-free planar graph is 3-colorable.

Let P be the class of all planar graphs (i.e., Forbm({K5, K3,3})). Then Theo-
rem 1 is equivalent to stating that K3 is a 1-cut of P . Similarly, the Four-Color
Theorem is claiming that K4 is a maximum of P . A less obvious result is a
restatement of Hadwiger’s conjecture, which claims that every k-chromatic
graph contains a Kk-minor. It is shown in [10,12] that this is equivalent to:

Conjecture 2 Every minor closed family of graphs has a maximum with re-
spect to the homomorphism order.

Another nontrivial example is a reformulation of a conjecture of P. Seymour. In
a generalization of an equivalent form of the Four-Color Theorem, introduced
by Tait [17], Seymour [16] conjectured that:

Conjecture 3 Every planar k-graph is k-edge-colorable.

A k-graph is a k-regular multigraph which does not have any odd edge-cut of
size smaller than k. An odd edge-cut is a partition (X, Y ) of the vertices of G
such that |X| or |Y | is odd. The size of an edge-cut is the number of edges
with one end in X and the other end in Y .

For odd values of k, a reformulation of Conjecture 3 is given by Naserasr [9].
Let H2k+1 be a connected component of the Cayley graph C(Z2k+1

2 , S2k+1)
where S2k+1 is the set of 2k + 1 vectors with exactly two consecutive 1’s in a
cyclic order. Then the following is shown to be equivalent to Conjecture 3 for
the corresponding value of 2k + 1.

Conjecture 4 Every planar graph of odd-girth at least 2k + 1 admits a ho-
momorphism to H2k+1.

As it is shown in [9], the equivalence of Conjecture 3 and Conjecture 4 together
with a proof of Conjecture 3 by Guenin [5] for k = 5 implies the following
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theorem. Note that H5 is a triangle-free graph known as the Clebsch graph
and also as the Greenwood-Gleason graph.

Theorem 5 Every triangle-free planar graph admits a homomorphism to H5.

A generalization of Conjectures 3 and 4 has been recently introduced by
Guenin [6]. While Guenin’s conjecture is general, stated for both even and
odd values of k and in terms of edge-colorings and homomorphisms both, for
simplicity we only state the homomorphism version of his conjecture and only
for odd values. For a definition of odd-minor we refer to [6]. However, we would
like to mention that the class of graphs with no odd-K5-minor strictly includes
the class of K5-minor-free graphs.

Conjecture 6 Every graph of odd-girth at least 2k + 1 and with no odd-K5-
minor admits a homomorphism to H2k+1.

It has also been recently conjectured in [11] that:

Conjecture 7 For k ≥ 5 every 1-cut of the class Forbm(Kk) is a complete
graph.

In the last section of this paper we construct a graph H ∈ Forbm(Kk) ho-
momorphically incomparable to Kj for each 3 ≤ j ≤ k − 2 and k ≥ 6. This
together with a validity of Conjectures 2 and 7 imply that K1, K2 and Kk−1

are the only 1-cuts of Forbm(Kk) for k ≥ 6.

Section 2 is about the extensions of Grötzsch’s theorem. In Section 3, we
extend Theorem 5 to the class Forbm(K5). The last section is devoted to
examples and open problems.

2 Homomorphism to K3

In this section we first introduce some extensions of the Grötzch’s theorem
within planar graphs. Then, using these extensions, we generalize Grötzsch’s
theorem to the class of triangle-free graphs without a K5-minor.

2.1 Some strengthening of Grotzsch’s theorem within planar graphs

The following strengthening of Grötzsch’s theorem was first introduced by
Grünbaum [4] in 1973. The proof published by Grünbam turned out to be
incomplete. A correct proof was given by Aksionov [1] a year later.
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Theorem 8 Every planar graph with at most three triangles is 3-colorable.

The assumption that there are at most three triangles cannot be weakened
because K4 and H7 (obtained by the Hajós sum of two copies of K4) are
4-chromatic and each contains four triangles.

We now give an easy strengthening of the above result, allowing our plane
graph–a planar graph with a fixed planar drawing– to have more triangles but
arranged in a specific way. For this, we need the following definitions: Let G
be a plane graph and let C be a cycle of G. Then, the interior of C, denoted
by Int(C), is the subgraph of G which is induced by the vertices inside or on
C. The Out(C) is defined analogously. Let C3(G) be the set of all triangles
of G. Let C1, C2 ∈ C3(G). We say that C1 is smaller than C2 (or C2 is bigger
than C1) and write C1 ≤ C2, if C1 is a subgraph of Int(C2). If C1 ≤ C2 and
C2 6≤ C1, then we write C1 < C2 and if C1 6≤ C2 and C2 6≤ C1, then we say
that these two triangles are incomparable. Notice that (C3(G),≤) is a partial
order.

Finally, we say that a planar graph G has a nice structure of triangles if the
following two conditions are satisfied for some planar drawing of G.

(i) G has at most three pairwise incomparable triangles, and
(ii) for any three pairwise incomparable triangles of G, there is no other

triangle of G which is bigger than all of these three triangles.

Theorem 9 Every planar graph with a nice structure of triangles is 3-colorable.

Proof. Let G be a planar graph embedded in the plane with a nice structure
of triangles and let C3 = C3(G). The proof is by induction on the number of
triangles of G. If this number is at most three, then we apply Theorem 8. So
we may assume that |C3| ≥ 4.

We claim that G has a triangle C such that each of Int(C) and Out(C) contains
a triangle of G distinct from C. This is easy to see, because by (i) there must
be two triangles X and X ′ with X > X ′. If there is a triangle bigger than X
or incomparable to X, then we let C = X and we are done. Otherwise, X is
bigger than at least three other triangles, by (ii) there are triangles X1 and
X2 in Int(X) with X1 ≥ X2, now C = X1 has the property.

By the choice of C, each one of Int(C) and Out(C) has less triangles than G.
Moreover, each one of the plane graphs induced by Int(C) and Out(C) has a
nice structure of triangles. By the induction hypothesis, we have a 3-coloring
for each of the two graphs. After a permutation of the colors, if needed, these
two colorings agree on C, thereby producing a 3-coloring of G. 2
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In the next proposition we show that almost every 3-coloring of any three
vertices on a same face of a triangle-free plane graph is extendible to a 3-
coloring of the graph. The only exception is when we have three pairwise non-
adjacent vertices colored with three different colors. Note that in this case
they may have a common neighbor, in which case the coloring is obviously
not extendible.

Proposition 10 Let G be a plane triangle-free graph and let A = {x, y, z} be
a set of three vertices on a same face of G. Let c : A → {1, 2, 3} be a proper
coloring such that if A is an independent set, then c does not color vertices of
A all differently. Then, c can be extended to a proper 3-coloring of G.

Proof. We first connect any two vertices a, b ∈ A with c(a) 6= c(b) in a way
that the new graph is also a plane graph. Next we identify any two vertices
with a, b ∈ A with c(a) = c(b) and then remove any possible multiple edge.
Let the resulting graph be G′ and let A′ be the set of vertices of G′ that
correspond to vertices in A. Note that G′ is also a plane graph and also that
1 ≤ |A′| ≤ 3 and any two vertices of A′ are adjacent and colored differently.

We will prove that G′ has a nice structure of triangles, therefore, proving that
G′ is 3-colorable by Theorem 9. A 3-coloring of G′ then can easily be lifted
to a 3-coloring of G. Let H = G[A] be the subgraph of G induced by A and
H ′ = G′[A′]. In order to show that G′ has a nice structure of triangles we will
consider several cases regarding the number of edges of H.

(i) First suppose H has two edges, so it is a 2-path xyz. Note that c(x) 6=
c(y), c(y) 6= c(z) and that xz 6∈ E(G). Now, if c(x) 6= c(z), then G′ = G +
xz. So every triangle of G′ contains xz, hence G′ has at most two pairwise
incomparable triangles (one on each side of xz). If c(x) = c(z), then G′ = G/xz
and again any triangle of G′ contains the vertex of the identification. Since
each such a triangle corresponds to a 3-path in G, we may have again at most
two pairwise incomparable triangles in G′. Thus, G′ has a nice structure of
triangles.

(ii) Suppose now that H has only one edge, say xy. Then, c(x) 6= c(y). If
c(z) 6= c(x) and c(z) 6= c(y), then G′ = G+xz+yz. Notice that H ′ is a triangle
of G′ and every other triangle of G′ contains precisely one of the edges xz and
yz. Thus, G′ may contain at most three pairwise incomparable triangles. Note
that there is no other triangle bigger than all of them and, therefore, G′ has
a nice structure of triangles. Now, without loss of generality, we may assume
that c(y) = c(z). Then c(x) 6= c(z). In this case, G′ = G + xz/yz = G/yz
and the argument of the case (i) can be applied to show that G′ has a nice
structure of triangles.

(iii) Finally suppose that H has no edge. If c(x) = c(y) = c(z), then G′ is
obtained from G by identifying all these three vertices. Thus, each triangle
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of G′ contains the identification vertex and it corresponds to a 3-path joining
two of the three vertices x, y and z in G. Therefore, by the planarity, there
are at most three incomparable triangles in this graph and if there is any set
of three incomparable triangles, then there is no other triangle bigger than all
of them. Thus, also in this case G′ has a nice structure of triangles.

Note that by the assumptions not all of x, y, z have distinct colors, so for the
last case, we may assume that c(y) = c(z) 6= c(x). Notice that in this case we
add the edge xy and identify y, z into a vertex, say w. Thus, each triangle of
G′ contains the vertex w. Again it is easy to check that G′ has a nice structure
of triangles. 2

The following is a special case of Proposition 10 but because of its applica-
tion in extending the Götzsch theorem to the class Forbm(K5) we state it
independently.

Corollary 11 Let G be a plane triangle-free graph and let x, y be two vertices
on a same face f of G. Then, every proper coloring of x, y can be extended to
a 3-coloring of G.

2.2 Extension of Grötzsch’s theorem to K5-minor-free graphs

We will use the following fundamental theorem of Wagner [21] (see also [2]).

Theorem 12 Let G be an edge-maximal K5-minor-free graph on at least 4
vertices. Then, G can be constructed recursively, by pasting along K2’s and
K3’s, from plane triangulations and copies of the Wagner graph.

The Wagner graph, V8, is constructed from an 8-cycle (we call it the outer
cycle) by connecting the antipodal vertices (these edges will be called the
diagonal edges). Note that the Wagner graph is triangle-free and 3-colorable
(because it is cubic). The graph is depicted in Figure 1 in two different ways.
Our definition of this graph is based on the representation on the right hand
side of this figure. To prove the main theorem of this section we will need the
following easy lemma about Wagner graph:

Lemma 13 If e is an edge of V8 then V8 − e admits a 3-coloring such that
the end vertices of e receive a same color.

In order to make our arguments easy to follow we introduce the following
notations: Let T = T1, T2, . . . , Tr be a sequence of graphs where each Ti is
either a plane triangulation or a copy of V8. We construct another sequence
G = {Gi}i=r

i=1 of graphs as follows: G1 = T1, Gi is obtained from Gi−1 and Ti by
pasting Ti to Gi−1 along a K2 or a K3. Given an edge-maximal K5-minor-free

6



Fig. 1. Two different representations of the Wagner graph

graph G, the sequence T is said to be a Wagner sequence of a graph G, if
G = Gr for some sequence G constructed from T .

Note that each edge-maximal K5-minor-free graph has a Wagner sequence by
Theorem 12. A member of a Wagner sequence is called a brick. A Wagner
sequence is called a good Wagner sequence if every triangle xyz that is in at
least two bricks is a face of each one of the bricks it belongs to. Note that for
every Wagner sequence there exists a good Wagner sequence. That is because,
if a brick Ti is pasted along a triangle C to Gi−1, where C is a separating
triangle of Ti (i.e., not a face), then we can split Ti into two new bricks Int(C)
and Out(C). It is also important to note that for each i, 1 ≤ i ≤ r, the
subsequence T1, T2, . . . , Ti is a (good) Wagner sequence of the subgraph Gi of
G.

Next we extend these notations to any K5-minor-free graph. Given K5-minor-
free graphs G and G′ with V (G) = V (G′) and G ⊆ G′ any Wagner sequence
of G′ is also a Wagner sequence of G. A good Wagner sequence of G is defined
analogously. Finally we define the Wagner number of a K5-minor-free graph
G to be the length of a shortest good Wagner sequence of G and we denote it
by wg(G).

Theorem 14 Every K5-minor-free triangle-free graph is 3-colorable.

Proof. The theorem is true for triangle-free graphs with no K5-minor and
wg(G) = 1 by Grötzsch’s theorem and the fact that Wagner graph is 3-
colorable. Suppose G is a minimal counterexample with respect to the Wagner
number and assume it has Wagner number r ≥ 2. Let Ĝ be an edge-maximal
K5-minor-free extension of G from which the good Wagner sequence of size
r for G is produced and let T1, T2, . . . , Tr be the corresponding good Wagner
sequence. There are two type of edges in Ĝ: The ones in E(G), which we call
them thick edges. The ones not in E(G), which we call them thin edges.
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Our aim is to provide a coloring ci for each Ti (inductively) so that ci is
an extension of the already colored vertices of Ti and that it is proper with
respect to thick edges. Toward this we prove a bit stronger statement. We
require, moreover, that if xyz is a thin triangle in more than one brick, then
its vertices are assigned at most two different colors all together. Note that we
may assume G is the smallest counterexample to this stronger statement with
respect to Wagner number, also that this additional condition is trivially true
for r = 1.

By our choice of G, the subgraph Gr−1 of G has a 3-coloring that satisfies
our additional assumption as well (note that T1, T2, . . . , Tr−1 is a good Wag-
ner sequence of Gr−1). Now, if Tr is pasted to Gr−1 along a K2, then, using
Corollary 11, the 3-colorability of V8 and Lemma 13, we are done. If Tr is
pasted to Gr−1 along a triangle which is not a thin triangle then simply apply
Proposition 10. So we may assume Tr is pasted to Gr−1 along a thin triangle
xyz. If this triangle is in at least two other Ti’s, 1 ≤ i ≤ r − 1, then we are
done-again using Proposition 10–because xyz has received at most two colors
by our additional assumption.

Finally, let xyz be a thin triangle that is only in Tr and Tj for some j, 1 ≤
j ≤ r − 1. Insert a new vertex t to Gr−1 and join it to x, y and z. Let G′

r−1

be the new graph. Let also T ′
r−1 be a triangulation obtained from Tr−1 by

inserting t inside the xyz-face and joining it to x, y and z using thick edges.
Note that T1, T2, . . . , Tr−2, T

′
r−1 is a good Wagner sequence of Gr−1. So, by the

choice of r, G′
r−1 admits a 3-coloring satisfying all our requirements. In this

coloring x, y, z must receive at most two different colors. Therefore, if we take
the induced coloring on Gr−1, then this coloring, by Proposition 10, will be
extendible to Gr−1 + Tr = G. This extended coloring satisfies our additional
assumption as well. 2

3 Homomorphism to the Clebsch graph

Let k ≥ 1 and let Sk = {s1, s2, . . . , sk} be a set of k vectors in Zk
2 such that∑k

i=1 si = 0 (in Zk
2) and no proper subset of S sums to 0. For example, one

can take the set of all vectors with two consecutive 1’s in a cyclic order. Let
Γk be the subgroup of Zk

2 generated by Sk. It is an elementary group theory
fact that Γk is isomorphic to Zk−1

2 for any choice of Sk. For the example of Sk

we chose, elements of Γk are those k-vectors in Zk
2 that have an even number

of 1’s in their coordinates.

We now define Hk to be the Cayley graph C(Γk, Sk). Vertices of this Cayley
graph are the elements of Γk and two vertices are adjacent if and only if their
difference is in Sk. We will show below that Hk is independent from the choice
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of Sk. Note that, since Sk is a generator of Γk, Hk is a connected graph.

For k = 1, 2, 3 and 4 the graph Hk is isomorphic to K1, K2, K4 and K4,4,
respectively. For k = 5, H5 is isomorphic to the Clebsch graph. H5 contains
two disjoint copies of the Wagner graph, this can be observed easily in a
representation as in Figure 2.

 

Fig. 2. Clebsch graph

It is easy to check that H2k is bipartite, H2k+1 has odd-girth 2k + 1 and that
χ′(Hk) = k, see [9]. A canonical edge-coloring ϕ of Hk is a k-edge-coloring of
Hk, using the elements of Sk, obtained as follows: Each element s of Sk induces
a perfect matching because it matches each vertex x of Hk to a unique vertex
x + s. All together these perfect matchings form a k-edge-coloring of Hk.

Let S∗k = Γk\Sk ∪ {0}. Note that every element of Γk can be represented as
the sum of the elements of Sk in two different ways. When working with odd
values of k we can make this representation unique by only considering the
shorter term. For example S∗5 = {si + sj|si, sj ∈ S5 and i 6= j} (note also that
S∗5 = {si+sj +sl|1 ≤ i < j < l ≤ 5}). The complement Hk of Hk is the Cayley
graph C(Γk, S

∗
k). The canonical edge-coloring of Hk is defined analogously.

An important characteristic of the canonical edge-coloring ϕ of Hk is that it
satisfies the following property:

Property Pc. For every given cycle C of G the following holds
∑

e∈C ϕ(e) = 0.

In fact this property allows us to reconstruct the labeling of the vertices (up
to an automorphism of Hk) from a given canonical edge-coloring. To do this,
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we label an arbitrary vertex x with 0, then for any other vertex y we choose
an xy path P and label y by

∑
e∈P ϕ(e). This proves that any permutation σ

of Sk induces an automorphism of Hk, note that this induced automorphism is
not unique, in fact there are 2k−1 such automorphisms as we have that many
choices for a vertex to be labeled 0. Moreover, since an automorphism of any
graph is also an automorphism of its complement, a permutation σ of Sk also
induces an automorphism of Hk.

The property Pc divides the set of cycles of Hk into two groups with respect to
the canonical edge-coloring of Hk. Given a cycle C, either every color appears
an even number of times (which might be zero) or every color appears an odd
number of times (in particular they all must appear). Now, if we change our
choice of the difference set from Sk to Ŝk, then the bijection from Sk to Ŝk will
not change the parity and, therefore, it will not affect the property Pc. The
relabeling, using this new canonical edge-coloring, is an isomorphism between
(Γk, Sk) and (Γ̂k, Ŝk). This shows that Hk is independent form the choice of
Sk. It also follows from this argument that Hk is edge-transitive.

The following conjecture is the focus of this section:

Conjecture 15 The class of K5-minor-free graphs of odd-girth at least 2k+1
is bounded by H2k+1.

This conjecture is closely related to some other conjectures. In particular it is
a generalization of Conjecture 4 and it is a relaxation of Conjecture 6, which
in turn is also a relaxation of the Cycling conjecture, see [6,15]. The first case
of the Conjecture 15 (i.e., k = 1) is shown by Wagner [21] to be equivalent
to the Four-Color Theorem. In this section, using Theorem 5, we verify the
conjecture for k = 2 (so the Four-Color Theorem is used in our proof).

Theorem 16 Every triangle-free graph in Forbm(K5) admits a homomor-
phism to H5.

The proof is similar to that of Theorem 14. We will use the Wagner sequence
but we first need some definitions and preliminary lemmas together with a
strengthening of Theorem 5 for planar graphs.

A mixed graph is a pair (G,G′) of graphs such that G′ is a subgraph of G and
has the same set of vertices as G. We can look at a mixed graph as one graph
G with two different types of edges: Those in E(G), we will call them thick
edges. Those in E(G)\E(G′), we will call them thin edges. A homomorphism
of a mixed graph (G,G′) to (H, H ′) is a mapping of V (G) to V (H), which
not only preserves the adjacency but also preserves the thickness of the edges
as well. An isomorphism (and an automorphism) of mixed graphs is defined
analogously. For more on homomorphism of mixed graphs we refer to [14].
The canonical edge-coloring of the mixed graph (K16, H5) is the combined
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canonical edge-colorings of H5 and H5.

Our first lemma of this section is about the transitivity of the Clebsch graph.
Informally speaking we prove that (K16, H5) is triangle transitive and that
any isomorphism between two mixed triangles of this mixed graph extends to
an automorphism of the whole graph.

Lemma 17 Let A and B be two subsets of the vertices of the mixed graph
(K16, H5). Suppose |A| = |B| ≤ 3 and that the mixed subgraph (XA, X ′

A)
induced by A is isomorphic to the mixed subgraph (XB, X ′

B) induced by B. Let
φ be such an isomorphism. Then, there is an automorphism θ of the mixed
graph (K16, H5) such that θ|A = φ.

Proof. The case |A| = |B| = 1 follows from the fact that every Cayley graph,
in particular H5, is vertex transitive. For the case |A| = |B| = 2 note that
the Clebsch graph and its complement both (and, therefore, also (K16, H5))
are edge transitive. Let θ be an automorphism of (K16, H5) which maps the
edge induced by A to the edge induced by B. If φ and θ agree on A, then
we are done. Otherwise, let s be the color of the edge induced by B in the
canonical edge-coloring of (K16, H5). Note that θs, defined by θs(x) = x + s,
is an automorphism of (K16, H5) which switches the two vertices of B. Now
θs ◦ θ is an automorphism of (K16, H5) that agrees with φ on A.

For the last case we have |A| = |B| = 3. Note that XA and XB have the
same number of thick edges, moreover this number cannot be three as H5

is a triangle-free graph. If XA has two thick edges corresponding to si and
sj, then the thin edge corresponds to si + sj. If XA has only one thick edge
corresponding to si, then the two thin edges correspond to sj + sk and sr + st

with all the five different elements of S5 being used here. Finally, if there is
no thick edge in XA, then they are colored by si + sj, si + sk and sj + sk.

It is easy to check that in either one of these cases there exists a permutation
σ of S5 which changes the color of the edge xy of XA to the color of the edge
φ(x)φ(y) of XB. Let θσ be an induced automorphism of (K16, H5) by σ. Let
θ′ be the automorphism of (K16, H5) defined by θ′(t) = t + φ(x0) − θσ(x0)
where x0 is a fixed element of A. It is now easy to check that θ′ ◦ θσ is an
automorphism of H5 which agrees with φ on A. 2

The following result is a generalization of Theorem 5.

Theorem 18 Let (G,G′) be a mixed graph such that G is planar and G′ is
triangle-free. Then, there is a homomorphism of (G, G′) to (K16, H5).

Proof. Let (G,G′) be a mixed graph such that G is planar and G′ is triangle-
free. For every thin edge uv first we add a new copy (of uv) so that there are
two (multiple) edges uv and then we subdivide one of them once the other
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one twice. In this way, the edge uv is replaced by a 5-cycle in which u and v
are nonadjacent vertices. Let G′′ be the simple graph obtained from G in this
way.

Note that every vertex of G is also a vertex of G′′ and that an edge of G is an
edge of G′′ if and only if it is a thick edge. It follows from construction of G′′

that it is a triangle-free planar graph, therefore, by Theorem 5, it maps to H5.
The restriction of this homomorphism to the vertices of G is a homomorphism
of (G,G′) to (K16, H5). To see this, note that thick edges of G are also edges
of G′′ and, therefore, are mapped to the thick edges of (K16, H5). For a thin
edge uv of G, note that G′′ contains a 5-cycle having u and v as non adjacent
vertices. Since H5 is a triangle-free graph, image of every 5-cycle must be a
5-cycle and, therefore, u and v are mapped to a pair of nonadjacent vertices
of H5, that is a thin edge in (K16, H5). 2

To prove the main theorem of this section we require another lemma which
is about homomorphisms of (mixed) Wagner graph to the Clebsch graph. To
prove this lemma we will use the following interpretation of homomorphisms
to H5 and (K16, H5).

Let f be a homomorphism of a given graph G to H5. Then f induces a (not
necessarily proper) edge-coloring of G using the canonical edge-coloring of H5.
We denote this edge-coloring by f ′. It is not hard to check that f ′ satisfies
the property Pc. Using this property once again we see that f ′ also uniquely
determines f (up to an automorphism of H5). Suppose G is a connected graph
and let f ′ be an edge-coloring of G, using the five elements of S5, that satisfies
the property Pc. For a fixed vertex x of G define f(x) = 0 and then for
any other vertex y choose an xy-path P and define f(y) =

∑
e∈P f ′(e). If a

graph has more than one component, then repeat this on each component. For
simplicity, an edge-coloring using elements of S5 which satisfies the property
Pc will be called an S5-edge-coloring.

Analogously, an (S∗5 , S5)-edge-coloring f ′ of a mixed graph (G′, G) is a (not
necessarily proper) edge-coloring of G such that thin edges receive their colors
from S∗5 , thick edges receive their colors from S5 and f satisfies the property
Pc. Again it is easily seen that a mixed graph (G,G′) admits a homomorphism
to (K16, H5) if and only if it admits an (S∗5 , S5)-edge-coloring.

Lemma 19 For every subgraph V ′
8 of V8 (on the same set of vertices) the

mixed graph (V8, V
′
8) admits a homomorphism to (K16, H5).

Proof. We will show that (V8, V
′
8) admits an (S∗5 , S5)-edge-coloring. We start

with a reference S5-edge-coloring c of V8. There is a homomorphism of V8 to
H5 because V8 is in fact a subgraph of H5. The canonical edge-coloring of
H5 now induces an S5-edge-coloring on V8. Note that this coloring is unique
up to a permutation of S5. The four diagonal edges are colored by a same
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color and every pair of parallel edges of the 8-cycle receive a same color but
distinct from the color of the other edges. It is also not difficult to find a
homomorphism of V8 to H5, in fact H5 consists of two disjoint copies of H5

(see [3]) and, therefore, contains V8 as a subgraph. So for the rest of the proof
we will assume that V ′

8 has at least one thick edge.

Let A be the set of edges in an edge-cut of V8. Note that if we change the color
of every edge in A from c(e) to γ + c(e), with a fixed γ ∈ Γk, then the new
edge-coloring (we call it c′) still satisfies the property Pc. However c′(e) does
not necessarily belong to S5 anymore. In fact c′(e) may even be zero based on
the choice of γ.

To prove the lemma, we will show that by a careful choice of γ and by repeated
applications of the above edge-cut operation we can change the color of every
edge not in V ′

8 to an element of S∗5 while keeping the color of other edges in
S5. To simplify the proof we introduce two local operators.

Claim 1 (Single operator). Suppose e1, e2 and e3 are the three edges of V8

being incident to a vertex v. Then, there is a γ ∈ Γk such that γ + c(ei) is in
S5 if ei is a thick edge and is in S∗5 otherwise.

Proof. Let c(e1) = x, c(e2) = y and c(e3) = z. Note that x, y and z are
distinct elements of S5. Let t be one of the two other elements of S5. Based
on the number of ei’s in V ′

8 we have four different cases. If they are all in V ′
8 ,

then we do nothing (i.e., γ = 0). If there are two of them in V ′
8 , say e1 and e2,

then let γ = x + y. We now have c′(e1) = y, c′(e2) = x and c′(e3) = x + y + z.
If there is only one of them in V ′

8 , say e1, then let γ = t + x. The new colors
are c′(e1) = t, c′(e2) = t+x+ y and c′(e3) = t+x+ z. Finally, if none of them
is in V ′

8 , then let γ = t. ei’s are now colored by t + x, t + y and t + z. ¦

Claim 2 (Double operator). Let e0 = uv be an edge of the outer cycle of
V8 and let e1 and e2 be the two other edges incident to v and e3 and e4 the
two other edges incident to u. Then, there are γ1, γ2 ∈ Γ such that, by adding
γ1 to c(e1) and c(e2), γ2 to c(e3) and c(e4) and γ1 + γ2 to c(e0), the color of
each thick ei remains in S5 but each thin ei receives its color from S∗5 .

Proof. We assume c(e0) = x, c(e1) = y, c(e3) = z and c(e2) = c(e4) = t
(therefore e2 and e4 are the diagonal edges). Hence, x, y, z and t are distinct
elements of S5. Let r be the remaining element of S5.

If both e1 and e2 are in V ′
8 , then we are done by applying Single operator at

u. So we may assume at least one of e1 or e2 (similarly at least one of e3 or e4)
is a thin edge. Suppose there are exactly two thin edges among e1, e2, e3 and
e4. We assume e0 is a thick edge and we give a detailed proof of how Double
operator works on each possible case. For the corresponding cases of when e0
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is a thin edge we only give the value for γ1 and γ2 and leave the details to the
reader.

• e1 and e3 are not in V ′
8 . We let γ1 = γ2 = t + x. Then new colors are:

c′(e0) = c′(e2) = c′(e4) = x, c′(e1) = t + x + y and c′(e3) = t + x + z. (If e0

is a thin edge, then we will let γ1 = t + z and γ2 = t + y.)
• e1 and e4 are not in V ′

8 . We let γ1 = t + z and γ2 = x + z. This changes
the colors as follows: c′(e0) = t, c′(e1) = y + t + z, c′(e2) = z, c′(e3) = x
and c′(e4) = t + z + x. (If e0 is a thin edge, then we will let γ1 = t + r and
γ2 = z + r.) Note that the case when e2 and e3 are not in V ′

8 is symmetric
to this case.

• e2 and e4 are not in V ′
8 . We let γ1 = x + y and γ2 = y + z. The final colors

are c′(e0) = z, c′(e1) = x, c′(e2) = t+x+y, c′(e3) = y and c′(e4) = t+y +z.
(If e0 is a thin edge, then we will let γ1 = r + y and γ2 = y + z.)

If there are three or more thin edges among e1, e2, e3 and e4, then we may
assume, without loss of generality, that both e1 and e2 are thin. In this case,
we first let γ1 = x + r. Therefore, changing the color of e0 to r, e1 to y + x + r
and e2 to t + x + r. Now, since the edges incident to v are colored from S5

using three different colors, γ2 can be find by applying Single operator at u. ¦

Single and Double operators are like local changes. In order to complete our
proof, we need to show that these changes can be done globally without con-
flicting each other. For this purpose, assume there is at least one edge e of the
outer cycle of V8 that is also in V ′

8 . Let v1, v2, v3 and v4 be the four vertices
at distance 1 from e, assuming that v3v4 is the edge parallel to e. Notice that
these four vertices cover all the edges of V8 except e. Moreover, v3v4 is the
only edge incident to two of these vertices. Now, we apply Single operator at
v1 and at v2 and Double operator at {v3, v4}.

The remaining cases are when none of the edges of the outer cycle are in V ′
8 . In

this case, in the clockwise order (of the outer cycle) we add the color of every
edge of the outer cycle to the color of the next edge. This way all the edges of
the outer cycle have colors from S∗5 and it is again easy to check that this new
coloring satisfies the property Pc. Since we have assumed (V8, V

′
8) has at least

one thick edge, there are at most three diagonal thin edges. We choose a set
A of independent vertices of V8 that covers the thin diagonal edges, making
sure each selected vertex is incident to one such diagonal edge. For each vertex
u in A we add the sum of the colors of two edges of the outer cycle incident
to u to all three edges incident to u. This only exchanges the colors of the
two edges of the outer cycle while it changes the color of the corresponding
diagonal edge from an element of S5 to an element of S∗5 . This proves the final
case of the lemma. 2

We are now ready to prove the following stronger form of Theorem 16.
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Theorem 20 Let (G,G′) be a mixed graph where G is a maximal K5-minor-
free graph and G′ is a triangle-free graph. Then (G,G′) admits a homomor-
phism to (K16, H5).

Proof. Our proof is by contradiction. Assume (G,G′) is the smallest coun-
terexample with respect to Wagner number of G. Let T1, T2, . . . , Tr be the
good Wagner sequence of G. Each member Ti of this sequence can be con-
sidered as a mixed graph (Ti, T

′
i ) where the edges in E(Ti) ∩ E(G′) are the

thick edges and edges in E(Ti)\E(G′) are the thin edges. Let (Gr−1, G
′
r−1) be

the mixed graph induced by Gr−1. By the choice of r, (Gr−1, G
′
r−1) admits a

homomorphism to (K16, H5), call this homomorphism f1.

Now, if Tr is isomorphic to V8, then, by Lemma 19, there is a homomorphism
f2 of (Tr, T

′
r) to (K16, H5). Since Tr and Gr−1 have only an edge in common,

using Lemma 17 we may choose f2 so that the image of the end vertices of
this edge under f2 is the same as their image under f1. A homomorphism of
(G,G′) can now be obtained from combining f1 and f2.

If Tr is a triangulation, then we can find a homomorphism f3 of (Tr, T
′
r) to

(K16, H5) using Theorem 18. Moreover, since Tr and Gr−1 have at most 3
vertices in common, using Lemma 17, we may choose f3 so that it agrees with
f1 on these common vertices. The homomorphism of (G,G′) is again obtained
from combining f1 and f3. 2

4 Examples and Remarks

In the first part of this section we show that our results from Sections 2 and 3
cannot extend to the class Forbm(K6). We have some remarks and a conjecture
in the second part.

4.1 Examples

A graph is called apex if by removing at most one vertex it becomes planar. It
is clear that an apex graph is K6-minor-free. Our first example is a triangle-free
apex graph which is not 3-colorable. It was conjectured by Thomas [18] that
every triangle-free apex graph is 3-colorable. This conjecture was disproved
by Hare [7]. Here we provide an smaller counterexample to this conjecture.

Proposition 21 There exists a triangle-free 4-chromatic apex graph.

Proof. The graph G, depicted in Figure 3, is our example. G is clearly an
apex graph as by removing vertex y it becomes planar. It is also easily seen
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that G is triangle-free. G is 4-colorable because G− y is a triangle-free planar
graph and therefore, by Grötzsch’s theorem, is 3-colorable. It is only left to
prove that G is not 3-colorable. Assume contrary, that G is 3-colorable. Let c
be a 3-coloring of G.

v4v2 u2

x

y

w1

w2

t1

u3

u4

v1

u1

v3

t2

Fig. 3. A triangle-free 4-chromatic apex graph.

We first claim that c(x) = c(y) = 1. Let G′ be the subgraph of G induced
by vi’s, u′i’s, x and y. Note that G′ is obtained from the Grötzsch’s graph by
removing a vertex of degree 3. We show that in any 3-coloring of G′ vertices
x and y must receive a same color. This will prove our claim because c also
induces a 3-coloring on G′. Let c1 be a 3-coloring of G′ such that c1(y) = 1
and c1(x) 6= 1. For each vi if c1(vi) = 1, then we change the color of vi to
c1(ui). This new coloring is still a proper 3-coloring of G′ but the color 1 does
not appear on the 5-cycle induced by x and vi’s, a contradiction.

To complete our proof we notice that the set of vertices not colored 1 must
induce a bipartite graph. Since v2 is the only vertex of the 5-cycle induced by
{w1, w2, v2, u3, v4} that is not adjacent to x or y, we must have c(v2) = 1. But
then every vertex of the 5-cycle induced by {v1, u2, v3, t1, t2} is adjacent to a
vertex of color 1. This contradicts the fact that c was a 3-coloring. 2

Our next example is also an apex graph, but this one is K4-free and 5-
chromatic.

Proposition 22 There exists a k4-free 5-chromatic graph in Forbm(K6).

Proof. An example of such a graph is depicted in Figure 4, we call this graph
H. Note that H is also an apex graph and, therefore, K6-minor-free. The fact
that it is K4-free can be checked easily. We prove that it is 5-chromatic.

Let H ′ be the subgraph of H which is obtained by removing two doted edges
(i.e., x0y3 and x0t3). It is easy to check that H ′ is a 4-chromatic graph (it is
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x3x4

x0

x1

x2 y3y1 y2t3 x5t1t2

Fig. 4. A K4-free 5-chromatic apex graph.

planar and contains the odd wheel W5). We claim that in any 4-coloring of
this graph either y3 or t3 receives the same color as x0. To see this, note that
in a 4-coloring of H ′ each xi, i = 1, 2, . . . , 5 receives a color different from that
of x0. Furthermore, at least one of x3 and x4 (by symmetry, say x3) receives
a color different from that of x1. Now it is easy to see that y1 must be colored
the same as x0, y2 must be colored the same as x2 and finally y3 gets the color
of x0. This proves that H is not 4-colorable. Since H is an apex graph, it is
5-colorable. Therefore, it is 5-chromatic. 2

Using Propositions 21 and 22 we can generally state that:

Corollary 23 For every k ≥ 6 and 3 ≤ j ≤ k − 2, the class Forbm(Kk)
contains a graph homomorphically incomparable to Kj.

Proof. For k = 6, the graph homomorphically incomparable to Kj is con-
structed in Proposition 21 (for j = 3) and Proposition 22 (for j = 4). For a
general k and j all we need to do is to add a disjoint copy of a complete graph
of an appropriate size to G (from Proposition 21) or H (from Proposition 22)
and join all its vertices to all the vertices of G (or H). 2

The following proposition proves that Theorem 15 cannot be extended to the
class of triangle-free graphs in Forbm(K6) either.

Proposition 24 Let F be the graph of Figure 5. Then F is a triangle-free
graph in Forbm(K6) that does not admit a homomorphism to H5.

Proof. The fact that F is triangle-free is clear from the picture. To see that F
does contain a K6-minor let F ′ be the graph obtained from F by contracting
u1x and u2y. Note that the size of the largest clique-minor of F and F ′ are
the same. Also that F ′ is of maximum degree 4. If K6-which is a 5-regular
graph-is a minor of F ′, then every vertex of this minor must be formed from
identifying at least 2 vertices of F ′. But F ′ has only 10 vertices. This proves
that K6 is not a minor of F , i.e., F ∈ Forbm(K6).

To prove that F does not admit a homomorphism to H5 we show that it does
not admit an S5-edge-coloring. By contradiction, assume c′ is an S5-edge-
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v1 v2 v3

w1

w3w4

w5 w2

u1 u2

yx

Fig. 5. A ∆-free graph in Forbm(K6) which does not map to the Clebsch graph.

coloring of F . We first claim that c′(viu1) 6= c′(viu2). Because if c′(viu1) =
c′(viu2), then the induced homomorphism by c′ maps u1 and u2 to a same
vertex. This is not possible because if u1 and u2 are mapped to a same vertex,
then the image of the 3-path joining u1 and u2 must contain a triangle or a
loop.

Next we claim that for each 1 ≤ i < j ≤ 3 the set {c′(viu1), c
′(viu2)} is

the same as the set {c′(vju1), c
′(vju2)}. This is followed from the fact that

{vi, vj, u1, u2} induces a 4-cycle, and that every cycle, in particular this 4-
cycle, must satisfy the property Pc. Then, it follows that from the three edges
joining u1 to vi, i = 1, 2, 3 there are at least two being colored the same by c′.
But every pair of these edges belong to a 5-cycle and no two edges of a 5-cycle
can receive a same color in an S5-edge-coloring. 2

4.2 Remarks

A short proof of Grötzsch theorem is published by Thomassen [19]. In fact
Thomassen proved a stronger result that every planar graph of girth at least 5
is 3-choosable. We do not know whether this can be extended to the class of K5-
minor-free graphs. (Thomassen’s proof is based on the planar representations
of these graphs). Notice that girth 5 is needed here. A triangle-free planar
graph which is not 3-choosable is constructed by Voigt [20].

It follows from a general result of Nešetřil and Ossona de Mendez [13] that
the class of K5-minor-free graphs of odd-girth at least 2k + 1 is bounded by
a graph B of odd-grith 2k + 1. To our knowledge this is the best supportive
result for Conjecture 15.

While we showed, in this section, that our results cannot be extended to the
class Forbm(K6), we conjecture that absence of both triangles and 4-cycles
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still implies a similar result on the class of K6-minor-free graphs.

Conjecture 25 Every K6-minor-free graph of girth at least five is 3-colorable.

We would also like to remark that Thomas [18] has conjectured that every
triangle-free graph in Forbm(K6) is 4-colorable.
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