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Abstract

Let G be a graph and let c : V (G) →
({1,...,5}

2

)

be an assignment of 2-element
subsets of the set {1, . . . , 5} to the vertices of G such that for every edge vw, the
sets c(v) and c(w) are disjoint. We call such an assignment a (5, 2)-coloring. A
graph is (5,2)-colorable if and only if it has a homomorphism to the Petersen graph.
The odd-girth of a graph G is the length of the shortest odd cycle in G (∞ if G

is bipartite). We prove that every planar graph of odd-girth at least 9 is (5, 2)-
colorable, and thus it is homomorphic to the Petersen graph. Also, this implies that
such graphs have fractional chromatic number at most 5

2 . As a special case, this
result holds for planar graphs of girth at least 8.

1 Introduction

One of the most natural generalizations of the usual graph coloring is the k-tuple coloring.
We assign to each vertex a set of k distinct colors, instead of just one color, and require
that the adjacent vertices obtain disjoint sets of colors. Such an assignment is called a
k-tuple coloring, or a k-tuple n-coloring if n colors are used (where k ≤ n). To be short,
we use the term (n, k)-coloring instead. Obviously, an (n, 1)-coloring is just the usual
n-coloring.

It is easy to see that these multi-colorings are homomorphisms to Kneser graphs.
The Kneser graph K(n, k) (where 2k ≤ n) is a graph with vertex set consisting of all
k-element subsets of {1, 2, . . . , n} and with two vertices adjacent if and only if the subsets
are disjoint. An (n, k)-coloring of G also can be viewed as a homomorphism of G to
K(n, k). Let us note that K(5, 2) is isomorphic to the Petersen graph.

The fractional chromatic number of G, denoted χf(G), is the infimum of the frac-
tions n/k such that G admits an (n, k)-coloring. The notion can also be alternatively

1Supported in part by bilateral projects SLO-CZ/04-05-002 and MSMT-07-0405 between Slovenia and
Czech Republic

2Supported in part by project 1M0545 of the Czech Ministry of Education
3Supported in part by Ministry of Science and Technology of Slovenia, Research Program P1-0297
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defined using the linear relaxation of the integer programming formulation of the graph
coloring problem. For a fixed k, the minimum n such that G admits an (n, k)-coloring
is called the k-tuple chromatic number of G and it is denoted by χk(G). Therefore,
χf(G) = inf χk(G)/k. More details about this coloring can be found in the monograph of
Scheinerman and Ullman [5].

Let C be a circle of (Euclidean) length r. An r-circular coloring of a graph G is a
mapping c which assigns to each vertex v of G an open unit length arc c(v) of C, such
that for every edge xy ∈ E(G), c(x) ∩ c(y) = ∅. We say a graph G is r-circular colorable
if there is an r-circular coloring of G. The circular chromatic number of a graph, denoted
by χc(G), is defined as

χc(G) = inf{r | G is r-circular colorable}.

The following well-known inequalities hold for each graph G,

χ(G) − 1 < χc(G) ≤ χ(G) and χf (G) ≤ χc(G) ≤ χ(G).

It is also well-known that the circular chromatic number is always a rational number.
For more details on the circular chromatic number see [9].

The concept of (n/k)-circular colorings is closely related to the concept of (n, k)-flows.
Let G be a graph and D an orientation of G. For positive integers k and n ≥ 2k,
an (n, k)-flow f of D is a mapping that assigns to each edge e of D an integer f(e) ∈
{k, k + 1, . . . , n − k} such that

∑

e∈E+(v) f(e) =
∑

e∈E−(v) f(e) for every vertex v; Here

E+(v) is the set of edges incident to v that are directed away from v, and E−(v) is the
set of edges incident to v that are directed towards v in D. A graph G is said to admit
an (n, k)-flow if G has an orientation D that admits an (n, k)-flow.

Notice that (n, 1)-flows are precisely nowhere-zero integer n-flows introduced by Tutte
[6, 7]. One can find more about flows in the monograph of Zhang [8] and the survey of
Jaeger [2]. The following well-known conjecture was proposed by Jaeger [3]:

Conjecture 1 (Circular-Flow Conjecture) For any integer k ≥ 1, every 4k-edge-
connected graph admits a (2k + 1, k)-flow.

Note that the Circular-Flow Conjecture for k = 1 and k = 2 implies the famous 3-Flow
Conjecture and 5-Flow Conjecture of W. Tutte, respectively. For planar graphs, the
flow problem can be dualized to the circular coloring problem. More precisely, an (n/k)-
circular coloring of a planar graph G corresponds to an (n, k)-flow of the dual graph of
G. Therefore, the restriction of Jaeger’s conjecture to planar graphs is equivalent to the
following:

Conjecture 2 Every planar graph G of girth at least 4k has circular chromatic number
at most 2 + 1

k
.

The odd-edge connectivity of a graph G is the size of the smallest odd edge-cut of G.
The dual of odd-edge connectivity is an odd-girth. The odd-girth of a graph G is the length
of the shortest odd cycle in G (∞ if G is bipartite). Klostermeyer and Zhang [4] proposed
a strengthening of Conjecture 2, where the edge-connectivity condition is replaced by an
odd edge-connectivity condition:

Conjecture 3 Every planar graph G of odd-girth at least 4k + 1 has circular chromatic
number at most 2 + 1

k
.
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Regarding Conjecture 3, Zhu [10] proved that for every k ≥ 2, planar graphs of odd-girth
at least 8k − 3 have circular chromatic number at most 2 + 1

k
. Later Borodin, Kim,

Kostochka and West [1] proved that a planar graph with girth at least 20t−2
3

has circular
chromatic number at most 2 + 1

t
. Both results imply that planar graphs of girth at least

12 are (5, 2)-colorable.
Conjecture 3 for k = 2 implies that the fractional chromatic of each planar graph

of odd-girth at least 9 is at most 5
2
. We prove that this indeed is the case, i.e., that

every planar graph of odd-girth at least 9 is (5, 2)-colorable. This also implies that planar
graphs of girth 8 have fractional chromatic number at most 5

2
. Other interpretation of

this result is that such graphs have a homomorphism to Petersen graph.

2 Main Theorem

The following theorem is the main result presented in this paper.

Theorem 1 Every planar graph of odd-girth at least 9 is (5, 2)-colorable.

To prove this theorem, we first show that we may restrict our attention to graphs
without any short cycles. To deal with short faces, we use the following lemma proved by
Klostermeyer and Zhang [4]:

Lemma 2 (Folding Lemma) Let G be a planar graph with odd-girth g > 3. If C =
v0v1 . . . vr−1 is a facial circuit of G with r 6= g, then there is an integer i ∈ {0, . . . , r − 1}
such that the graph G′ obtained from G by identifying vi−1 and vi+1 (where indices are
taken modulo r) is also of odd-girth g.

To handle short cycles that are not faces, we show that under some assumptions, a
coloring of the exterior of such a cycle can be extended to its interior:

Theorem 3 Let H be a 2-connected planar graph such that H does not contain a cycle
of length smaller than 9, except possibly for its outer face OH whose length is at least 4.
The graph H is (5, 2)-colorable. Furthermore, if the length of OH is at most 8, then any
proper (5, 2)-coloring of OH can be extended to a proper coloring of H.

Assuming that Theorem 3 holds, we can prove Theorem 1 easily. Given a plane graph
G and a cycle C, let IntG(C) be the subgraph of G consisting of vertices and edges that
lie on C or inside C, and let OutG(C) be the subgraph of G consisting of vertices and
edges that lie on C or outside C. Thus, IntG(C) and OutG(C) share only the vertices and
edges of C.

Proof of Theorem 1. For the sake of contradiction, let us assume that Theorem 1 is
false and let G be a counterexample with minimum number of vertices. Obviously, G is
connected. We may also assume that G is 2-connected, otherwise we can color each block
separately and permute the colors so that the colorings agree on the cut-vertices.

Let us show that each face of G has size at least 9. Let g ≥ 9 be the odd-girth of
G. Assume that G contains a face of length different from g. By Lemma 2, there exist
vertices v1 and v2 on that face such that the graph G′ obtained from G by identifying v1

and v2 is a planar graph of odd-girth g. Note that the vertices v1 and v2 are not adjacent,
because of the restriction on the odd-girth of G. By the minimality of G, the graph G′

3



is (5, 2)-colorable. However, since v1 and v2 are not adjacent, this also gives a proper
(5, 2)-coloring of G, which is a contradiction.

If G does not contain any cycle of length less than 9, then G is (5, 2)-colorable by
Theorem 3. Therefore, assume that G contains a short cycle. Let C be a cycle in G of
length at most 8 such that the number of vertices of IntG(C) is minimal. Since G does
not contain any face of length less than 9, the graph OutG(C) has less vertices than G.
By the minimality of G, there exists a proper (5, 2)-coloring c of OutG(C). The graph
IntG(C) does not contain any cycle shorter than 9, thus the coloring c can be extended
to the vertices of IntG(C) by Theorem 3. This shows that G can be (5, 2)-colored, which
is a contradiction. �

It remains to prove Theorem 3. We proceed by the discharging method. Let us assume
that H is a minimal counterexample to the theorem throughout the rest of the paper, and
let OH be its outer face. We first assign charge to vertices and faces of H in such a way
that the total amount of charge is negative. The bound on the length of faces ensures
that the charge of each face is non-negative, and we never change the charge of faces,
hence we know that at each moment the total charge of vertices is negative. The initial
distribution of the charge is described in Section 4. We then redistribute the charge,
and assuming that H is a minimal counterexample to Theorem 3, we show that the final
charge of each vertex is non-negative. Since the amount of charge does not change during
its redistribution, we obtain a contradiction. This will establish Theorem 3.

In Section 3, we describe some subgraphs that cannot appear in H , we call such
subgraphs (configurations) reducible. The proof of reducibility of a configuration C usually
proceeds in the following way. By the minimality of H , we know that H − C can be
properly colored. We then show that an arbitrary coloring of H − C can be extended to
C, thus showing that H is (5,2)-colorable and obtaining a contradiction.

The discharging proceeds in two phases. Let us call vertices of degree at least 3
important. In the first phase (Section 5), we consider vertices of degree 2 in H , and make
their charge non-negative by moving charge from adjacent important vertices. We then
analyze the charge of important vertices, and show that the subgraph H ′ induced by the
important vertices with negative or small positive charge has a very special structure—in
particular, it has maximum degree at most three, and only vertices of degree at most two
may have negative charge.

In Section 6, we study the reducible configurations in H ′. This enables us to restrict
the structure of H ′. Finally, we run the second phase of discharging over H ′, moving the
charge from vertices of degree three to vertices of smaller degree in H ′, and show that one
of 3-vertices is contained in a reducible configuration (Section 7).

Throughout the proof, we need to handle the precolored outer face OH . We would
run into problems if a vertex v of a reducible configuration C were precolored, since we
would be unable to prove that the coloring of H − C can be extended in a way that is
consistent with the color of v. To avoid this problem, we add an extra charge to the
vertices of OH while still preserving the fact that the total amount of charge is negative.
This extra charge ensures that the charge of the vertices of OH is large enough, thus they
do not appear in any configuration we consider—only configurations whose total charge
is negative are important in the discharging method.
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3 Reducible configurations

We say that a configuration (a subgraph) is reducible if it cannot appear in the minimal
counterexample H , except possibly if some of its vertices are precolored. To use the
discharging method we first need to prove that some configurations are reducible. We
start with the following lemma that enables us to handle vertices of degree two in the
minimal counterexample H of Theorem 3.

Lemma 4 The following claims hold:

(1) Let P = v1v2v3 be a path of H such that d(v2) = 2 and v2 is not a precolored vertex
of the outer face. If c is a coloring of H − v2 such that c(v1)∩ c(v3) 6= ∅, then c can
be extended to a proper coloring of H.

(2) Let P = v1v2v3v4 be a path of H such that d(v2) = d(v3) = 2 and neither v2 nor
v3 is precolored. If c is a coloring of H − {v2, v3} such that c(v1) 6= c(v4), then the
coloring c can be extended to a proper coloring of H.

(3) If P is a path v1v2v3v4v5 in H such that d(v2) = d(v3) = d(v4) = 2 and neither of
v2, v3 and v4 is precolored, then P is reducible.

Proof. Let us show each claim separately:

(1) Let X = {1, . . . , 5} \ [c(v1) ∪ c(v2)]. Size of X is at least two, thus we can choose
c(v2) ⊆ X.

(2) If c(v1) ∩ c(v4) = ∅, then set c(v2) = c(v4) and c(v3) = c(v1). Otherwise c(v1) =
{a, b1} and c(v4) = {a, b2} have exactly one common element a. Let {b3, b4} =
{1, . . . , 5} \ {a, b1, b2}. We set c(v2) = {b2, b3} and c(v3) = {b1, b4}.

(3) Suppose that this configuration appears in H . There exists a coloring c of H −
{v2, v3, v4} by the minimality of H . Let c(v2) be a color-pair disjoint with c(v1) and
distinct from c(v5) and use the second claim of this lemma to color v3 and v4. In
this way, we extend the coloring to H , thus obtaining a contradiction. �

We need to show that many subgraphs are reducible. For each such subgraph C, we
consider the coloring of H − C and extend it to C. We usually use counting arguments
of the following type: if a vertex v of C is adjacent to exactly one vertex u of H − C,
the vertex v can be colored by one of three colors that are not forbidden by the color of
u. If we determine the numbers of available colors for each vertex of C in a similar way,
and show that C can be colored from all possible lists of colors of the given length, then
we prove that C is reducible. To make the statements and the proofs of the theorems
simpler, we introduce a notion closely related to the list coloring.

Let P =
(

{1,...,5}
2

)

be the set of all unordered pairs of the elements of {1, . . . , 5} and
let us call the elements of P color-pairs. A list is a subset of P, and if its size is k, then
we call it a k-list. Lists are used to specify which color-pairs can be used at vertices in
the considered configurations. For a given X ⊆ {1, . . . , 5}, let ss(X) = {p ∈ P; p ⊆ X}
be the list of all 2-element subsets of X. Let int(X) = {p ∈ P; p ∩ X 6= ∅} be the list of
all color-pairs that intersect X.

A type is a set of lists. Types are used to express properties of the possible colorings of
the considered configurations. For example, if we know that a vertex v has one neighbor
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precolored with a color-pair p, then the color-pairs that can be used to color v must be
disjoint with p, and the list of such color-pairs belongs to the type N3 defined below. Let
us point out the following special types:

• Pall = ℘(P) is the set of all lists, and Pk is the set of all k-lists. Thus, P10 = {P}.

• N4 ⊂ P4 is the set of all 4-lists such that no color belongs to all color-pairs in the
list. For example, the list L = {{1, 2}, {1, 3}, {1, 4}, {1, 5}} does not belong to N4.

• N3 ⊂ P3 is the type of all 3-lists that can be expressed as ss(X) for some 3-element
subset X of {1, . . . , 5}.

• N7 ⊂ P7 is the set of all 7-lists, whose complements belong to N3. In other words,
N7 is the type of all lists that can be expressed as int(X) for some 2-element subset
X of {1, . . . , 5}.

If A and B are two types, we write B ≥ A if every list in B has a (not necessarily
proper) subset that belongs to A. That is, the lists in B are “greater” than the lists in A.
In particular, if B ≥ A and a coloring can be extended to a vertex whose list of available
colors belongs to A, then the coloring can also be extended to the same vertex with list
from B. Obviously, if B ⊆ A, then B ≥ A. Also, Pm ≥ Pn for m ≥ n.

Lemma 5 The following relations hold:

(1) P7 ≥ N3, and

(2) P9 ≥ N7.

Proof. Consider the first claim. We may assume that there exists a set X of seven color-
pairs that does not contain a subset in N3. Each of the color-pairs has two elements;
therefore, there must be a color that belongs to at least three color-pairs in X. We may
assume that these color-pairs are {1, 2}, {1, 3} and {1, 4}. Hence, the color-pairs {2, 3},
{2, 4} and {3, 4} cannot belong to X. By the size of X, all remaining color-pairs must
belong to X. In particular, {1, 5} and {2, 5} belong to X and together with {1, 2} they
form a list from N3, which is a contradiction.

Let us now show the second claim. Let X be an arbitrary list in P9, i.e, X = P \ {p}
for a color-pair p. Let Y be any 2-element subset of {1, . . . , 5} \ p. The set int(Y ) ∈ N7

is a subset of X, witnessing that P9 ≥ N7. �

We say that a color-pair p1 forbids a color-pair p2 if p1 and p2 are not disjoint, and
that a list L forbids a color-pair p if every color-pair in L forbids p. This means that if
vertices u and v are adjacent and the color of u belongs to L, then the color of v cannot
be p, or vice-versa, if the color of v is p, then we cannot color u from the list L. We often
use a counting argument—if we determine that less than 10 color-pairs can be forbidden
at a vertex v by a coloring of some of its neighbors, such a coloring can be extended to
the vertex v. A color-pair that is not forbidden is called free.

So far, we were using the terms “configuration” and “reducible” intuitively. Let us
now define them formally using the concept of types. A configuration C is a graph
GC = (VC, EC) together with a function typeC : VC → ℘(Pall) that assigns a type to
each vertex of C. Let us remark that we only consider configurations that do not contain
precolored vertices of the face OH. The configuration represents an induced subgraph of
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H whose reducibility we study. We want to show that any precoloring of the vertices of
V (H) \ VC can be extended to a (5, 2)-coloring of whole H . The types of the vertices of
the configuration reflect the constraints imposed by colors of vertices of V (H) \VC—each
proper (5, 2)-coloring of V (H) \ VC gives us a list of free colors at each vertex v of C, and
the type of v in the configuration consists of all such lists.

An instance Q of the configuration C is a function from VC to Pall such that Q(v) ∈
typeC(v) for each vertex v. The instance Q is colorable if there exists a proper coloring
c of GC such that c(v) ∈ Q(v) for each vertex of C. The configuration C is reducible if
each instance of C is colorable.

Note that if X and Y are types with X ≥ Y and we change the type of a vertex in a
reducible configuration from Y to X , then the new configuration is reducible as well. We
use the following notation to simplify the descriptions of configurations. If X1, X2, . . . , Xk

are types, then: path(X1 X2 . . . Xn) is a path v1v2 . . . vn on n vertices with type(vi) = Xi

for each i. Similarly, cycle(X1 X2 . . . Xn) is a cycle v1v2 . . . vn on n vertices with types
type(vi) = Xi.

Lemma 6 The following configurations are reducible:

(1) path(P1 P8),

(2) path(P2 P6),

(3) path(P3 P5), and

(4) path(N4 P4).

Proof. Observe that a configuration path(X Pn) is reducible if and only if every list in X
forbids at most n− 1 color-pairs. In the rest of this proof, let a, b, c, d and e be mutually
distinct elements of {1,. . . ,5}. Let us consider the configurations separately.

(1) A single color-pair {a, b} forbids exactly the seven color-pairs of int({a, b}); there-
fore, path(P1 P8) is reducible.

(2) If the two color-pairs are disjoint, say {a, b} and {c, d}, then they forbid four color-
pairs {a, c}, {a, d}, {b, c} and {b, d}. Otherwise they share a common element, say
the pairs are {a, b} and {a, c}, then they forbid five color-pairs—the four color-pairs
that contain a and the color-pair {b, c}. Therefore, path(P2 P6) is reducible.

(3) Without loss of generality, there are the following four possibilities for three color-
pairs:

• {a, b}, {a, c} and {a, d}, forbidding the four color-pairs that contain a.

• {a, b}, {a, c} and {b, c}, forbidding three color-pairs {a, b}, {a, c} and {b, c}.

• {a, b}, {a, c} and {b, d}, forbidding three color-pairs {a, b}, {a, d} and {b, c}.

• {a, b}, {a, c} and {d, e}, forbidding two color-pairs {a, d} and {a, e}.

Therefore, path(P3 P5) is reducible.
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(4) Note that if a list X is a subset of a list Y and X forbids n color-pairs, then Y forbids
at most n color-pairs. If L is any list from N4, then there is a list L′ ⊂ L of size
three such that the intersection of elements of L′ is empty. But such a list L′ forbids
at most three color-pairs, as follows from the proof of the previous claim of this
lemma. Therefore, L also forbids at most three color-pairs, and hence path(N4 P4)
is reducible. �

Before we proceed with the next lemma, let us introduce the following convention:
we use X ∗ inside a path or a cycle description of a configuration for an arbitrarily long
(possibly empty) chain of vertices of type X . For example, path(P2 P∗

7 P9) may be any of
path(P2 P9), path(P2 P7 P9), path(P2 P7 P7 P9), etc.

Note that a chain of vertices of type P7 “propagates” the type of the vertex adjacent
to it. For example, let uv1v2 . . . vkw be a path, and let the type of u be P6 (or any other
type X ≥ P6) and let the type of each vi (1 ≤ i ≤ k) be P7. Let Q be an instance of
this configuration. The list Q(u) forbids at most one color-pair q, because path(P6 P2) is
reducible by Lemma 6(2). Let Q1 = Q(v1) \ {q} be the list of v1 without the forbidden
color-pair. The size of Q1 is at least 6, thus it also forbids at most one color-pair q1 in the
list of v2. Similarly the list Q2 = Q(v2) \ {q1} forbids at most one color-pair in the list of
v3, etc. Finally, the non-forbidden part of Q(vk) forbids at most one color-pair in Q(w).
This in particular means that if |Q(w)| > 1, we may color the vertex w by a remaining
color, and then choose a free color for vk, vk−1, . . . , v1 and u. Thus, we can say that
path(P6 P∗

7 ) behaves as path(P6). Similarly, since a list in P5 forbids at most two color-
pairs by Lemma 6(3), path(P5 P∗

7 ) behaves as path(P5), and since a list in P2 forbids five
color-pairs by Lemma 6(2), path(P2 P∗

7 ) behaves as path(P2). The lists in types P4 and
P3 may forbid four color-pairs by Lemma 6(3), so path(P4 P∗

7 ) and path(P3 P∗
7 ) behave

as path(P3).

Lemma 7 The following configurations are reducible:

(1) path(P2 P8 P5),

(2) path(P2 P∗
7 P10 P∗

7 P2), and

(3) path(P2 P∗
7 P9 P∗

7 P3).

Proof. Let us show the reducibility of each of the configurations separately.

(1) The reducibility of the configuration path(P2 P8 P5) is a simple consequence of
Lemma 6(2) and (3). A vertex with list from type P2 forbids at most five color-pairs.
A vertex with list from type P5 forbids at most two color-pairs. Therefore, there is
at least one free color-pair in the list of the vertex of type P8.

(2) Since the type of vertices propagates through the chain of vertices of type P7, it is
sufficient to show that path(P2 P10 P2) is reducible. Let v1v2v3 be the configuration
and let Q be an instance of the configuration. A vertex of type P2 forbids at most
five color-pairs. If either Q(v1) or Q(v3) forbids less than 5 color-pairs at v2, then
the instance is colorable. By the proof of Lemma 6(2), a list L ∈ P2 can forbid
five color-pairs only if the color-pairs in L intersect each other. Suppose that both
Q(v1) and Q(v3) forbid five color-pairs. Let a be the intersection of color-pairs in
Q(v1) and b the intersection of color-pairs in Q(v3). If a 6= b, then let p = {a, b},
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otherwise let p be any color-pair that contains a. Observe that p is forbidden by
both Q(v1) and Q(v3). This means that the total number of forbidden color-pairs
in Q(v2) is at most 9, hence the instance is colorable.

(3) We argue similarly as in the previous claim that suffices to show that path(P2 P9 P3)
is reducible. We use a similar argument as in the previous case. Let v1v2v3 be
the configuration and let Q be an instance of the configuration. A vertex of type
P2 forbids at most five color-pairs and a vertex of type P3 forbids at most four
color-pairs. Therefore, if the instance is not colorable, Q(v1) must forbid precisely
five color-pairs and Q(v3) must forbid precisely four color-pairs. The proofs of
Lemma 6(2) and (3) show that this may happen only if both

⋂

p∈Q(v1)
p 6= ∅ and

⋂

p∈Q(v3)
p 6= ∅. Let a be the element of intersection of Q(v1) and b the element of

intersection of Q(v3). If a 6= b, then let p = {a, b}, otherwise let p be any color-pair
that contains a. Observe that p is forbidden by both Q(v1) and Q(v3). This means
that the total number of forbidden color-pairs in Q(v2) is at most 8, which shows
that the instance is colorable. �

Lemma 8 The configurations path(P2 P∗
7 P9 P∗

7 P8 P∗
7 P2) are reducible.

Proof. Let v1v2 . . . vn be one of the configurations described by the statement of this
lemma, and let Q be its instance. Since P2 propagates over chain of vertices of type P∗

7 ,
it suffices to consider the case when v2 has type P9 and vn−1 has type P8.

By Lemma 7(3), the configuration path(P2 P9) on v1v2 forbids at most two color-pairs
at v3. If n = 4, then v3 is of type P8, and hence Q(v3) contains at least six free color-
pairs. This instance of the configuration path(P6 P2) on v3v4 is colorable by Lemma 6(2).
If n > 4, then the type of v3 is P7 and Q(v3) contains at least five free color-pairs. Since
the type P5 propagates over chain of vertices of type P7, it suffices to show that the
configuration path(P5 P8 P2) is reducible. This follows by Lemma 7(1). �

Lemma 9 The cyclic configurations cycle(N3 X N3 P10 P10), where X is an arbitrary path
consisting of one vertex of type P9 and at least three vertices of type N7, are reducible.

Proof. Let v1v2 . . . vk be one of these configurations, where v1 and vk−2 are the vertices
of type N3 and vk−1 and vk have type P10. By symmetry, we may assume that the types
of v2 and v3 are N7. Let Q be an instance of this configuration. We may assume that
Q(v1) = ss({1, 2, 3}). By Lemma 4(2), any coloring of the vertices v1 and vk−2 by distinct
color-pairs can be extended to vk−1 and vk.

Suppose first that Q(vk−2) 6= Q(v1), and thus |Q(vk−2) ∩Q(v1)| ≤ 1. Now restrict the
configuration to the vertices v1, . . . , vk−2 and create an instance Q′ such that Q′(v1) =
Q(v1) \ Q(vk−2) (i.e., a list that consists of at least two color-pairs) and Q′(vi) = Q(vi)
for i > 1. Every coloring of Q′ can be extended to a coloring of Q, and the instance Q′ is
colorable by Lemma 7(3). Hence, Q is colorable as well.

In the rest of the lemma, we assume that Q(vk−2) = Q(v1). We know that Q(v2) =
int(p), where p is some color-pair. Let us now consider the case that p 6∈ Q(v1). With-
out loss of generality, we may assume that either p = {1, 4} or p = {4, 5}. Restrict
the configuration to vertices v2, . . . , vk−2 and create an instance Q′ such that Q′(v2) =
{{1, 4}, {1, 5}, {4, 5}} ⊂ Q(v2), Q′(vk−2) = {{1, 2}, {1, 3}} and Q′(vi) = Q(vi) for 2 < i <
k−2. It is easy to check that any coloring of Q′ can be extended to a coloring of Q, since
for each color-pair in Q′(v2) we may color v1 with {2, 3}. The instance Q′ is colorable by
Lemma 7(3). Thus, Q is colorable as well.
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Now we consider the case p ∈ Q(v1). Without loss of generality, we may assume
p = {1, 2} and Q(v3) = int(q), where q is one of the following color-pairs: {1, 2}, {1, 3},
{1, 5}, {3, 5} or {4, 5}. Let us restrict the configuration to vertices v3, . . . , vk−2. Let Q′

be the instance such that Q′(vk−2) = {{1, 2}, {2, 3}} and Q′(vi) = Q(vi) for 3 < i < k−2.
The list of v3 is defined as follows:

• If 1 ∈ q, then Q′(v3) = {{1, 3}, {1, 4}, {1, 5}}.

• If q = {3, 5}, then Q′(v3) = {{2, 5}, {3, 5}, {2, 3}}.

• If q = {4, 5}, then Q′(v3) = {{2, 5}, {3, 5}, {2, 4}}.

Any coloring c of Q′ can be extended to a coloring of Q: if 1 ∈ q or c(v3) = {3, 5}, then we
set c(v1) = {1, 3}, otherwise we choose c(v1) ∈ {{1, 2}, {2, 3}} distinct from c(vk−2). In
both cases, there is a free color-pair in Q(v2). The instance Q′ is colorable by Lemma 7(3),
and hence Q is also colorable. �

We define the following operations on types:

• cut1(X ) = {X ′; (∃X ∈ X ) X ′ ⊆ X, |X \ X ′| ≤ 1}, i.e., the lists in this set can be
obtained from those in X by removing at most one color-pair.

• cut3(X ) = {X ′; (∃X ∈ X ) (∃p ∈ P) X ′ = X ∩ int(p)}, i.e., the lists in this set
can be obtained from those in X by removing color-pairs that are disjoint with a
color-pair p.

• cut7(X ) = {X ′; (∃X ∈ X ) (∃p ∈ P) X ′ = X \ int(p)}, i.e., the lists in this set can
be obtained from those in X by removing color-pairs that intersect a color-pair p.

Let us write cutk
a for applying k times the operation cuta, in particular cut0

a is identity.
These operations are used to reflect the effect of precoloring vertices to the lists of remain-
ing vertices. Note that the operations commute with each other, i.e., cuta(cutb(X )) =
cutb(cuta(X )) for each a, b ∈ {1, 3, 7}.

Lemma 10 The following relations hold:

(1) cut1(Pn) ≥ Pn−1,

(2) cut3(P10) = N7,

(3) cut7(P10) = N3, and

(4) cut2
3(P10) ≥ N4.

Proof. The first three claims are trivial. Let us consider the fourth one. Let L ∈
cut2

3(P10). Note that |L| ≥ 4. If |L| ≥ 5, then L obviously contains four color-pairs
whose intersection is empty. Thus, we only need to consider the case when |L| = 4.
This only happens when the color-pairs p1 and p2 used to obtain L from P10 by cut3

operations are disjoint. We may assume that p1 = {1, 2} and p2 = {3, 4}. The list
L = {{1, 3}, {1, 4}, {2, 3}, {2, 4}} belongs to N4, thus proving the fourth relation. �
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A vertex is called important if its degree is at least three, and an edge is called important
if both of its vertices are important. Let us call a path with k inner vertices of degree two
connecting two important vertices a k-link. In particular, an important edge is a 0-link.
Links with k > 0 are called proper. By Lemma 4(3), only 0-, 1- and 2-links may appear
in H .

Let G be a fixed subgraph and v an important vertex belonging to G. We say that G
is closed with respect to v if all links incident to v are either completely contained in G,
or share only the vertex v with G. For such a vertex v, let U(v) be the set of important
vertices that do not belong to G and that are joined with v by a link, and let U∗(v) be the
set consisting of v, vertices in U(v) and the vertices of the links connecting v to vertices
of U(v). Suppose that v is joined by nk k-links to vertices in U(v), for 0 ≤ k ≤ 2. Let
Uv = cutn0

7 (cutn1

3 (cutn2

1 (P10))). We say that G is closed if it is closed with respect to all
important vertices in G.

The following lemma shows how we can determine the type of a vertex v in a config-
uration C from the links through that v is connected to vertices that do not belong to
C. This lemma basically restates Lemma 4, and tells us that links to vertices of C can
be eliminated and replaced by setting the types of vertices of the configuration using the
appropriate cut operations.

Lemma 11 Let v be an important vertex of a subgraph G such that G is closed with
respect to v. Let c be a proper coloring of the graph induced by U(v). If L is the list of
color-pairs p such that c(v) = p for some extension of c to the subgraph induced by U∗(v),
then L ∈ Uv.

Proof. If u ∈ U(v) is adjacent to v, then the color-pair c(u) forbids all color-pairs that
intersect c(u) at v. By Lemma 4, if u is joined to v by a 1-link, then the color-pair c(u)
forbids all color-pairs that are disjoint with c(u). Finally, if u is joined to v by a 2-link,
then the color-pair c(u) forbids the color-pair c(u) at v. The operations cut7, cut3 and
cut1 modify the lists in the type they are applied to in the same way, and since the lists
for all possible choices of the color-pair c(u) are included in Uv, we infer that L ∈ Uv. �

If we determine the types of important vertices of an induced subgraph of H using
Lemma 11 and the resulting configuration is reducible, then we obtain a contradiction
with the fact that H is a counterexample to Theorem 3, as the following lemma shows.
This provides us with a powerful tool for determining the subgraphs that cannot appear
in H .

Lemma 12 Let G be closed subgraph without precolored vertices. Let C be the configu-
ration on G, where the type of each important vertex v of C is Uv, and the type of each
2-vertex is P10. If the configuration C is reducible, then G cannot appear in H.

Proof. Suppose for the sake of contradiction that G appears in H . Let W = VC ∪
⋃

v∈VC
(U∗(v) \ U(v)) be the set consisting of VC and vertices of degree two contained in

proper links that share only one vertex with C. Let V ′ = V (H) \ W . By the minimality
of H , the subgraph induced by V ′ has a proper (5, 2)-coloring c1. Let v be a vertex of C.
By Lemma 11, the list Lv of color-pairs that are not forbidden by c at v belongs to Uv.
Let Q be the instance of C in that the list Lv is selected at each vertex v of C. Since C
is reducible, the instance Q is colorable. Thus, a proper coloring c2 of C from the lists of
free color-pairs exists. By Lemma 4, the union of colorings c1 and c2 can be extended to
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the remaining 2-vertices of the links that belong to W (note that these vertices cannot be
precolored, since the vertices of G are not precolored, and the precolored vertices form a
cycle in H). This yields a proper (5, 2)-coloring of H , which is a contradiction. �

4 Initial Charge

We assign charge to vertices and faces of H . For every v ∈ V (H), we define the initial
vertex charge ch0(v) as

ch0(v) =
7

3
d(v) − 6,

where d(v) denotes the degree of v in the graph H . Let F (H) be the set of faces of the
graph H . For every face f ∈ F (H), distinct from OH , we define the initial face charge
ch0(f) as

ch0(f) =
2

3
r(f) − 6,

where r(f) denotes the length of f . The charge of the outer face OH is set to 2
3
r(OH)+ 11

2
.

By Euler’s formula, the total amount of charge is

∑

v∈V (H)

ch0(v) +
∑

f∈F (H)

ch0(f) =

(

14

3
|E(H)| − 6|V (H)|

)

+

(

4

3
|E(H)| − 6|F (H)|

)

+
23

2

= 6(|E(H)| − |V (H)| − |F (H)|) +
23

2

= −
1

2
.

Here we see the charge assigned to the vertices of small degrees:

d(v) 2 3 4 5 6

ch0(v) −4
3

1 10
3

17
3

8

Note that the charge of each face f distinct from OH is at least 2
3
r(f) − 6 ≥ 0, since

r(f) ≥ 9. We redistribute the charge of the vertices in two phases such that the total
amount of charge does not change. However, we show that in the minimal counterexample
H , the final charge of each vertex and face is non-negative, thus contradicting the existence
of the minimal counterexample and proving Theorem 3.

5 First Phase of Discharging

In the first phase, we ensure that all 2-vertices have non-negative charge. We use the
following redistribution rules to move charge from the important vertices to links:

(R1) If xyz is a 1-link in H such that x has degree 3, 4 or 5 and y is not precolored, then
x sends 2

3
to y.

(R2) If xyzu is a 2-link in H such that x has degree 3, 4 or 5 and y is not precolored,
then x sends 4

3
to y.
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(R3) If x is a vertex of degree at least 6 adjacent to a 2-vertex y, and y is not precolored,
then x sends 4

3
to y.

(R4) If the length r of OH is at most 8, the face OH sends 4
3

to each vertex incident to it.

The charge after the first phase is denoted by ch1. The charge of 2-vertices becomes
non-negative after the first phase. Furthermore, note that charge of a vertex w of degree
at least 6 is non-negative:

ch1(w) ≥
7

3
d(w) − 6 −

4

3
d(w) = d(w) − 6 ≥ 0.

If the face OH is precolored, then each vertex w of OH has at least two neighbors to
that it does not send any charge, hence its charge is at least

ch1(w) ≥
7

3
d(w) − 6 −

4

3
(d(w) − 2) +

4

3
= d(w) − 2 ≥ 0.

The charge of inner faces does not change, thus it is still non-negative. The charge of
OH changes only if its length r is at most 8, and then the final charge of OH is at least
(2

3
r + 11

2
)− 4

3
r ≥ 1

6
. Therefore, the charge of each face after the first phase of discharging

is non-negative, hence the sum of the charges of vertices is negative. In the rest of the
paper, we only take into account the charge of vertices.

Let us now analyze the possible neighborhoods of important vertices of H . We first
consider neighborhoods of 3-vertices.

x

x1 x2 x3 x4

(a) (b)

Figure 1: Reducible 3-vertex subgraphs

Lemma 13 Subgraphs (a) and (b) in Figure 1 cannot appear in H, unless the 3-vertex is
precolored.

Proof. Consider first the subgraph (a). Using Lemma 12, the type of x after the links
are eliminated is cut3

3(P10) ≥ P1. Since a configuration consisting of a single vertex of
type P1 is reducible, this subgraph cannot appear in H .

Now consider the subgraph (b). Let v1, v3 and v4 be the vertices adjacent to x1, x3 and
x4 outside of the subgraph, respectively. Let c be a coloring of H − {x1, x2}. Note that
c(v3) 6= c(v4) because of the vertices x3 and x4. The set of colors p such that the coloring
c′ defined by c′(v3) = c(v3), c′(v4) = c(v4) and c′(x3) = p is proper and can be extended to
x4 is int(c(v4))\ int(c(v3)) and since c(v3) 6= c(v4), this set has size at least two. Hence, we
can change colors of x3 and x4 so that c(x3) 6= c(v1). We extend the coloring c to vertices
x1 and x2 using Lemma 4. Since H is not (5, 2)-colorable, the subgraph (b) cannot appear
in H . �
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The complete list of possible subgraphs in the neighborhood of a non-precolored 3-
vertex that do not contain one of these two reducible subgraphs is given in Figure 2. The
final charge and the type of the central vertex when all incident proper links are eliminated
(as in Lemma 11) are also shown in the figure. The edges of 1-links and 2-links are drawn
thin and the important edges are drawn thick.

A1 A2 A3 A4

(− 1

3
,N4) (− 1

3
,P9) (1

3
,N7) (1,P10)

Figure 2: 3-vertex neighborhoods

Let us now consider neighborhoods of 4-vertices.

Lemma 14 If A1, A2 and A3 are three subsets of {1, . . . , 5} of size 3, then there exists a
color-pair that is a subset of two of the sets A1, A2 and A3. Consequently, cut3

3(P10) ≥ P2.

Proof. We may assume that A1 = {1, 2, 3}. No two of the sets A1, A2 and A3 may be
disjoint, thus assume that |A1 ∩ A2| = |A1 ∩ A3| = 1. But then {4, 5} ⊂ A2, A3. �

B0

Figure 3: A reducible 4-vertex subgraph

Lemma 15 The subgraph B0 in Figure 3 cannot appear in H, unless the 4-vertex is
precolored.

Proof. By Lemma 14, X = cut3
3(P10) ≥ P2. The type of the important vertex of the

configuration is cut1(X ) ≥ P1, and the subgraph cannot appear in H by Lemma 12. �

The complete list of possible subgraphs in the neighborhood of a non-precolored 4-
vertex that do not contain B0 is given in Figure 4. Next, we study neighborhoods of
non-precolored 5-vertices.

Lemma 16 The subgraph C0 in Figure 5 cannot appear in H, unless the 5-vertex is
precolored.
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B1 B2 B3 B4 B5

(2

3
, ∅)

(− 2

3
,P7) (0,P5) (2

3
,P3) (4

3
,P2)

B6 B7 B8 B9 B10 B11

(2

3
,P8) (4

3
,P6) (2,P4) (2,P9) (8

3
,P7) (10

3
,P10)

Figure 4: 4-vertex neighborhoods

C0

Figure 5: A reducible 5-vertex subgraph

Proof. The type of the important vertex of the configuration is cut3
1(cut2

3(P10)) ≥ P1,
and the subgraph cannot appear in H by Lemma 12. �

Let dimp(v) be the number of important neighbors of a vertex v of H . We show that

vertices of big degree have charge at least
2dimp(v)

3
, which will provide enough charge to

distribute in the second phase of discharging.

Lemma 17 If v is a 5-vertex in H such that ch1(v) <
2dimp(v)

3
, then v belongs to the

subgraph C1 depicted in Figure 6.

Proof. If dimp(v) = 0, then v would be incident to at most two 2-links by Lemma 16,
hence ch1(v) ≥ 17

3
− 2 · 4

3
− 3 · 2

3
= 1. If dimp(v) ≥ 2, then ch1(v) ≥ 17

3
− (5 − dimp(v))4

3
=

4dimp(v)

3
− 1 ≥ 2dimp(v)

3
+ 1

3
.

Now we may assume that dimp(v) = 1. If v is incident to a 1-link, then ch1(v) ≥
17
3
− 3 · 4

3
− 2

3
= 1 > 2

3
. Therefore, v is incident to four 2-links and belongs to the

configuration C1. �

Finally, we consider vertices of degree at least 6.

Lemma 18 Every vertex v of H of degree d ≥ 6 has charge ch1(v) ≥
2dimp(v)

3
.
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C1

(1

3
,P6)

Figure 6: Another 5-vertex subgraph

Proof. The charge of v is at least

7

3
d − 6 − (d − dimp(v))

4

3
= d − 6 +

4

3
dimp(v) ≥

2dimp(v)

3
.

�

6 Further reducible configurations

In this section we focus on the reducibility of the configurations that have negative charge
after the first phase of discharging. In the second phase of discharging, we want to make
the charge of all vertices non-negative by moving charge over the important edges. It
turns out that it is always sufficient to move charge at most 2

3
over each edge, and thus

we only need to consider configurations consisting of vertices whose charge is smaller than
2
3
dimp. We may classify the important vertices by types and charge after the first phase:

A. A 4-vertex v incident to one important edge and three 2-links (B2 in Figure 4). Its
charge after the first stage is −2

3
. By Lemma 11, when we consider reducibility of

a configuration C containing v and none of the three important vertices to that v
is connected through the 2-links belongs to C, we may assume that the type of v
is P7. For sake of briefness we omit the references to Lemma 11 in the rest of the
enumeration.

B. A 3-vertex incident to one important edge and two 1-links (A1 in Figure 2). Its
charge is −1

3
, and when the 1-links are omitted, its type is N4.

C. A 4-vertex incident to one important edge, one 1-link and two 2-links (B3 in Fig-
ure 4). Or a 5-vertex incident to one important edge and four 2-links (C1 in Fig-
ure 6). Charge of such a vertex is at least 0 and when the proper links are omitted,
its type is ≥ P5.

D. A 3-vertex incident to two important edges and one 2-link (A2 in Figure 2). Its
charge is −1

3
and when the 2-link is omitted, its type is P9.

E . A 3-vertex incident to two important edges and one 1-link (A3 in Figure 2). Its
charge is 1

3
and when the 1-link is omitted, its type is N7.
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F . A 4-vertex incident to two important edges and two 2-links (B6 in Figure 4). Its
charge is 2

3
and when the 2-links are omitted, its type is P8.

G. A 3-vertex incident to three important edges (A4 in Figure 2). Its charge is 1.

H. A vertex incident to d important edges and with charge at least 2d
3
.

To distinguish the items in this classification from “types” introduced earlier, we say
that the vertex described in the item X of this classification has class X . If X and Y are
classes, let us say that a vertex v is of class (XY) if v is of class X or Y .

Let us create a graph H ′ from H by iterating the following operation as long as
possible: If there is an induced closed subgraph G with at least two important vertices
such that it is joined to the rest of the graph by d important edges and the total charge of
vertices in G is c ≥ 2d

3
, then replace the subgraph G by a single vertex v of class H with

charge c. We let all links and important edges that connected G with its complement
originate in v instead. This operation does not change the total charge of the vertices,
thus it is enough to prove that the total charge of vertices of H ′ is non-negative in order
to obtain a contradiction. Note that the construction does not necessarily determine
H ′ uniquely. However, it guarantees that any closed subgraph of H ′ with at least two
important vertices has charge at most 2

3
per outgoing edge.

The configurations whose reducibility we consider do not contain vertices of class H.
We also never pose any assumptions on whether the vertices adjacent to the configurations
we consider are distinct or not in the following proofs, in particular decontracting the
vertices of class H does not affect affect the reducibility of the configurations. Therefore,
if we find a reducible configuration in H ′, the corresponding configuration in H is reducible
as well, thus obtaining a contradiction with the minimality of H .

If the outer face OH is precolored, we contract it to a vertex of class H in this step, so
that we do not need to care about it in the rest of the proof. This is possible, since the
degree of the created vertex is

∑

v∈OH
(d(v)− 2), and each vertex v of the face has charge

at least d(v) − 2. This also implies that any cycle in H ′ of length less than 9 contains a
vertex of class H.

A string is a path or a cycle (if it matters, we use terms a path string and a cycle
string to distinguish between these two possibilities) in H ′ whose edges are all important
and whose vertices do not have class (GH). Vertices of class (ABC) may of course only
be the end vertices of a path string, while the inner vertices of a string must be of class
(DEF). A path string that contains a vertex of class (ABC) is called a leaf string. Note
that we do not impose any restrictions on where the proper links from the vertices of the
string lead to (i.e., they may connect vertices inside the string). We call a string spanned
in case there exists a proper link such that both of its important vertices belong to the
string. The charge of a string is the sum of the charges of its vertices.

We use the notation path(T1 . . . Tk) and cycle(T1 . . . Tk) for the strings whose vertices
have classes T1, . . . , Tk, in the order of their occurrence on the path or the cycle. We let X k

stand for a path of k vertices of class X . We also use the following notation for describing
the inner vertices of strings: we let (D, EF)m,n mean a string that consists of m vertices of
class D and n vertices of class (EF), in any order. We write (D, EF)≤m,n for a string that
consists of at most m vertices of class D and n vertices of class (EF), in any order, and
similarly for other possible combinations of numbers and ≥ or ≤. We sometimes use this
notation inside path(. . .) or cycle(. . .) to denote a substring in this form. For example,
path((D, EF)2,1) is one of the strings path(D2 E), path(D2 F), path(DE D), path(DF D),
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path(E D2), or path(F D2). For consistency, we also sometimes use (D, EF)0,n for strings
that consist entirely from vertices of class (EF), and (D, EF)n,0 for strings that consist
only of vertices of class D.

In the following lemmas, we describe the strings in H ′ that are not reducible. Lem-
mas 19—21 deal with the leaf strings that contain a vertex of class A, B or C. Lemma 22
considers the path strings. Finally, Lemma 23 shows that H ′ does not contain any cycle
strings with negative charge (and thus no cycle strings at all, by construction of H ′).

Lemma 19 The strings in H ′ that are not reducible and that contain a vertex of class A
are of the form path(A (D, EF)0,≤3). Moreover, these strings are not spanned.

Proof. Let s be a string in H ′ that contains a vertex of class A. Note that if s is one of the
strings from the statement of the lemma, s cannot be spanned because of the restrictions
on the lengths of cycles in H ′.

Suppose now that s is not one of the strings described in the statement. The string s
cannot contain more than three vertices of class (EF) in a row, otherwise the charge of
the substring formed by the vertices of class (EF) would be at least 4

3
and this substring

would become a vertex of class H during the construction of the graph H ′. Therefore, s
must contain a substring s′ of form path(A (D, EF)0,≤3X ), where the class X is different
from (EF) (i.e., X is one of A, B, C or D).

Since H ′ does not contain a cycle of length less than 9 without a vertex of class H, the
string s′ cannot be spanned. Therefore, we may use Lemma 11 to determine the types of
the vertices of s′. Let us show that regardless of the choice of X , the string s′ is reducible.

By Lemma 6(2) and the fact that the type P2 propagates over vertices of type P7,
the configuration path(P∗

7 P2) is reducible. Let v be the vertex of s′ with class X . After
taking the links into account, the type of each vertex of s′, except for v, is ≥ P7. For any
possible choice of X , the type of v, after eliminating the links and possibly one important
edge from v using Lemma 11, is ≥ P2. Therefore, s′ is reducible, and it cannot appear in
H ′. �

Lemma 20 The strings in H ′ that are not reducible and that contain a vertex of class B
are of the form path(B (D, EF)0,≤2) or path(B (D, EF)1,≤3). Moreover, these strings are
not spanned.

Proof. The string cannot contain a vertex of class A by Lemma 19. Let us consider
several cases regarding the string of vertices of class (DEF) adjacent to the vertex of class
B. Note that the string cannot contain more vertices of class (EF) than specified in each
of the cases, otherwise it would contain a subgraph with charge at least 2

3
per outgoing

important edge. None of the strings may be spanned, otherwise H ′ would contain a cycle
of length at most 8 not containing a vertex of class H.

path(B (D, EF)0,≤1 B): By Lemma 11, it suffices to show that configurations path(N4 N4)
and path(N4 P7 N4) are reducible. For the former one, this follows from Lemma 6(4).
For the later one, by Lemma 6(4), a list from N4 forbids at most three color-pairs,
hence we may always choose a color-pair that is not forbidden for the middle vertex.

path(B (D, EF)≤1,≤1 C): The corresponding configuration path(N4 P∗
7 P5) is reducible, as

P5 is propagated over chain of P7’s and the final configuration path(N4 P5) is re-
ducible.
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path(B (D, EF)1,≤2 B): The string is not spanned, and the corresponding configurations
path(N4 P∗

7 P9 P∗
7 N4) are reducible by Lemma 7(3), since N4 ≥ P3.

path(B (D, EF)1,≤3): This is one of the configurations described in the statement of the
lemma.

A string with prefix path(B (D, EF)1,≤3 D): Let s be this prefix. Note that s cannot
be spanned: in order to avoid a cycle of length at most 8, the link would have to be a
2-link between the end-vertices of the path. However, a vertex of class B is incident
only to 1-links. Consequently, the string path(B (D, EF)1,≤3 D) corresponds to a
configuration path(N4 P∗

7 P9 P∗
7 P2)—the type P2 of the last vertex of the path is

obtained from P9 (type of vertex of class D) by applying operation cut7, to take
into account the important vertex adjacent to it outside of the configuration. This
configuration is reducible by Lemma 7(3).

This shows that indeed the only such strings in H ′ that are not reducible are the
non-spanned strings described in the claim of this lemma. �

Lemma 21 The strings in H ′ that are not reducible and that contain a vertex of class C
are of the form path(C (D, EF)0,≤1) or path(C (D, EF)1,≤2). Moreover, these strings are
not spanned.

Proof. Let s be a string in H ′ that contains a vertex of class C. By Lemmas 19 and 20,
the string s cannot contain a vertex of class (AB). We distinguish several cases. Note that
in each of the cases the considered string cannot contain more vertices of class (EF) than
specified, otherwise s would contain a subgraph with charge at least 2

3
per outgoing impor-

tant edge and this subgraph would be eliminated during the construction of H ′. The con-
sidered strings also cannot be spanned, since the length of the cycle would be less than 9. If
s contains at least two vertices of class D, then s has a prefix path(C (D, EF)1,≤2 D). How-
ever, the corresponding configuration path(P5 P∗

7 P9 P∗
7 P2) is reducible by Lemma 7(3).

Otherwise, if s contains two vertices of class C, then s is path(C (D, EF)≤1,0 C), but the
corresponding configurations path(P5 P5) and path(P5 P9 P5) are reducible. Therefore,
the only possible strings are indeed those described in the statement of the lemma. �

Finally there is a classification of path strings that are composed from vertices of class
(DEF) only. To simplify the arguments we characterize only the strings whose charge is
negative.

Lemma 22 The path strings in H ′ that are not reducible, contain only vertices of class
(DEF) and have negative charge are non-spanned strings of one of the following forms:
path(D), path((D, EF)2,≤1), or path((D, EF)3,≤2).

Proof. A string with m vertices of class D may contain at most m − 1 vertices of class
(EF), in order for it to have negative charge. The strings described in the statement of
this lemma are non-spanned, because the length of the cycle that a spanning link would
create is at most 7.

Let us assume that that s = v1 . . . vk is a string in H ′ with negative charge that consists
only of vertices of class (DEF) and that contains at least four vertices of class D. We
want to show that s is reducible. Additionally, we may assume that s is minimal, i.e., it
does not contain a substring with more than three vertices of class D and negative charge.
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By the minimality of s, its substring s′ = v2 . . . vk either has non-negative charge, or
contains at most three vertices of class D. Since the charge of vertices of classes (EF) is
positive, this means that v1 is of class D. Similarly, the class of vk is D. Furthermore, if
s contains more than four vertices of class D, then v2 and vk−1 must also be of class D,
otherwise we can remove the first (or the last) two vertices from s.

Since the charge of a vertex of class D is −1
3
, if the charge of s is less than −1

3
, the

string s must contain exactly four vertices of class D, otherwise we can remove the first
vertex from s. In case the charge of s is exactly −1

3
, the string s contains at most six

vertices of class D—if there are at least 7 vertices of class D, let s1 be the shortest prefix of
s that contains four vertices of class D, and let s2 be the shortest suffix of s that contains
the last vertex of class D that belongs to s1. Obviously s1 and s2 both contain at least
four vertices of class D. Let c be the charge of s and ci be the charge of si for i = 1, 2.
The strings s1 and s2 share exactly one vertex of class D, hence c = c1 +c2 + 1

3
. Therefore,

at least one of c1 and c2 must be negative, contradicting the minimality of s.
The string s must be spanned, otherwise by Lemma 8, the corresponding configuration

path(P2 P∗
7 P9 P∗

7 P9 P∗
7 P2) is reducible. It follows that there are no minimal strings with

charge less than −1
3
, since such strings consist of four vertices of class D and at most two

vertices of class (EF) and such strings cannot be spanned by girth constraints. Thus we
may assume that the charge of s is −1

3
.

Let us first consider the case that s contains exactly four vertices of class D. Such a
string must contain three vertices of class E in order to be spanned, and there must be a
2-link between v1 and v7. But the resulting configuration is reducible by Lemma 9.

If s contains five vertices of class D, we consider several possibilities:

• The string s contains four vertices of class E. The path v1 . . . v8 is a substring of
s with four vertices of class D and four vertices of class E , where v1, v2 and v8 are
vertices of class D. The vertices of the configuration cannot be joined by a 1-link,
because the vertices of class D are incident only to 2-links and the vertices of class E
are too close to each other. Therefore, there must be a 2-link between two vertices
of class D. Let vi and vj (i < j) be two vertices joined by a 2-link such that j − i is
the smallest possible. The difference j−i must be at least 6, and at least one of vi+1,
. . . , vj−1 must be of class D, since there are only 4 vertices of class E . Therefore,
the configuration vi . . . vj together with the 2-link is reducible by Lemma 9.

• The string s contains two vertices of class E and one vertex of class F . The vertices
of class (EF) cannot be all consecutive, since they would form a substring with
charge 4

3
. There is a substring vi . . . vj (i < j ≤ i + 4) such that vi and vj are of

class D, and there is one more vertex of class D and a vertex of class F inside the
substring. This substring cannot be spanned and is reducible by Lemma 8.

• The string s contains two vertices of class F . We consider the substring on vertices
v1 . . . v6. This substring cannot be spanned and it contains four vertices of class D,
thus it is reducible by Lemma 8.

Finally, consider the case that s contains six vertices of class D, and at most five
vertices of class (EF). We know that classes of v1 and v2 are D. If classes of v3 and v4

are both (EF), the substring on vertices v4 . . . vk has negative charge, contradicting the
minimality of s. On the other hand, s cannot contain four consecutive vertices of class
D, thus exactly one of v3 and v4 has class D. Similarly, exactly one of vk−3 and vk−2 is of
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class D. Since s has charge −1
3
, it contains either five vertices of class E , three vertices of

class E and one of class F , or one vertex of class E and two of class F .
If s contains five vertices of class E , considering that s cannot contain four con-

secutive vertices of class E by the construction of H ′, it follows that s is equal to
s1 = path(D2 E D E3 DE D2). If s contains three vertices of class E and one of class
F , it similarly follows that s is equal to s2 = path(D2 E D E F D E D2). In case s contains
one vertex of class E and two of class F , the classes of v3 and v7 cannot be F by the
minimality of s. However, the two vertices of class F would then have to be adjacent in
s, which is not possible by the construction of H ′.

The string s1 contains a substring s′1 = path(D2 E D E3 D). If s′1 is non-spanned, then
it is reducible by Lemma 8. There may be a 2-link between two vertices of class D, but
in that case s1 together with the link is reducible by Lemma 9. The string s2 contains a
substring path(DE D E F D) that cannot be spanned, and hence is reducible by Lemma 8.

Therefore, the only non-leaf path strings with negative charge in H ′ are those listed
in the statement of this lemma. �

Let us now show that no cycle strings appear in H ′.

Lemma 23 H ′ does not contain a cycle string.

Proof. A cycle string consists of a vertices of class (DEF), and its length must be at
least 9. If its charge is negative, then it contains a substring of length 6 with negative
charge. Such a string cannot be spanned and it is reducible by Lemma 22. Cycle strings
with non-negative charge are contracted during construction of H ′. �

Let us note that strings in H ′ do not have large negative charge:

Lemma 24 Each leaf string in H ′ has charge at least −2
3
, and each non-leaf path string

has charge at least −1.

Proof. Let us inspect all possible strings. By Lemma 19, the leaf strings that contain a
vertex of class A are of form path(A (D, EF)0,≤3), and thus their charge is at least −2

3
.

By Lemma 20, the leaf strings that contain a vertex of class B contain only one such
vertex and at most one vertex of class D, hence their charge is at least −2

3
.

By Lemma 21, the leaf strings that contain a vertex of class C contain at most one
vertex of class D, hence their charge is at least −1

3
.

By Lemma 22, a non-leaf path string with negative charge contains at most three
vertices of class D, thus its charge is at least −1. �

7 Second Phase of Discharging

Now we are ready to perform the second phase of discharging in the graph H ′. Note that
all vertices whose charge after the first phase is negative are inside strings. A path string
s = v1v2 . . . vk is adjacent to a vertex v of class (GH) if v and v1 are adjacent. A string is
maximal if it is not a proper substring of another string in H ′. In this phase, the vertices
of classes (GH) send charge to the adjacent maximal strings, thus making the charge of
the vertices in the strings non-negative. We then argue that the vertices of class G with
negative charge must belong to reducible configurations. The rules for discharging are
the following:

21



(R5) A vertex of class H sends charge of 2
3

to each adjacent maximal string.

(R6) A vertex of class G adjacent to a maximal leaf string of charge c < 0 sends charge
of −c to the string.

(R7) A vertex of class G adjacent to a maximal non-leaf string of charge c < 0 sends − c
2

to the string.

Each vertex of class H sends charge at most 2
3

per edge by Rule R5, thus its final
charge is non-negative. By Lemma 24, each leaf string in H ′ has charge at least −2

3
and

each non-leaf path string has charge at least −1. Therefore, each maximal leaf or path
string with charge c < 0 receives charge at least −c from the adjacent vertices of class
(GH) and its final charge in non-negative. By Lemma 23, the cycle strings do not appear
in H ′. It remains to show that also the charge of vertices of class G is non-negative. Let
us start with some definitions and lemmas.

By the classification of the strings presented in the previous section, the maximal
path strings with negative charge in H ′ are non-spanned, and we can divide them into
the following sets according to the charge they receive from the adjacent vertices of G:

• C 2
3

is the set of strings to that vertices of class G send 2
3
, i.e., path(A) and path(DB).

• C 1
2

is the set containing a single string path(D3) to that vertices of class G send 1
2
.

• C 1
3

is the set of strings to that vertices of class G send 1
3
, consisting of

path(E A), path(B), path(E DB), path(DE B), path(DC), path(D2), and all path
strings that consist of 3 vertices of class D and one of class E .

• C 1
6

is the set of strings to that vertices of class G send 1
6
, consisting of all path

strings with nd vertices of class D, ne vertices of class E and nf vertices of class F ,
where the triple (nd, ne, nf ) is one of (1, 0, 0), (2, 1, 0), (3, 0, 1) or (3, 2, 0).

Let Call = C 2
3
∪ C 1

2
∪ C 1

3
∪ C 1

6
. We are going to consider configurations formed by

strings in Call adjacent to a vertex of G. The main problem is dealing with the spanned
configurations. Since some of these strings are quite long, it is impossible to directly
use the girth restrictions to show that the configurations cannot be spanned. To solve
this problem, we restrict our attention to prefixes of these strings that are short enough
so that the girth argument is applicable. The following lemma claims that that we can
replace each string in Call by a single vertex of type P2 when considering the reducibility
of a subgraph of H ′:

Lemma 25 Let G be a closed subgraph of H ′ and let s be a path string v1v2 . . . vk in G
belonging to Call such that the important vertex adjacent to v1 distinct from v2 also belongs
to G, but (in case s is a non-leaf string) the important vertex adjacent to vk distinct from
vk−1 does not belong to G. Let K ′ be a configuration obtained from G by removing the
vertices v2, . . . , vk and the 2-vertices of the proper links incident to them and determining
the type of vertices of K ′ using Lemma 11. We create a configuration K from K ′ by setting
the type of v1 to P2. If K is reducible, then G is reducible as well.
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Proof. We proceed similarly as in proof of Lemma 12. Depending on s, we determine
a suitable number m (2 ≤ m ≤ k + 1) as described below. Then, we fix a coloring c′

of H except for V (K), vertices v2, v3, . . . , vm−1, and the 2-vertices of the proper links
incident to them. We extend the coloring c′ to vertices v2,. . . , vm−1 in such a way that
there are at least two free colors at v1, thus obtaining a partial coloring c. Since K is
reducible, its instance Q obtained from the precoloring c is colorable, and thus c can be
further extended to whole graph H . This will show the reducibility of G. It remains to
show how to determine m and how to extend c′ to c. We discuss several cases that cover
all strings in Call.

If the class of v1 is D, we set m = 2. By Lemma 11, the type of v1 in K ′ is at least
cut7(P9) ≥ P2, and thus if K is reducible, then K ′ is reducible as well and the statement
follows from Lemma 12. Similarly, if k = 1, we note that the type of v1 in K ′ is at least
P2, and thus the reducibility of K implies reducibility of K ′.

If the class of v1 is E and the class of v2 is (AD), then we set m = 3. There are at
least two free color-pairs a1 and a2 at v2, with respect to partial coloring c′. The type of
v1 is N7. Suppose that int(p) = Q(v1). At least one of a1 or a2 (say a1) is distinct from
p. Thus, a1 forbids at most five color-pairs in Q(v1) and we may color v2 with a1.

If the class of v1 and v2 is E and the class of v3 is D, then we set m = 4. Similarly
as in the previous case, there are at least two free colors at v3 and we may choose a color
for v3 such that it keeps two free colors at v2. Repeating the same argument, we color v2

in such a way that there are at least two free color-pairs at v1.
The remaining case is that the class of v1 is F and the class of v2 is D, then we set

m = 3. There are at least two free colors a1 and a2 at v2. Let L be a subset of the
list of v1 that contains exactly 8 color-pairs. It cannot be the case that both int(a1) and
int(a2) are subsets of L, since |int(a1) ∪ int(a2)| ≥ 9. We may assume that int(a1) 6⊆ L,
hence |L \ int(a1)| ≥ 2. We color v2 with the color-pair a1, which leaves at least two free
color-pairs at v1. �

A string in C 1
3
∪C 1

2
contains one of the following substrings adjacent to v: path(E D2),

path(E DB), path(D E B), path(DE D), path(D2), path(DC), path(E A), or path(B). Let
C# be the set consisting of these strings. We show that each of these strings forbids only
a few color-pairs. Note that unlike Lemma 25, we must assume that there are no links
from such string to the rest of the configuration.

Lemma 26 Suppose that s = v1 . . . vk ∈ C#, and let us consider a closed configuration
that includes s and a vertex v of class G adjacent to s, but contains neither any of the
proper links incident to s, nor (in case s is not a leaf string) the important vertex adjacent
to vk distinct from vk−1. The string s forbids at most two color-pairs at v, with the
exception of path(B) that forbids at most three color-pairs.

Proof. Let us consider the elements of C# separately.
If s = path(E D2) or s = path(E DB), then the type of v1 is N7, the type of v2

is P9 and the type of v3 is ≥ P2, by Lemma 12. By Lemma 7(3), the configuration
path(P3 P7 P9 P2) is reducible, thus the string s forbids at most two color-pairs at v.

Similarly, if s = path(DE D) or s = path(DE B), the type of v1 is P9, the type of v2 is
P7 and the type of v3 is ≥ P2. Again by Lemma 7(3), the configuration path(P3 P9 P7 P2)
is reducible and s forbids at most two color-pairs at v.

If s = path(D2) or s = path(DC), then the type of v1 is P9 and the type of v2 is ≥ P2.
Since the configuration path(P3 P9,P2) is reducible by Lemma 7(3), s forbids at most two
color-pairs at v.
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If s = path(E A), then the type of v1 is N7 and the type of v2 is P7. The vertex v2

forbids at most one color-pair at v1, and v1 then forbids at most one color-pair at v, by
Lemma 6(2).

Finally, if s = path(B), then the type of v1 is N4, and it forbids at most three color-
pairs at v by Lemma 6(4). �

The strings in C 2
3
∪ C 1

2
forbid even fewer color-pairs.

Lemma 27 Suppose that s = v1 . . . vk ∈ C 2
3
∪ C 1

2
, and let K be a configuration that

includes s and a vertex v of class G adjacent to s, but contains neither any of the proper
links incident to s, nor (in case s is not a leaf string) the important vertex adjacent to vk

distinct from vk−1. The string s forbids at most one color-pair at v.

Proof. Let us consider each possible string separately.
If s = path(A), then the type of v1 is P7. By Lemma 6(2), the configuration

path(P2 P7) is reducible, thus s forbids at most one color-pair at v.
If s = path(DB), then the type of v1 is P9 and the type of v2 is N4. By Lemma 7(3),

the configuration path(P2 P9 N4) is reducible, thus showing that s forbids at most one
color-pair at v.

Finally, if s = path(D3), then the type of v1 and v2 is P9 and the type of v3 is P2.
By Lemma 8, the configuration path(P2 P9 P9 P2) is reducible, thus also in this case, s
forbids at most one color-pair at v.

We are now ready to show that the final charge of vertices of class G is non-negative.

Theorem 28 The charge of each vertex of classes (G) after the second phase of discharg-
ing is non-negative.

Proof. Let v be a vertex of class G. The charge of v before the second phase is 1. We
prove that if the charge of the vertex v would become negative after applying the rules
(R5)–(R7), then the configuration in the neighborhood of v is reducible. If v is adjacent
to at most one maximal string with negative charge, then v sends at most 1 unit of charge
by Lemma 24, hence the final charge of v is nonnegative. The vertex v cannot be joined
to a single string with negative charge through more than one edge, otherwise the string
together with v forms a cycle of length less than 9. Let s1, s2 and s3 be the strings
adjacent to v. There are the following cases in that the charge of v after the second phase
is negative (up to symmetry):

• s1 belongs to C 2
3

and and s2 belong to C 2
3
∪ C 1

2
. The configuration formed by s1, v

and s2 cannot be spanned by the girth constraints. By Lemma 27, each of s1 and
s2 forbids at most one color-pair at v. The precoloring of s3 forbids at most seven
color-pairs at v. Since there is at least one free color-pair at v, the configuration is
reducible.

• s1 ∈ C 2
3
, s2 ∈ C 1

3
and s3 ∈ C 1

3
∪C 1

6
. Consider the configuration formed by v, s1, the

prefix substring of s2 contained in C#, and a single vertex of type P2 that replaces
s3 using Lemma 25. This configuration cannot be spanned. By Lemmas 27, 26 and
6(2), the strings forbid at most 1, 3 and 5 color-pairs at v, respectively. Therefore,
there is a free color-pair at v and the configuration is reducible.
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• s1, s2 ∈ C 1
2

and s3 ∈ C 1
6
∪ C 1

3
∪ C 1

2
. We consider the configuration formed by v,

the substrings path(D2) ∈ C# of s1 and s2, and a vertex of type P2 that replaces
the string s3 using Lemma 25. This configuration cannot be spanned by the girth
constraints. By Lemmas 26 and 6(2), the strings forbid at most 2, 2 and 5 color-pairs
at v, respectively, hence the configuration is reducible.

• s1 ∈ C 1
2

and s2, s3 ∈ C 1
3
. We consider the configuration formed by v, s1 = path(D3),

the prefix substring s′2 of s2 that belongs to C# and a vertex of type P2 that replaces
s3. Consider first the case that the configuration is not spanned. By Lemmas 27,
26 and 6(2), the numbers of color-pairs forbidden by the strings at v are at most 1,
3 and 5, respectively, hence the configuration is reducible.

Let us now consider the case that the configuration is spanned. By the girth restric-
tions, this can only happen if there is a 2-link from the last vertex of s1 to s′2. The
girth restrictions also exclude the case s′2 = path(B), and thus s′2 forbids at most
two color-pairs, by Lemma 26. We shorten s1 to its substring path(D2) ∈ C# in the
configuration. The new configuration cannot be spanned, and by Lemmas 26 and
6(2), the numbers of forbidden color-pairs at v are at most 2, 2 and 5, respectively.
Therefore, this smaller configuration is reducible.

This shows that charge of v is non-negative after the second phase of discharging. �

This is the last piece needed in order to finish the proof of our main result.

Proof of Theorem 3. We proceed by contradiction. We assume that H is a minimal
counterexample to this theorem. We assign charge to the vertices and faces of H as
described in Section 4 such that the total amount of charge is negative. We run the first
phase of discharging over H as described in Section 5, arguing that the charge of all faces
and 2-vertices is non-negative after this phase. We construct the graph H ′ described in
Section 6, such that the sum of the charges of vertices of H ′ is negative. Finally, we run
the second phase of discharging as described in Section 7. The final charge of each vertex
of class (GH) and of each string is non-negative, which is a contradiction. �

8 Conclusion

An immediate consequence of Theorem 1 is:

Corollary 29 Every planar graph of girth at least 8 is (5, 2)-colorable.

From R. Naseraser, we learned that no planar graph of odd-girth 7 is known that does
not map to Petersen graph. This motivates the following question:

Problem 1 Is there a planar graph of odd-girth 7 with fractional chromatic number
greater than 5

2
? Or at least one that does not map to Petersen graph?
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