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Abstract

A plane graph is̀ -facially k-colourable if its vertices can be coloured withk colours
such that any two distinct vertices on a facial segment of length at most` are coloured
differently. We prove that every plane graph is3-facially 11-colourable. As a consequence,
we derive that every2-connected plane graph with maximum face-size at most7 is cyclically
11-colourable. These two bounds are for one off from those that are proposed by the(3`+1)-
Conjecture and the Cyclic Conjecture.

1 Introduction

The concept of facial colourings, introduced in [11], extends the well-known concept of cyclic
colourings. Afacial segmentof a plane graphG is a sequence of vertices in the order obtained
when traversing a part of the boundary of a face. Thelengthof a facial segment is its number of
edges. Two verticesu andv of G are`-facially adjacent, if there exists a facial segment of length
at most̀ between them. Aǹ-facial colouringof G is a function which assigns a colour to each
vertex ofG such that any two distinct̀-facially adjacent vertices are assigned distinct colours.
A graph admitting aǹ-facial colouring withk colours is called̀ -facially k-colourable.

The following conjecture, called(3`+1)-Conjecture, is proposed in [11]:

Conjecture 1 (Král’, Madaras and Škrekovski). Every plane graph is̀-facially colourable
with 3`+1 colours.

Observe that the bound offered by Conjecture 1 is tight: as shown by Figure 1, for every
`≥ 1, there exists a plane graph which is not`-facially 3`-colourable.

Conjecture 1 can be considered as a counterpart for`-facial colouring of the following famous
conjecture by Ore and Plummer [12] concerning the cyclic colouring. A plane graphG is said
to becyclically k-colourable, if it admits a vertex colouring withk colours such that any pair of
vertices incident to a same face are assigned distinct colours.
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Figure 1: The plane graphG` = (V,E): each thread represents a path of length`. The graphG`

is not `-facially 3`-colourable: every two vertices are`-facially adjacent, therefore anỳ-facial
colouring must use|V|= 3`+1 colours.

Conjecture 2 (Ore and Plummer). Every plane graph is cyclically
⌊

3∆∗
2

⌋
-colourable, where∆∗

denotes the size of a biggest face ofG.

Note that Conjecture 1 implies Conjecture 2 for odd values of∆∗. The best known result

towards Conjecture 2 has been obtained by Sanders and Zhao [15], who proved the bound
⌈

5∆∗
3

⌉
.

Denote by fc(x) the minimum number of colours needed to cyclically colour every plane
graph of maximum face sizex. The value offc(x) is known forx∈ {3,4}: fc(3) = 4 (the problem
of finding fc(3) being equivalent to the Four Colour Theorem proved in [1]) andfc(4) = 6
(see [3, 5]). It is also known thatfc(5) ∈ {7,8} and fc(6)≤ 10 [6], and thatfc(7)≤ 12 [4].

Conjecture 1 is trivially true for̀ = 0, and is equivalent to the Four Colour Theorem for
` = 1. It is open for all other values of̀. As noted in [11], if Conjecture 1 were true for` = 2, it
would have several interesting corollaries. Besides giving the exact value offc(5) (which would
then be7), it would allow to decrease from16 to 14 (by applying a method from [11]) the upper
bound on the number of colours needed to1-diagonally colour every plane quadrangulation (for
more details on this problem, consult [9, 13, 14, 11]). It would also imply Wegner’s conjecture
on 2-distance colourings (i.e. colourings of squares of graphs) restricted to plane cubic graphs
since colourings of the square of a plane cubic graph are precisely its2-facial colourings (refer
to [10, Problem 2.18] for more details on Wegner’s conjecture).

Let f f (`) be the minimum number of colours needed to`-facially colour every plane graph.
Clearly, fc(2`+1)≤ f f (`). So far, no value of̀ is known for which this inequality is strict. The
following problem is offered in [11].

Problem 1. Is it true that, for every integer̀≥ 1, fc(2`+1) = fl (`)?

Another conjecture that should be maybe mentioned is the so-called3`-Conjecture proposed
in [7], stating that every plane triangle-free graph is`-facially 3`-colourable. Similarly as the
(3`+1)-Conjecture, if this conjecture were true, then its bound would be tight and it would have
several interesting corollaries (see [7] for more details).

It is proved in [11] that every plane graph has an`-facial colouring using at most
⌊18

5 `
⌋
+2

colours (and this bound is decreased by1 for ` ∈ {2,4}). So, in particular, every plane graph
has a3-facial 12-colouring. In this paper, we improve this last result by proving the following
theorem.
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Theorem 1. Every plane graph is3-facially 11-colourable.

To prove this result, we shall suppose that it is false. In Section 2, we will exhibit some
properties of a minimal graph (regarding the number of vertices) which contradicts Theorem 1.
Relying on these properties, we will use the Discharging Method in Section 3 to obtain a contra-
diction.

2 Properties of(3,11)-minimal graphs

Let us start this section by introducing some definitions. A vertex of degreed (respectively at
leastd, respectively at mostd) is said to be ad-vertex(respectively a(≥ d)-vertex, respectively
a (≤ d)-vertex). The notion of ad-face(respectively a(≤ d)-face, respectively a(≥ d)-face) is
defined analogously regarding the size of a face. An`-path is a path of length̀.

Two faces areadjacent, or neighbouring, if they share a common edge. A5-face isbad if it
is incident to at least four3-vertices. It is said to bevery-badif it is incident to five3-vertices.

If u andv are3-facially adjacent, thenu is called a3-facial neighbour ofv. The set of all
3-facial neighbours ofv is denoted byN3(v). The3-facial degreeof v, denoted bydeg3(v), is the
cardinality of the setN3(v). A vertex isdangerousif it has degree3 and it is incident to a face of
size three or four. A3-vertex issafeif it is not dangerous, i.e. it is not incident to a(≤ 4)-face.

Let G = (V,E) be a plane graph, andU ⊆V. Denote byG3[U] the graph with vertex setU
such thatxy is an edge inG3[U] if and only if x andy are3-facially adjacent vertices inG. If
c is a partial colouring ofG andu an uncoloured vertex ofG, we denote byLc(u) (or justL(u))
the set{x ∈ {1,2, . . . ,11} : for all v ∈ N3(u),c(v) 6= x}. The graphG3[U] is L-colourableif
there exists a proper vertex colouring of the vertices ofG3[U] such that for everyu∈ U holds
c(u) ∈ L(u).

The next two results are used by Král’, Madaras anďSkrekovski [11]:

Lemma 1. Let v be a vertex whose incident faces in a plane graphG are f1, f2, . . . , fd. Then

deg3(v)≤
(

d

∑
i=1

min(| fi |,7)

)
−2d,

where| fi | denotes the size of the facefi .

Suppose that Theorem 1 is false: a(3,11)-minimal graphG is a plane graph which is not
3-facially 11-colourable, with|V(G)|+ |E(G)| as small as possible.

Lemma 2. LetG be a(3,11)-minimal graph. Then,

(i) G is 2-connected;

(ii) G has no separating cycle of length at most7;

(iii) G contains no adjacentf1-face andf2-face with f1 + f2≤ 9;
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(iv) G has no vertex whose3-facial degree is less than11. In particular, the minimum degree
of G is at least three; and

(v) G contains no edgeuvseparating two(≥ 4)-faces withdeg3(u)≤ 11anddeg3(v)≤ 12.

In the remaining of this section, we give additional local structural properties of(3,11)-
minimal graphs.

Lemma 3. Let G be a(3,11)-minimal graph. Suppose thatv andw are two adjacent3-vertices
of G, both incident to a same5-face and a same6-face. Then the size of the third face incident
to w is at least7.

Proof. By contradiction, suppose that the size of the last face incident tow is at most6. Then,
according to Lemma 1, we infer thatdeg3(v) ≤ 12 and deg3(w) ≤ 11, but this contradicts
Lemma 2(v).

A reducible configurationis a (plane) graph that cannot be an induced subgraph of a(3,11)-
minimal graph. The usual method to prove that a configuration is reducible is the following: first,
we suppose that a(3,11)-minimal graphG contains a prescribed induced subgraphH. Then we
contract some subgraphsH1,H2, . . . ,Hk of H. Mostly, we havek ≤ 2. This yields a proper
minor G′ of G, which by the minimality ofG admits a3-facial 11-colouringc′. The goal is to
derive fromc′ a 3-facial 11-colouringc of G, which would give a contradiction. To do so, each
non-contracted vertexv of G keeps its colourc′(v). Let hi be the vertex ofG′ created by the
contraction of the vertices ofHi : some vertices ofHi are assigned the colourc′(hi) (in doing so,
we must take care that these vertices are not3-facially adjacent inG). Last, we show that the
remaining uncoloured vertices can also be coloured.

In other words, we show that the graphG3[U] is L-colourable, where for eachu∈U, L(u) is
the list of the colours which are assigned to no vertex inN3(u)\U (defined in Section 1) andU
is the set of uncoloured vertices. In most of the cases, the vertices ofU will be greedily coloured.

In all figures of the paper, the following conventions are used: a triangle represents a3-
vertex, a square represents a4-vertex and a circle may be any kind of vertex whose degree is at
least the maximum between three and the one it has in the figure. The edges of each subgraph
Hi are drawn in bold, and the circled vertices are the vertices ofU = {u1,u2, . . .}. A dashed
edge between two vertices indicates a path of length at least one between those two vertices.
An (in)equality written in a bounded region denotes a face whose size achieves the (in)equality.
Last, vertices which are assigned the colourc′(hi) are denoted byv, w, t if a unique subgraph is
contracted or byx1,x2 for i = 1 andy1,y2 for i = 2 if two subgraphs are contracted.

Lemma 4. Configurations in Figures 2, 3 and 4 are reducible.

Proof. Let H be an induced subgraph ofG. We shall suppose thatH is isomorphic to one of the
configurations stated and derive a way to construct a3-facial 11-colouring ofG, a contradiction.
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Figure 2: Reducible configurations (L1)–(L9).
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L1. Suppose thatH is isomorphic to the configuration (L1) of Figure 2. Denote byH1 the
subgraph induced by the bold edges. Contract the vertices ofH1, thereby creating a new vertex
h1. By minimality of G, let c′ be a3-facial 11-colouring of the obtained graph. Assign to
each vertexx not in H1 the colourc′(x), and to each ofv,w, t the colourc′(h1). Observe that
no two vertices amongv,w, t are3-facially adjacent inG, otherwise there would be a(≤ 7)-
separating cycle inG, thereby contradicting Lemma 2(ii). According to Lemma 1,deg3(u1) ≤
15, deg3(ui) ≤ 14 if i ∈ {2,3} anddeg3(ui) ≤ 11 if i ∈ {4,5}. Note that any two vertices of
U = {u1,u2, . . . ,u5} are3-facially adjacent, that isG3[U]' K5. Hence, the number of coloured
3-facial neighbours ofu1 is at most11, i.e. |N3(u1)\{u2,u3,u4,u5}| ≥ 11. Moreover, at least two
of them are assigned the same colour, namelyv andw. Therefore,|L(u1)| ≥ 1. For i ∈ {2,3},
the vertexui has at most10 coloured3-facial neighbours. Furthermore, at least two3-facial
neighbours ofu2 are identically coloured, namelyw andt. Thus,|L(u2)| ≥ 2. Now, observe that
at least three3-facial neighbours ofu3 are coloured the same, namelyv,w andt. Hence,|L(u3)| ≥
3. For i ∈ {4,5}, the vertexui has at most7 coloured3-facial neighbours. Thus,|L(u4)| ≥ 4, and
because at least two3-facial neighbours ofu5 are identically coloured (w andt), |L(u5)| ≥ 5. So,
the graphG3[U] is greedilyL-colourable, according to the orderingu1,u2,u3,u4,u5. This allows
us to extendc to a3-facial 11-colouring ofG.

L2. Suppose thatH is isomorphic to the configuration (L2) of Figure 2. Letc′ be a3-facial
11-colouring of the minor ofG obtained by contracting the bold edges into a single vertexh1. Let
c(x) = c′(x) for every vertexx 6= h1. Definec(v) = c(w) = c(t) = c′(h1). The obtained colouring
is still 3-facial since no two vertices amongv,w, t are3-facially adjacent inG by Lemma 2(ii).
Note thatG3[U]' K5. In particular, each vertexui has four uncoloured3-facial neighbours. By
Lemma 1,deg3(u1)≤ 15,deg3(ui) ≤ 14 if i ∈ {2,3} anddeg3(ui)≤ 11 if i ∈ {4,5}. Moreover,
each ofu1 andu2 has at least two3-facial neighbours coloured the same; foru1, these vertices
arew, t and foru2 they arew,v. So, there exists at least one colour which is assigned to no vertex
of N3(u1) and at least two colours assigned to no vertex ofN3(u2). Also, u3 has at least three
3-facial neighbours coloured the same, namelyw, v andt, hence at least three colours are as-
signed to no vertex ofN3(u3). Therefore,|L(u1)| ≥ 1, |L(u2)| ≥ 2 and|L(u3)| ≥ 3. Furthermore,
|L(u4)| ≥ 4 and |L(u5)| ≥ 5 becausew and t are both3-facial neighbours ofu5. So G3[U] is
L-colourable, and henceG is 3-facially 11-colourable.

L3. Suppose thatH is isomorphic to the configuration (L3) of Figure 2. Contract the bold edges
into a new vertexh1, and letc′ be a3-facial 11-colouring of the obtained graph. This colouring
can be extended to a3-facial 11-colouring c of G as follows: first, letc(v) = c(w) = c(t) =
c′(h1). Note that no two of these vertices can be3-facially adjacent inG without contradicting
Lemma 2(ii). By Lemma 1,deg3(u1) ≤ 14, deg3(u2) ≤ 13 and for i ∈ {3,4}, deg3(ui) ≤ 12.
Observe thatG3[U] ' K4. Moreover, each ofu1,u2,u3 has a set of two3-facial neighbours
coloured byc′(h1). These sets are{w, t}, {w,v} and{v, t} for u1,u2 andu3, respectively. Thus,
|L(u1)| ≥ 1, |L(u2)| ≥ 2 and|L(u3)| ≥ 3. Also |L(u4)| ≥ 4 becauseu4 has at least three identically
coloured3-facial neighbours, namelyv,w andt. Hence,G3[U] is L-colourable, soG is 3-facially
11-colourable.
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L4. Let c′ be a3-facial 11-colouring of the graph obtained by contracting the bold edges into
a new vertexh1. Definec(x) = c′(x) if x /∈ {v,w,u1,u2} andc(v) = c(w) = c′(h1). Observe that
v andw cannot be3-facially adjacent inG sinceG has no small separating cycle according to
Lemma 2(ii). By Lemma 1,deg3(u1) ≤ 12 anddeg3(u2) ≤ 11. Furthermore, bothu1 andu2

have two3-facial neighbours identically coloured, namelyv andw. Moreover,u1 andu2 are
3-facially adjacent, hence|L(u1)| ≥ 1 and|L(u2)| ≥ 2. Therefore,c can be extended to a3-facial
11-colouring ofG.

L5. First, observe that sinceG is a plane graph, ifv∈N3(t) thenv′ /∈N3(t ′). So, by symmetry,
we may assume thatv andt are not3-facially adjacent inG. Now, contract the bold edges into
a new vertexh1. Again, denote byc′ a 3-facial 11-colouring of the obtained graph, and definec
to be equal toc′ on all vertices ofV(G)\{v,w, t,u1,u2,u3,u4}. Let c(v) = c(w) = c(t) = c′(h1).
Note that the partial colouringc is still 3-facial due to the above assumption. The graphG3[U] is
isomorphic toK4, and according to Lemma 1,deg3(ui)≤ 12for all i ∈ {1,2,3,4}. Moreover, for
i ∈ {2,3}, the vertexui has at least two3-facial neigbhours that are coloured the same, namelyv
andw. Last, the vertexu4 has at least three such3-facial neighbours, namelyv, w, t. Therefore,
|L(u1)| ≥ 2, |L(ui)| ≥ 3 for i ∈ {2,3} and|L(u4)| ≥ 4. So,G3[U] is L-colourable, and henceG
is 3-facially 11-colourable.

L6. The same remark as in the previous configuration allows us to assume thatt /∈ N3(v).
Again, the graph obtained by contracting the bold edges into a new vertexh1 admits a3-facial
11-colouringc′. As before, define a3-facial 11-colouringc of the graph induced byV(G) \U.
Then, for everyi ∈ {1,2,3,4},deg3(ui)≤ 12andG3[U]'K4. Thus,|L(u1)| ≥ 2 and|L(u2)| ≥ 2.
Remark thatu3 has at least two identically coloured3-facial neighbours, namelyv andw, so
|L(u3)| ≥ 3. Last, the vertexu4 has at least three such neighbours, hence|L(u4)| ≥ 4. Therefore,
the graphG3[U] is L-colourable, and so the graphG admits a3-facial 11-colouring.

L7. Let H1 be the pathx1u3u5x2, H2 the pathy1u2u4u1y2 andc′ a3-facial colouring of the graph
obtained fromG by contracting each pathHi into a vertexhi . Notice thatc′(h1) 6= c′(h2). For
everyv /∈V(H1)∪V(H2), letc(v) = c′(v). Observe thatx1 andx2 cannot be3-facially adjacent in
G, otherwiseG would have a separating(≤ 7)-cycle, contradicting Lemma 2(iii ). Note that the
same holds fory1 andy2; therefore definingc(x1) = c(x2) = c′(h1) andc(y1) = c(y2) = c′(h2)
yields a partial3-facial11-colouring ofG, sincec′(h1) 6= c′(h2). It remains to colour the vertices
of U = {u1,u2, . . . ,u5}. Note thatG3[U] ' K5. According to Lemma 2(ii), deg3(u1) ≤ 15 and
deg3(ui) ≤ 12 if i ≥ 2. The number of coloured3-facial neighbours ofu1, i.e. its number of3-
facial neighbours inV(G)\{u2,u3,u4,u5}, is at most11 because eachui with i ≥ 2 is a3-facial
neighbour ofu1. Furthermore,u1 has two3-facial neighbours coloured with the same colour,
namelyx1 andx2. Hence,|L(u1)| ≥ 1. The vertexu2 has four uncoloured3-facial neighbours, so
|L(u2)| ≥ 3. For i ∈ {3,4}, the vertexui has at least two3-facial neighbours coloured the same,
namelyx1,x2 for u3, andy1,y2 for u4, so |L(ui)| ≥ 4. Finally, observe thatu5 has two pairs of
identically coloured3-facial neighbours; the first pair beingx1,x2 and the secondy1,y2. Thus,
|L(u5)| ≥ 5, hence the graphG3[U] is L-colourable, which yields a contradiction.
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Figure 3: Reducible configurations (L10)–(L16).
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L8. We contract the bold edges into a new vertexh1, take a3-facial 11-colouring of the graph
obtained, and define a3-facial11-colouringc of V(G)\U as usual. By Lemma 1,deg3(ui)≤ 15
if i ∈ {1,2}, deg3(ui)≤ 12if i ∈ {3,4,5} anddeg3(u6)≤ 11. Moreover,G3[U]'K6. Asv,w and
t are coloured the same, and{v,w} ⊂N3(ui) for i ∈ {2,5}, {w, t} ⊂N3(u4) and{v, t} ⊂N3(u5),
we obtain|L(ui)| ≥ i for every i ∈ {1,2,3,4,5,6}. Thus, the graphG3[U] is L-colourable, and
henceG admits a3-facial 11-colouring.

L9. We contract the bold edges into a new vertex, take a3-facial 11-colouring of the graph
obtained, and define a3-facial11-colouring ofV(G)\U as usual. Then,G3[U]'K2. Moreover,
deg3(u1) ≤ 12 anddeg3(u2) ≤ 11. Furthermore,{v,w} ⊂ N3(ui) for i ∈ {1,2}. Thus, we infer
|L(ui)| ≥ i for i ∈ {1,2}. Therefore,G3[U] is L-colourable.

L10. We contract the bold edges into a new vertex, take a3-facial 11-colouring of the graph
obtained, and define a3-facial11-colouring ofV(G)\U as usual. Then,G3[U]'K4. Moreover,
deg3(u1) ≤ 13, deg3(u2) ≤ 12 anddeg3(ui) ≤ 11 for i ∈ {3,4}. Furthermore,{v,w} ⊂ N3(ui)
for i ∈ {1,4}. Thus, we infer|L(ui)| ≥ 2 for i ∈ {1,2}, and|L(ui)| ≥ i for i ∈ {3,4}. Therefore,
G3[U] is L-colourable.

L11. We contract the bold edges into a new vertexh1, take a3-facial11-colouring of the graph
obtained, and define a3-facial11-colouringc of V(G)\U as usual. By Lemma 1,deg3(u1)≤ 15
anddeg3(ui)≤ 11 if i ∈ {2,3,4,5}. Moreover,G3[U]' K5. As v andw are coloured the same,
and{v,w}⊂N3(ui) for i ∈{1,4,5}, we obtain|L(u1)| ≥ 1, |L(ui)| ≥ 4 if i ∈{2,3} and|L(ui)| ≥ 5
if i ∈ {4,5}. Thus, the graphG3[U] is L-colourable, and henceG admits a3-facial11-colouring.

L12. Let c′ be a3-facial 11-colouring of the graphG′ obtained by contracting the bold edges
into a new vertexh1. Definec(x) = c′(x) for every vertexx ∈ V(G)∩V(G′), and letc(v) =
c(w) = c′(h1). By Lemma 1,deg3(ui) ≤ 15 for i ∈ {1,2} anddeg3(ui) ≤ 11 for i ∈ {3,4,5}.
Moreover,G3[U] ' K6. Hence,|L(u1)| ≥ 1 and |L(ui)| ≥ i for i ∈ {3,4,5}. As v andw are
coloured the same, and{v,w} ⊂N3(ui) for i ∈ {2,6}, we infer that|L(u2)| ≥ 2 and|L(u6)| ≥ 6.
Thus, the graphG is 3-facially 11-colourable.

L13. Let us define the partial3-facial 11-colouringc as always, regarding the bold edges and
the verticesv andw. From Lemma 1 we getdeg3(u1) ≤ 15, deg3(ui) ≤ 12 for i ∈ {2,3,4} and
deg3(u5) ≤ 11. Moreover, sinceG3[U] ' K5 and{v,w} ⊂ N3(ui) for i ∈ {1,4,5}, we obtain
|L(u1)| ≥ 1, |L(ui)| ≥ 3 for i ∈ {2,3}, |L(u4)| ≥ 4 and |L(u5)| ≥ 5. Therefore,G3[U] is L-
colourable.

L14. Define the partial3-facial 11-colouringc as usual, regarding the bold edges and the ver-
ticesv andw. By Lemma 1,deg3(u1)≤ 15anddeg3(ui)≤ 11for i ∈ {2,3,4,5}. Moreover, since
G3[U]'K5 and{v,w} ⊂N3(ui) for i ∈ {1,5}, we obtain|L(u1)| ≥ 1, |L(ui)| ≥ 4 for i ∈ {2,3,4}
and|L(u5)| ≥ 5. Therefore,G3[U] is L-colourable.

9



L15. Let us define the partial3-facial 11-colouringc as always, regarding the bold edges and
the verticesv andw. Again,G3[U]' K5. From Lemma 1 we getdeg3(u1)≤ 15 anddeg3(ui)≤
11 if i ∈ {2,3,4,5}. Moreover, since{v,w} ⊂ N3(ui) for i ∈ {1,5}, we obtain|L(u1)| ≥ 1,
|L(ui)| ≥ 4 for i ∈ {2,3,4} and|L(u5)| ≥ 5. Therefore,G3[U] is L-colourable.

L16. Define the partial3-facial 11-colouring c as always, regarding the bold edges and the
verticesv,w andt. Then,G3[U] ' K5 anddeg3(ui) ≤ 15 for i ∈ {1,2}, deg3(ui) ≤ 12 for i ∈
{3,4} anddeg3(u5)≤ 11. Moreover, notice that{v, t} ⊂N3(ui) for i ∈ {1,4}, {v,w, t} ⊂N3(u2)
and{v,w} ⊂ N3(u5). Thus, we obtain|L(u1)| ≥ 1, |L(u2)| ≥ 2, |L(u3)| ≥ 3, |L(u4)| ≥ 4 and
|L(u5)| ≥ 5. Therefore,G3[U] is L-colourable.

L17. Define the partial3-facial 11-colouring c as always, regarding the bold edges and the
verticesv,w and t. Then, G3[U] ' K5 and deg3(ui) ≤ 15 for i ∈ {1,2}, deg3(u3) ≤ 12 and
deg3(ui) ≤ 11 for i ∈ {4,5}. Moreover, notice that{v, t} ⊂ N3(ui) for i ∈ {1,5}, {v,w, t} ⊂
N3(u2) and{v,w} ⊂N3(u3). Thus, we obtain|L(u1)| ≥ 1, |L(u2)| ≥ 2, |L(ui)| ≥ 4 for i ∈ {3,4}
and|L(u5)| ≥ 5. Therefore,G3[U] is L-colourable.

L18. Let us define the partial3-facial 11-colouringc as always, regarding the bold edges and
the verticesv andw. Then,G3[U]' K3, deg3(u1)≤ 13 anddeg3(ui)≤ 11 for i ∈ {2,3}. More-
over,{v,w} ⊂N3(ui) for i ∈ {1,2,3}. Thus, we obtain|L(u1)| ≥ 1 and|L(ui)| ≥ 3 for i ∈ {2,3}.
Therefore,G3[U] is L-colourable.

L19. Again,G3[U]' K5 anddeg3(ui)≤ 15 for i ∈ {1,2} while deg3(ui)≤ 11 for i ∈ {3,4,5}.
Furthermore,{v,w} ⊂ N3(ui) for i ∈ {1,3,4}, {v, t} ⊂ N3(u5) and{v,w, t} ⊂ N3(u2). Thus,
we deduce|L(u1)| ≥ 1, |L(u2)| ≥ 2 and |L(ui)| ≥ 5 for i ∈ {3,4,5}. Therefore,G3[U] is L-
colourable.

L20. Here,G3[U]'K6. Also,deg3(ui)≤ 15for i ∈ {1,2,3}, deg3(u4)≤ 13anddeg3(ui)≤ 11
for i ∈ {5,6}. Furthermore,{w, t} ⊂N3(ui) for i ∈ {1,6}, {v,w, t} ⊂N3(u3) and{v, t} ⊂N3(ui)
for i ∈ {2,4}. Thus, we infer|L(ui)| ≥ 2 for i ∈ {1,2}, |L(u3)| ≥ 3, |L(u4)| ≥ 4, |L(u5)| ≥ 5 and
|L(u6)| ≥ 6. Therefore,G3[U] is L-colourable.

L21. Again G3[U] ' K6. Also, deg3(ui) ≤ 15 for i ∈ {1,2,3}, deg3(ui) ≤ 12 for i ∈ {4,5}
anddeg3(u6) ≤ 11. Furthermore,{w, t} ⊂ N3(ui) for i ∈ {1,5}, {v,w, t} ⊂ N3(u3) and{v, t} ⊂
N3(ui) for i ∈ {2,6}. Thus, we infer|L(ui)| ≥ 2 for i ∈ {1,2} and|L(ui)| ≥ i for i ∈ {3,4,5,6}.
Therefore,G3[U] is L-colourable.

L22. In this case,G3[U] ' K6. Also, deg3(ui) ≤ 13 for i ∈ {1,2,3,4} anddeg3(ui) ≤ 12 for
i ∈ {5,6}. Furthermore,{v, t} ⊂N3(ui) for i ∈ {4,5}, {v,w, t} ⊂N3(u6) and{w, t} ⊂N3(ui) for
i ∈ {2,3}. Thus, we infer|L(u1)| ≥ 3, |L(ui)| ≥ 4 for i ∈ {2,3,4}, |L(u5)| ≥ 5 and|L(u6)| ≥ 6.
Therefore,G3[U] is L-colourable.
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Figure 4: Reducible configurations (L17)–(L24).
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L23. In this case,G3[U] ' K3. Also, deg3(ui) ≤ 12 for i ∈ {1,2,3}. Moreover,{v,w, t} ⊂
N3(ui) for i ∈ {1,2,3}. Thus, we infer|L(ui)| ≥ 3 for i ∈ {1,2,3}. Therefore,G3[U] is L-
colourable.

L24. Define the partial colouringc as always, regarding the bold edges and the vertexv. Re-
mark thatG3[U] is isomorphic to the complete graph on four vertices minus one edgeK−4 ,
sinceu1 /∈ N3(u2) (because the face has size at least8). By Lemma 1,deg3(ui) ≤ 11 for ev-
ery i ∈ {1,2,3,4}. Thus,|L(ui)| ≥ 2 for i ∈ {1,2} and |L(ui)| ≥ 3 for i ∈ {3,4}. Hence, the
graphG3[U] is L-colourable. This assertion can be directly checked, or seen as a consequence of
a theorem independently proved by Borodin [2] and Erdős, Rubin and Taylor [8] (see also [16]),
stating that a connected graph is degree-choosable unless it is aGallai tree, that is each of its
blocks is either complete or an odd cycle.

Corollary 1. Every(3,11)-minimal graphG has the following properties:

(i) Let f1, f2 be two5-faces ofG with a common edgexy. Then,x andy are not both3-vertices.

(ii) Let f be a7-face whose every incident vertex is a3-vertex. If f is adjacent to a3-face,
then every other face adjacent tof is a (≥ 7)-face.

(iii) If two adjacent dangerous vertices do not lie on a same(≤ 4)-face, then none of them is
incident to a3-face.

(iv) Two dangerous vertices incident to a same6-face are not adjacent.

(v) There cannot be four consecutive dangerous vertices incident to a same(≥ 6)-face.

(vi) A very-bad face is adjacent to at least three(≥ 7)-faces.

(vii) A bad face is adjacent to at least two(≥ 7)-faces.

Proof.

(i) By Lemma 2(v), deg3(x)+deg3(y) ≥ 23. By Lemma 1, the3-facial degree of a3-vertex
incident to two5-faces is at most11. Hence at least one ofx andy is a(≥ 4)-vertex.

(ii) First note that, according to Lemma 2(iii ), the faces adjacent to bothf and the3-face has
size at least7. Hence,f is adjacent to at most four(≤ 6)-faces. Now, the assertion directly
follows from the reducibility of the configurations (L1) and (L2) of Figure 2.

(iii) This follows from the reducibility of the configuration (L4) of Figure 2.

(iv) Suppose the contrary, and letx andy be two such vertices. By Lemma 2(iii ), a 6-face is
not adjacent to a3-face, hence bothx andy are incident to a4-face. Then,deg3(x) ≤ 11
anddeg3(y)≤ 11, which contradicts Lemma 2(v).

(v) Suppose that the assertion is false. Then, according to the third item of this corollary, the
graphG must contain the configuration (L5) or (L6) of Figure 2, which are both reducible.
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(vi) Let f be a very-bad face. By the first item of this corollary and Lemma 3, two adjacent
(≤ 6)-faces cannot be both adjacent tof . Hence,f is adjacent to at most two such faces.

(vii) Let f be a bad face, and denote byαi , i ∈ {1,2,3,4,5} its incident vertices in clockwise
order. Without loss of generality, assume that, for everyi ∈ {1,2,3,4}, αi is a dangerous
vertex. Fori ∈ {1,2,3,4}, denote byfi the face adjacent tof and incident to bothαi and
αi+1. According to the first item of this corollary and Lemma 3, at most two faces among
f1, f2, f3, f4 can be(≤ 6)-faces. This concludes the proof.

3 Proof of Theorem 1

Suppose that Theorem 1 is false, and letG be a(3,11)-minimal graph. We shall get a contradic-
tion by using the Discharging Method. Here is an overview of the proof: each vertex and face
is assigned an initial charge. The total sum of the charges is known to be negative by Euler’s
Formula. Then, some redistribution rules are defined, and each vertex and face gives or receives
some charge according to these rules. The total sum of the charges is not changed during this
step, but at the end we shall show, by case analysis, that the charge of each vertex and each face
is non-negative, a contradiction.

Initial charge. First, we assign a charge to each vertex and face. For everyv∈V(G), we define
the initial charge

ch(v) = d(v)−4,

whered(v) is the degree of the vertexv in G. Similarly, for every f ∈ F(G), whereF(G) is the
set of faces ofG, we define the initial charge

ch( f ) = r( f )−4,

with r( f ) the length of the facef . By Euler’s formula the total sum is

∑
v∈V(G)

ch(v)+ ∑
f∈F(G)

ch( f ) =−8.

Rules. We use the following discharging rules to redistribute the initial charge.

Rule R1. A (≥ 5)-face sends1/3 to each of its incident safe vertices and1/2 to each of its
incident dangerous vertices.

Rule R2. A (≥ 7)-face sends1/3 to each adjacent3-face.

Rule R3. A (≥ 7)-face sends1/6 to each adjacent bad face.
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Rule R4. A 6-face sends1/12 to each adjacent very-bad face.

Rule R5. A (≥ 5)-vertexv gives2/3 to an incident facef if and only if there exist two3-faces
both incident tov and both adjacent tof . (Note that the size of such a facef is at least7.)

We shall prove now that the final chargech∗(x) of everyx ∈ V(G)∪F(G) is non-negative.
Therefore, we obtain

−8 = ∑
v∈V(G)

ch(v)+ ∑
f∈F(G)

ch( f ) = ∑
v∈V(G)

ch∗(v)+ ∑
f∈F(G)

ch∗( f )≥ 0,

a contradiction.

Final charge of vertices. First, as noticed in Lemma 2(iv), G has minimum degree at least
three. Letv be an arbitrary vertex ofG. We will prove that its final chargech∗(v) is non-negative.
In order to do so, we consider a few cases regarding its degree. So, suppose first thatv is a 3-
vertex. Ifv is a safe vertex, then by Rule R1 its final charge isch∗(v) =−1+3· 1

3 = 0. Similarly,
if v is dangerous, thench∗(v) =−1+2· 1

2 = 0. If v is a4-vertex then it neither receives nor sends
any charge. Thus,ch∗(v) = ch(v) = 0.

Finally, suppose thatv is of degreed ≥ 5. Notice thatv may send charge only by Rule R5.
This may occur at mostd/2 times ifd is even, and at mostbd/2c−1 times ifd is odd (since two
3-faces are not adjacent). Thus,ch∗(v) ≥ d−4− ⌊

d
2

⌋ · 2
3, which is non-negative ifd ≥ 6. For

d = 5, ch∗(v)≥ 5−4− 2
3 > 0.

Final charge of faces. Let f be an arbitrary face ofG. Denote byfce andbad the number
of 3-faces and the number of bad faces adjacent tof , respectively. Denote bysfe anddgs the
number of safe vertices and the number of dangerous vertices incident tof , respectively. We will
prove that the final chargech∗( f ) of f is non-negative. In order to do so, we consider a few cases
regarding the size off .

f is a3-face. It is adjacent only to(≥ 7)-faces by Lemma 2(iii ). Thus, by Rule R2,f receives
1/3 from each of its three adjacent faces, so we obtainch∗( f ) = 0.

f is a 4-face. It neither receives nor sends any charge. Thus,ch∗( f ) = ch( f ) = 0.

f is a 5-face. Then, f is adjacent only to(≥ 5)-faces due to Lemma 2(iii ). So a5-face may
send charge only to its incident3-vertices, which are all safe. Consider the following cases
regarding the numbersfe of such vertices.

sfe≤ 3: Then,ch∗(v)≥ 1−3· 1
3 = 0.

sfe = 4: In this case,f is a bad face. According to Corollary 1(vii), at least two of the faces
that are adjacent tof have size at least7. Thus, according to Rule R3,f receives1/6 from
at least two of its adjacent faces. Hence, we conclude thatch∗(v)≥ 1−4· 1

3 +2· 1
6 = 0.
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sfe = 5: Then f is a very-bad face, and so, according to Corollary 1(vi), at least three faces
adjacent tof have size at least7. Moreover, all faces adjacent tof have size at least6 by
Lemma 2(iii ) and Corollary 1(i). By Rules R3 and R4, it follows that the neighbouring
faces off send at least4·1/6 to f , which implies thatch∗(v)≥ 1−5· 1

3 +4· 1
6 = 0.

f is a6-face. By Lemma 2(iii ), fce = 0. Denote byvbd number of very-bad faces adjacent to
f . The final charge off is 2−dgs · 1

2−sfe · 1
3−vbd · 1

12 due to Rules R1 and R4.
According to Corollary 1(iv), two dangerous vertices onf cannot be adjacent so there are

at most three dangerous vertices onf . Observe also thatvbd ≤ sfe/2 by Corollary 1(i) and
because a very-bad face adjacent tof is incident to two safe vertices off . Let us consider the
final charge off regarding its number of dangerous vertices.

dgs = 3: Since a safe vertex is not incident to a(≤ 4)-face, there is at most one safe vertex
incident to f , i.e. sfe≤ 1. Thus,vbd = 0, and hence,ch∗( f )≥ 2−3· 1

2− 1
3 > 0.

dgs = 2: Then,sfe≤ 3. Let us distinguish two cases according to the value ofsfe.

sfe = 3: Notice thatvbd = 0, otherwise it would contradict the reducibility of (L3).
Hence,ch∗( f )≥ 2−2· 1

2−3· 1
3 = 0.

sfe ≤ 2: In this case, there is at most one very-bad face adjacent tof , so ch∗( f ) ≥
2−2· 1

2−2· 1
3− 1

12 > 0.

dgs= 1: Then,sfe≤ 4 andvbd≤ 1 because (L3) is reducible. So,ch∗( f )≥ 2− 1
2− 4

3− 1
12 > 0.

dgs = 0: If sfe ≥ 5 then, because (L3) is reducible,vbd = 0, thereforech∗( f ) ≥ 2− 6
3 = 0.

And, if sfe≤ 4, thenvbd≤ 2, soch∗( f )≥ 2−4· 1
3−2· 1

12 > 0.

f is a 7-face. The final charge off is at least3−dgs · 1
2− (fce+sfe) · 1

3−bad · 1
6.

According to Corollary 1(v), four dangerous vertices cannot be consecutive onf , hence there
cannot be more than five dangerous vertices onf . Denote byα1,α2, . . . ,α7 the vertices off in
clockwise order. LetD be the set of dangerous vertices off , sodgs = |D|. We shall look at the
final charge off , regarding its numberdgs of dangerous vertices.

dgs = 5: Up to symmetry,D = {α1,α2,α3,α5,α6}. Suppose first thatα5 and α6 are not
incident to a same(≤ 4)-face. Then, there can be neither a safe vertex incident tof nor
a bad face adjacent tof , because a safe vertex is not incident to a(≤ 4)-face, and also
a bad face is not adjacent to a(≤ 4)-face. Moreover, by Corollary 1(iii ), there is no3-
face adjacent tof . Therefore,ch∗( f ) ≥ 3− 5

2 > 0. Now, if α5 andα6 are incident to a
same(≤ 4)-face, then the vertexα4 must be a(≥ 4)-vertex by the reducibility of (L7),
and because it is not a dangerous vertex. Hence, there is no safe vertex and no bad face
adjacent tof , so its charge isch∗( f )≥ 3− 5

2− 1
3 > 0.
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dgs = 4: We consider several subcases, according to the relative position of the dangerous ver-
tices on f . Recall that, by Corollary 1(v), there are at most three consecutive dangerous
vertices. Without loss of generality, we only need to consider the following three possibil-
ities:

D = {α1,α2,α3,α5}: The charge off is ch∗( f ) = 1−(fce+sfe) · 1
3−bad · 1

6. Moreover,
sfe≤ 2, bad≤ 1 andfce+sfe≤ 3 by Corollary 1(iii ) and because a safe vertex is
not incident to a(≤ 4)-face. So,ch∗( f ) is negative if and only ifsfe = 2,bad = 1
andfce = 1. But in this case, the obtained configuration is (L8), which is reducible.

D = {α1,α2,α4,α5}: As a bad face is neither adjacent to a(≤ 4)-face nor incident to a
dangerous vertex, we getbad ≤ 1. Observe also that, asα3 is not dangerous, it has
degree at least four by the reducibility of (L7) and (L11). Thus,sfe ≤ 2. Suppose
first thatbad = 1, thensfe is one or two. According to the reducibility of (L10), we
infer sfe+ fce ≤ 2. Hence,ch∗( f ) ≥ 3− 4 · 1

2−2 · 1
3− 1

6 > 0. Suppose now that
bad = 0. We havefce ≤ 3 andsfe ≤ 2. If fce = 3 thensfe = 0, and if fce = 2,
thensfe ≤ 1 according to the reducibility of (L12). So,fce+sfe ≤ 3. Therefore,
ch∗( f )≥ 3−4· 1

2− (fce+sfe) · 1
3 ≥ 0.

D = {α1,α2,α4,α6}: In this case, there is no bad face adjacent tof . Furthermore, by
Corollary 1(iii ), fce ≤ 3 andsfe ≤ 2, as the dangerous verticesα4 andα6 prevent
at least one non-dangerous vertex from being safe. Observe thatfce+sfe 6= 5 since
otherwise it would contradict the reducibility of (L13). According to the reducibility
of (L13), if fce+sfe = 4 thenfce = 3 and no two3-faces have a common vertex.
Hence, the obtained configuration is isomorphic to (L14) or (L15), which are both
reducible. So,fce+sfe≤ 3 and thusch∗( f )≥ 3−2− (fce+sfe) · 1

3 ≥ 0.

dgs= 3: Again, we consider several subcases according to the relative position of the dangerous
vertices onf .

D = {α1,α2,α3}: Thenfce+sfe≤ 3 by Corollary 1(iii ), andbad≤ 2. Thus,ch∗( f )≥
3−3· 1

2−3· 1
3−2· 1

6 > 0.

D = {α1,α2,α4}: Then,fce≤ 4. We shall now examine the situation according to each
possible value offce.

fce = 4: Necessarily,sfe ≤ 1 and bad = 0. Now, if sfe = 0, then ch∗( f ) ≥
3−3· 1

2−4· 1
3 > 0. And, if sfe = 1, then the safe vertex must beα3. Moreover,

α5 must be a(≥ 5)-vertex because (L9) is reducible. Hence,f is incident toα5

between two3-faces, so by Rule R5 the vertexα5 gives 2
3 to f . Thus,ch∗( f )≥

3−3· 1
2−5· 1

3 + 2
3 > 0.

fce = 3: Suppose first that one of the dangerous vertices is incident to a4-face.
Necessarily,sfe≤ 1 andbad≤ 1. Thus,ch∗( f )≥ 3−3· 1

2−4· 1
3− 1

12 = 0.
Suppose now that no dangerous vertex is incident to a4-face. In particular,
sfe ≤ 2. If sfe = 2 then the obtained configuration contradicts the reducibility
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of (L19). Hence,sfe≤ 1 andbad≤ 1. Therefore,ch∗( f )≥ 3−3· 1
2−4· 1

3− 1
6 =

0.

fce = 2: We shall prove thatsfe ≤ 2. This is clear ifα1 andα2 are not incident
to a same3-face. So, we may assume that the edgeα1α2 lies on a3-face. But
then we obtain the inequality due to the reducibility of (L19) and (L20). Using
Corollary 1(i) andsfe ≤ 2, we infer thatbad ≤ 1. Hence,ch∗( f ) ≥ 3−3· 1

2−
4· 1

3− 1
6 = 0.

fce= 1: Thensfe≤ 3 andbad≤ 2. If sfe= 3 andbad= 2, the obtained configu-
ration contradicts the reducibility (L20) or (L21). So,ch∗( f )≥ 3−3· 1

2−4· 1
3−

1
6 = 0.

fce = 0: Again,sfe≤ 3 andbad≤ 2, soch∗( f )≥ 3−3· 1
2−3· 1

3−2· 1
6 > 0.

D = {α1,α2,α5}: As in the previous case,fce≤ 4 and we look at all the possible cases
according to the value offce. Since a bad face is not incident to a dangerous vertex,
notice that only edgesα3α4 andα6α7 can be incident to a bad face. In particular,
bad≤ 2.

fce= 4: In this case,sfe= 0 andbad= 0. Therefore,ch∗( f ) = 3−3· 1
2−4· 1

3 > 0.

fce= 3: If one of the dangerous vertices is incident to a4-face thensfe= 0, hence
bad = 0. Thus,ch∗( f )≥ 3−3 · 1

2−3 · 1
3 ≥ 0. So now, we infer thatsfe cannot

be2, otherwise it would contradict the reducibility of (L16). Therefore,sfe is at
most one, and sobad≤ 1 by Corollary 1(i). Thus,ch∗( f )≥ 3−3· 1

2−4· 1
3− 1

6 =
0.

fce = 2: According to the reducibility of (L16) and (L17),sfe ≤ 2. As ch∗( f ) =
3−3· 1

2−(fce+sfe) · 1
3−bad · 1

6, we deducech∗( f ) < 0 if and only if sfe= 2
andbad= 2. In this case, the obtained configuration is (L18), which is reducible.

fce = 1: Because (L16) and (L17) are reducible,sfe≤ 2. So,ch∗( f )≥ 3−3· 1
2−

3· 1
3−2· 1

6 > 0.

fce = 0: Thensfe≤ 3, and soch∗( f )≥ 3−3· 3
2−3· 1

3−2· 1
6 > 0.

D = {α1,α3,α5}: In this case,sfe≤ 2 since a safe vertex is not incident to a(≤ 4)-face,
andbad ≤ 1, since a bad face cannot be incident to a dangerous vertex. Moreover,
fce≤ 4. Let us examine the possible cases regarding the value offce.

fce = 4: Observe thatsfe ≤ 1 andbad = 0. Note also one ofα2,α3,α6,α7 is
adjacent to a dangerous vertex, and incident tof between two triangles. Hence,
by the reducibility of (L9), it has degree at least five, and by Rule R5, it sends2

3
to f . Thus,ch∗( f )≥ 3−3· 1

2−5· 1
3 + 2

3 > 0.

fce = 3: If sfe ≤ 1 thench∗( f ) ≥ 3−3 · 1
2−4 · 1

3− 1
6 = 0. And, if sfe = 2 then,

up to symmetry, the two safe vertices are eitherα6 andα7, or α2 andα6. In
the former case, one ofα2,α4 is incident tof at the intersection of two3-faces.
Furthermore, it must be a(≥ 5)-vertex due to the reducibility of (L9). In the
latter case, the same holds forα4 due to the reducibility of (L9). Hence, in both
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cases the facef receives2/3 from one of its incident vertices by Rule R5. Recall
thatbad≤ 1, and therefore,ch∗( f )≥ 3−3· 1

2−5· 1
3−2· 1

6 + 2
3 > 0.

fce≤ 2: As sfe≤ 2 andbad≤ 1, we infer thatch∗( f )≥ 3−3· 1
2−4· 1

3− 1
6 = 0.

dgs = 2: Again, we consider several subcases, regarding the position of the dangerous vertices
on f .

D = {α1,α2}: Observe thatbad ≤ 3, and according to Corollary 1(iii ), fce+sfe ≤ 6.
We consider three cases, according to the value offce+sfe.

fce+ sfe = 6: All the vertices incident tof have degree three, andf is adjacent
to a 3-face. Thus, by Corollary 1(ii), f is not adjacent to any(≤ 6)-face. In
particular, no bad face is adjacent tof , i.e. bad = 0. Hence,ch∗( f )≥ 3−1−6·
1
3 = 0.

fce+ sfe = 5: If bad ≤ 2, thench∗( f ) ≥ 3− 1− 5 · 1
3 − 2 · 1

6 = 0. Otherwise,
bad = 3. Note that the edgeα1α2 must be incident to a(≤ 4)-face. If this
face is of size four, then we obtain configuration (L22). Suppose now that this
face is of size three. Since there is no three consecutive bad faces aroundf , we
can assume that each of the edgesα3α4 andα6α7 lies on a bad face. By the
reducibility of (L18), we conclude thatα3 andα7 have degree at least four. But
then,fce+sfe < 5.

fce+sfe≤ 4: In this case,ch∗( f )≥ 3−1−4· 1
3−3· 1

6 > 0.

D = {α1,α3} or D = {α1,α4}: Againfce+sfe≤ 6, and we consider two cases regard-
ing the value offce+sfe. Since a bad face is not incident to a dangerous vertex, we
infer thatbad≤ 3.

fce+ sfe = 6: Suppose first thatD = {α1,α3}. Let P1 = α1α2α3 and P2 =
α3α4α5α6α7α1. In order to assurefce+ sfe = 6, observe that all edges ofP1

are incident to3-faces and all inner vertices ofP2 are safe, or vice-versa. Thus,
α2 or α4 is a(≥ 5)-vertex by the reducibility of (L9). Hence, it gives23 to f by
Rule R5. Therefore,ch∗( f )≥ 3−2· 1

2−6· 1
3−3· 1

6 + 2
3 > 0.

Suppose now thatD = {α1,α4}. Similarly as above, one can show thatα2 or α5

is a(≥ 5)-vertex that donates23 to f . Hence,ch∗( f )≥ 3−2· 1
2−6· 1

3− 3
6 + 2

3 > 0.

fce+sfe≤ 5: Notice thatbad≤ 2. Therefore,ch∗( f )≥ 3−2· 1
2−5· 1

3−2· 1
6 = 0.

dgs = 1: Thenfce+ sfe ≤ 6 and, by Corollary 1(i), we infer thatbad ≤ 3. So, ch∗( f ) ≥
3− 1

2−6· 1
3−3· 1

6 = 0.

dgs = 0: By Corollary 1(i), fce+sfe≤ 7 andbad≤ 4. So,ch∗( f )≥ 3−7· 1
3−4· 1

6 = 0.

f is an 8-face. Because (L4) and (L23) are reducible, there cannot be three consecutive dan-
gerous vertices onf . Hence,dgs ≤ 5. Denote byαi , i ∈ {1,2, . . . ,8}, the vertices incident tof
in clockwise order, and letD be the set of dangerous vertices incident tof .
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dgs = 5: Up to symmetry,D = {α1,α2,α4,α5,α7}. Since a bad face is not incident to a
dangerous vertex, necessarilybad = 0. For i ∈ {1,4}, denote byfi the face adjacent tof
and incident to bothαi andαi+1. Since (L24) is reducible, at most one off1 and f4 is a
3-face. Furthermore, at most two ofα3,α6,α8 can be safe vertices, since at least one of
α6,α8 is a(≥ 4)-vertex. Therefore,fce≤ 2, sfe≤ 2 and so,ch∗( f )≥ 4−5· 1

2−4· 1
3 > 0.

dgs = 4: Up to symmetry, the set of dangerous vertices is{α1,α2,α4,α5}, {α1,α2,α5,α6},
{α1,α2,α4,α6}, {α1,α2,α4,α7} or {α1,α3,α5,α7}. In any case,bad ≤ 2 and fce+
sfe≤ 5. Hence,ch∗( f )≥ 4− 4

2− 5
3− 2

6 = 0.

dgs = 3: Then,fce+sfe≤ 6 andbad≤ 3. So,ch∗( f )≥ 4− 3
2− 6

3− 3
6 = 0.

dgs= 2: Then,fce+sfe≤ 7, and by Corollary 1(i), bad≤ 4. Thus,ch∗( f )≥ 4− 2
2− 7

3− 4
6 =

0.

dgs = 1: Again,fce+sfe≤ 7 andbad≤ 4, soch∗( f )≥ 4− 1
2− 7

3− 4
6 > 0.

dgs = 0: By Corollary 1(i), bad≤ 5. So,ch∗( f )≤ 4− 8
3− 5

6 > 0.

f is a (≥ 9)-face. Let f be ak-face withk≥ 9, and denote byu1,u2, . . . ,udgs the dangerous
vertices onf in clockwise order. Denote byfi the(≤ 4)-face incident toui. The facial segment
P= uiw1w2 . . .w jui+1 of f betweenui andui+1 (in clockwise order) is of one of the five following
types:

(a) if j ≥ 1, w1 is not incident tofi andw j is not incident tofi+1;

(b) if j ≥ 1, w1 is incident tofi andw j is incident tofi+1;

(c) if j ≥ 1 and not of type(a) or (b);

(d) if j = 0 and bothfi and fi+1 are the same3-face; and

(e) if j = 0 and not of type(d).

We denote byα the number of paths of type(a), β the number of paths of type(b), γ the
number of paths of type(c), δ the number of paths of type(d) andε the number of paths of type
(e). Note that a path of type(d) or (e) is of length one. Observe that the following holds:

Claim 1. α+β+ γ+δ+ ε = dgs.

We now bound the number of safe vertices and3-faces.

Claim 2. fce+sfe≤ k−α− γ− ε.
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For each̀ -pathP of type(a),(c) or (e) the number of safe vertices onP plus the number of
3-faces which share an edge withP is at most̀ −1. Indeed, for any path of one of these types,
there are at most̀ faces different fromf and incident to an edge of the path, but at least one
of them is not a(≤ 4)-face. There arè−1 vertices on the path, so at most`−1 safe vertices.
Furthermore, every(≤ 4)-face prevents at least one vertex from being safe. Observe also that an
`-path of type(b) or (d) contributes for at most̀, which thus yields Claim 2.

We distinguish two kinds of paths of type(e): a path of type(e) is of type(e0) if its edge is
not incident to a4-face. Otherwise, it is oftype(e1). Let εi be the number of paths of type(ei),
i ∈ {0,1}.
Claim 3. bad≤ k−2dgs+δ+ ε1.

First, remark that each dangerous vertex prevents its two incident edges onf from belonging
to a bad face, since no bad face is incident to a dangerous vertex. By the reducibility of (L23),
there cannot be three consecutive dangerous vertices onf , so it only remains to consider two
consecutive dangerous vertices, i.e. paths of type(d) or (e). A path of type(d) or (e1) prevents
exactly three edges off from being incident to a bad face. Every1-path of type(e0) prevents at
least four edges off from being incident to a bad face. To see this, consider a pathu1u2u3u4u5u6,
whereu2u3 is a1-path of type(e0). Clearly, none ofu1u2,u2u3,u3u4 is incident to a bad face. We
claim that at least one ofu4u5,u5u6 is not incident to a bad face. Otherwise, ifu4u5 is incident
to a bad face, then by Lemma 2(iii ), u4 must be a(≥ 4)-vertex. Hence, by Corollary 1(i), u5u6

is not incident to a bad face. As no three dangerous vertices are consecutive off , this proves
Claim 3.

Claim 4. α−β+ ε0 = δ+ ε1.

Associate each dangerous vertexui with its incident(≤ 4)-face fi . Each path of type(a) contains
no facefi , so does each path of type(e0); each path of type(c) contains exactly one facefi , and
each path of type(b),(d) or (e1) contains exactly two facesfi (where a face is counted with its
multiplicity, i.e. once for each dangerous vertex off incident to it). So,dgs = γ+2(β+δ+ ε1),
and henceα+β+ γ+δ+ ε = γ+2(β+δ+ ε1), which gives Claim 4.

So, by Claims 1–4, we get

ch∗( f ) = k−4−dgs · 1
2
− (fce+sfe) · 1

3
−bad · 1

6

≥ k−4− dgs

2
− k−α− γ− ε

3
− k−2dgs+δ+ ε1

6

=
k
2
−4− dgs

6
+

α+ γ+ ε0

3
+

ε1−δ
6

=
k
2
−4+

(α−β+ ε0)+ γ
6

− δ
3

=
k
2
−4+

δ+ ε1 + γ
6

− δ
3

≥ k
2
−4− δ

6
.
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According to Corollary 1(iii ) and the reducibility of (L24), there are at least two vertices
between any two paths of type(d). So,δ≤ k

4. Therefore, one can conclude that

ch∗( f )≥ k
2
− k

24
−4 =

11
24

k−4≥ 99
24
−4 > 0.
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[11] D. Krá’l, T. Madaras, and R.̌Skrekovski. Cyclic, diagonal and facial colorings.European
J. Combin., 26(3-4):473–490, 2005.

21



[12] Ø. Ore and M. D. Plummer. Cyclic coloration of plane graphs. InRecent Progress in
Combinatorics (Proc. Third Waterloo Conf. on Combinatorics, 1968), pages 287–293. Aca-
demic Press, New-York, 1969.

[13] D. P. Sanders and Y. Zhao. Ond-diagonal colorings.J. Graph Theory, 22(2):155–166,
1996.

[14] D. P. Sanders and Y. Zhao. Ond-diagonal colorings of embedded graphs of low maximum
face size.Graphs Combin., 14(1):81–94, 1998.

[15] D. P. Sanders and Y. Zhao. A new bound on the cyclic chromatic number.J. Combin.
Theory Ser. B, 83(1):102–111, 2001.

[16] C. Thomassen. Color-critical graphs on a fixed surface.J. Combin. Theory Ser. B, 70(1):67–
100, 1997.

22


