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Martin Tancer

ISSN 1318-4865

November 6, 2006

Ljubljana, November 6, 2006



Injective colorings of planar graphs with few colors ∗
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Abstract

An injective coloring of a graph is a vertex coloring where two vertices have
distinct colors if a path of length two exists between them. In this paper some results
on injective colorings of planar graphs with few colors are presented. We show that
all planar graphs of girth ≥19 and maximum degree ∆ are injectively ∆-colorable.
We also show that all planar graphs of girth ≥10 are injectively (∆ + 1)-colorable,
∆ + 4 colors are sufficient for planar graphs of girth ≥ 5 if ∆ is large enough, and
that subcubic planar graphs of girth ≥7 are injectively 5-colorable.

1 Introduction

In this paper some results on injective coloring of planar graphs with large girth and few
colors are presented. An injective coloring of a graph G is a mapping c : V (G) → C such
that c(v) 6= c(u) for each v, u ∈ V (G), whenever exists a path of length two between v
and u. The elements of the set C are the colors. The minimum number of colors that G
needs to be colored injectively is the injective chromatic number of G, and it is denoted by
χi(G). This type of coloring was introduced by Hahn, Kratochv́ıl, Širáň and Sotteau [8].
They proved the inequality ∆ ≤ χi(G) ≤ ∆2 −∆ +1, where ∆ is the maximum degree of
G. They characterize the graphs for which the upper bound is achived in the inequality,
these graphs are precisely the incident graphs of projective planes of order ∆ − 1. They
also characterize the regular graphs for which the lower bound is achieved. In their article
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also some interesting results on injective colorings of Cartesian graph products, especially
on hypercubes, are presented.

In [3] Doyon, Hahn and Raspaud proved a theorem about the dependence between
the maximum average degree of graphs and their injective chromatic number. Let G be a
graph, the maximum average degree of G is denoted by Mad(G) = max{2|E(H)|/|V (H)|,
H ⊆ G}. Their main result is the following theorem:

Theorem 1 Let G be a graph of maximum degree ∆. If Mad(G) < 14
5

then χi(G) ≤ ∆+3,
if Mad(G) < 3 then χi(G) ≤ ∆ + 4, and if Mad(G) < 10

3
then χi(G) ≤ ∆ + 8.

Knowing that for planar graphs of girth g holds the inequality Mad(G) < 2g

g−2
, they

obtain the following corollary for planar graphs:

Corollary 2 Let G be a planar graph of maximum degree ∆. If g(G) ≥ 7 then χi(G) ≤
∆ + 3, if g(G) ≥ 6 then χi(G) ≤ ∆ + 4, and if g(G) ≥ 5 then χi(G) ≤ ∆ + 8.

Hahn, Raspaud and Wang [9] proved that the injective chromatic number of every
K4-minor free graph of maximum degree ∆ is ≤ ⌈3

2
∆⌉. They also pose the following

conjecture:

Conjecture 1 For each planar graph G, χi(G) ≤ ⌈3
2
∆⌉.

Injective coloring of a graph G is related to the usual coloring of the square G2.
The inequality χi(G) ≤ χ(G2) trivially holds. There are some well known results and
conjectures about coloring squares of planar graphs [11]. Wegner [15] proved that the
squares of cubic planar graphs are 8-colorable. He conjectured that his bound can be
improved to 7, and posed the following conjecture:

Conjecture 2 Let G be a planar graph with maximum degree ∆. The chromatic number
of G2 is at most 7, if ∆ = 3, at most ∆+5, if 4 ≤ ∆ ≤ 7, and at most ⌊3∆

2
⌋+1, otherwise.

If the conjecture holds, then the bounds are the best possible. The Conjecture 2 was
verified for several special classes of planar graphs, but it remains open for all values
of ∆ ≥ 3. Dvořák et al. [5] have proved that the chromatic number of the square of
a planar graph G with sufficiently large maximal degree is ∆ + 1 if the girth of G is
at least seven and it is bounded by ∆ + 2 if the girth of G is six. On the other hand,
Molloy and Salavatipour [13] proved the bound χ(G2) ≤ ⌊5∆

3
⌋ + 78. They also showed

that χ(G2) ≤ ⌊5∆
3
⌋ + 25 holds for ∆ large enough.

Montassier and Raspaud [14] obtained some results on colorings of the squares of
planar subcubic graphs. They proved that χ(G2) ≤ 5 if g(G) ≥ 14 and χ(G2) ≤ 6 if
g(G) ≥ 10.

In this paper we focus on planar graphs with specified girth. We show that all planar
graphs of girth ≥19 are injectively colorable with ∆ colors, where ∆ ≥ 3 is the maximum
degree. We also show that all planar graphs with girth ≥ 10 are injectively (∆ + 1)-
colorable, ∆ + 4 colors are sufficient for planar graphs of girth ≥ 5 if ∆ is large enough,
and that subcubic planar graphs of girth ≥7 are injectively 5-colorable.
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For a planar graph G, let G∗ be the graph obtained from G by contracting all 2-
vertices. To prove the reducibility of configurations we use the neighboring graph G(2)

defined by V (G(2)) = V (G) and E(G(2)) = {uv; u and v have a common neighbor in G}.
In the proofs we use the Discharging method. We assign an initial charge to vertices

and faces of a minimal counterexample G in the following way: for every v ∈ V (G), define
the initial vertex charge

ch0(v) = 2d(v) − 6,

where d(v) denotes the degree of v in G. Let F (G) be the set of faces of the graph G.
For every face f ∈ F (G), define the initial face charge

ch0(f) = r(f) − 6,

where r(f) denotes the size of f . By Euler’s formula, the total amount of charge is

∑

v∈V (G)

ch0(v) +
∑

f∈F (G)

ch0(f) = (4|E(G)| − 6|V (G)|) + (2|E(G)| − 6|F (G)|)

= 6(|E(G)| − |V (G)| − |F (G)|)

= −12.

We use ch∗(x) to denote the final charge of a vertex or a face x. It is easy to see that
only ≤ 2-vertices and ≤ 5-faces have negative initial charge. Next, we redistribute the
initial charge between the vertices and faces such that the total amount of charge does
not change. Eventually, the final charge of each vertex and face will be non-negative, thus
contradicting the existence of a minimal counterexample, and establishing the theorem in
this way.

Through the article we use the following notation. The girth of a graph G is denoted
by g(G). A k-vertex is a vertex of degree k, a k-path is a path of length k, a k-cycle is a
cycle of length k, and a k-face is a face of size k. A thread is an induced path in G whose
vertices are all of degree 2 in G. A k-thread is a thread with k vertices. A ≥k-vertex is a
vertex of degree ≥k. On the other hand, a ≤k-vertex is a vertex of degree ≤k. One can
similary define ≥k-face, ≤k-face, ≥k-path and ≤k-path.

We use the term configuration for an induced subgraph H of a graph G. We say that
a configuration H is reducible if it cannot appear in a minimal counterexample G. The
proof of the reducibility of the configuration H usually proceeds in the following way. By
the minimality of G, G − H can be properly colored. We then show that an arbitrary
proper coloring of G−H can be extended properly to H , thus showing that G is injectively
colorable, which is a contradiction.

2 Injective 3-coloring of subcubic planar graphs

In this section we show a result on injective 3-colorings of subcubic planar graphs. We
prove that every subcubic planar graph with girth ≥ 19 can be colored in such a way.
Moreover, we present a subcubic planar graph with girth 10 that is not injectively 3-
colorable.
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Theorem 3 Every subcubic planar graph G with girth ≥19 is injectively 3-colorable.

Proof. Suppose that the theorem is false. Let G be a counterexample to the theorem
with |V (G)| + |E(G)| as small as possible. Thus, G is a planar graph of girth ≥ 19
and it is not injectively 3-colorable. Moreover, every proper subgraph of G is injectively
3-colorable.

Reducible configurations. Let us first pose some reducible configurations for injective
3-colorings. Some of them will be used later in other results, where we use four or more
colors.

Lemma 4 A 1-vertex and a 4-thread are reducible configurations.

Proof. Let u be a 1-vertex in G. The unique neighbor of a 1-vertex is of degree ≤3, so
u has at most two neighbors at distance two. Thus, it has at least one available color to
extend c.

Let uvwz be a 4-thread. After coloring the rest of the graph, at least one free color
remains for the vertices u and z, and two free colors for v and w. Color each of u and z
by its free color. Since these two vertices are at distance three, they can be colored with
a same color. Afterwards, for each of vertices v and w remains at least one color. Notice
that they can be colored with a same color, if necessary, so we can extend the coloring to
them as well. �

Lemma 5 The configurations of Fig. 1 are reducible.
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Figure 1: Reducible configurations for injective 3-colorings
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Proof. We consider separately every configuration H of Fig. 1. Suppose that H is a
subgraph of G. By the minimality of G, the graph G − H has a proper injective 3-
coloring c. We prove that c can be extended properly to G and obtain a contradiction,
which proves the reducibility of H .

(a) In this case H is a 20-cycle, and we use the labeling of its vertices as described in
Fig. 1(a). After coloring the graph G−H , every vertex ai has at least one available
color, every vertex bi has two, and each ci has three available colors.

The proper vertex coloring of the graph H (2) is precisely the proper injective coloring
of H . Graph H(2) has two components, first one is the 10-cycle a1c1a2 . . . a5c5a1 and
the second one is the 10-cycle b1b2 . . . b10b1. Since each ai has an available color,
we can color them first. Afterwards, at least one available color is left for each ci,
and so we color them as well. In such a way the first component is colored. In
the second component, every vertex has two available colors but since it is an even
cycle, it can be easily colored. Thus, we obtain a proper injective 3-coloring of G,
and so it follows that the configuration H is reducible.

(b) In this case H is a 19-cycle with one pendant vertex, we use the labeling as in
Fig. 1(b). Notice that v is a 2-vertex in G. By the minimality of G it follows that
there exists a proper injective coloring c of G− (H − v). Afterwards, note that each
ai has two available colors, each ci has three, and each bi has at least one free color,
by which we color bi.

To prove the reducibility of H we use again the neighboring graph H (2). Since each
bi is already colored, in H(2) are only left non-colored all vertices ai and ci. The
non-colored vertices form four components in H(2). Three of them are just isolated
vertices c1, c2 and c3. Each of them has three available colors, but after coloring
their neighbors in H(2) − {b1, b2, b3, b4}, they have at least one free color left, which
is enough. The last component is the path a1a2 . . . a10a11c4. The vertices of the path
have two free colors, so the graph H(2) can be colored, and therefore the injective
3-coloring c can be extended on G.

(c) The configuration H is a 20-cycle C plus some pendant 2-threads as in Fig. 1(c),
we use the same labeling. We extend easily the coloring c also to the vertices at
distance two from the cycle C. Only C and the vertices at distance one from C
remain non-colored. We denote that graph as K = C ∪ {c1, d1, . . . , c5, d5}. The
neighboring graph K(2) has two isomorphic components. We use the Alon-Tarsi
Theorem [1] to prove that each of them is colorable with the given list of colors.

First, let us define Eulerian subgraphs. A subdigraph H of a directed graph D is
called Eulerian if the indegree d−

H(v) of every vertex v of H is equal to its outdegree
d+

H(v). The graph H is even if it has an even number of edges, otherwise, it is odd.
Let Ee(D) and Eo(D) be the numbers of even and odd Eulerian subgraphs of D,
respectively.

For each v ∈ V (D), let L(v) be a set of d+
D(v)+1 distinct colors, where d+

D(v) is the
outdegree of v. The Alon-Tarsi Theorem states that in a directed graph D there
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is a proper vertex-coloring c : V (D) → C such that c(v) ∈ L(v) for all v ∈ V , if
Ee(D) 6= Eo(D).

Since the components of K(2) are isomorphic, we only prove the colorability of the
component C1 induced by vertices {a1, c1, a2, a3, c2, a4, a5, c3, . . . , a9, c5, a10}. Ob-
serve that vertices a2, a4, a6, a8, a10 have three available colors, the remaining ver-
tices have only two free colors. We notice that there are five 3-faces in C1. Make the
edges in each of them directed in sense that the orientation of the 3-face a1c1a2 is
counter-clockwise. Orient the other 3-faces also counter-clockwise. So, every vertex
have one outgoing edge and one ingoing edge. Only the edges connecting 3-faces
remained undirected. We orient them in a clockwise direction.

In the component C1 is now sixteen odd Eulerian graphs and seventeen even, the
combinations of triangles, 10-cycle a1a2 . . . a10a1 and the empty graph. The vertices
with three available colors have two outgoing edges, others have only one. The
assumptions of Alon-Tarsi Theorem are fulfilled, and so we can color C1. This
implies that H is reducible.

Discharging rule. We apply the Discharging method on G∗ using only the following
rule. Notice that the rule assumes that vertices a, b, c, d of Fig. 2 are of degree 3 and f2

corresponds to a 19-face in G.

Rule R1: Let f1 be a ≥7-face and f2 a 5-face in G∗ such that they correspond in G
as it is presented in Fig. 2, so the only edge of f2 which is subdivided by two vertices is
adjacent to f1. Then, f1 sends 1 to f2.

Final charge. Observe that the graph G∗ is cubic. Since the total charge of G∗ is
−12, there must be at least one ≤5-face in G∗. However, G∗ cannot contain a ≤4-face,
otherwise G contains a 4-thread in order to satisfy the girth assumption. Notice that by
Lemma 5, the 4-threads are reducible. Considering the 5-faces in G∗, we notice that they
correspond to three different configurations in G. The first and the second configuration
are isomorphic to the reducible configurations (a) and (b) of Fig. 1, respectively. The
third one is presented in Fig. 2, where the vertices a and d are of degree three.

Now, considering that g(G) ≥19 and G does not contain a 4-thread, one obtain that
the face f1 must be of size ≥7 in G∗. Hence, every 5-face has an adjacent ≥7-face at the
edge that is subdivided by two vertices, as the edge bc in Fig. 2. Thus, it receives 1 by
rule R1, so it has a non-negative final charge.

Now, we show that faces which are sending charge by rule R1 have non-negative final
charge. We consider several cases regarding the size. First, observe that every k-face in
G∗, k ≥ 7, have at most ⌊k

2
⌋ adjacent 5-faces to which it sends charge. This holds since

the edges ab and cd of Fig. 2 are not subdivided in G. It can be easily seen that the final
charge of an ≥11-face f is

ch∗(f) = ch0(f) −

⌊

r(f)

2

⌋

=

⌈

r(f)

2

⌉

− 6 ≥ 0.
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b c
da

f1

f2

1

Figure 2: Rule R1

Now, let us consider the faces of size between 7 and 10. Notice that a 7-face has enough
charge to send only to one 5-face. Let us assume that there exists a 7-face f1 in G∗ such
that it sends charge to two 5-faces. Then, f1 corresponds to a ≤ 17-cycle in G, which
contradicts the girth assumption. Similary, 8-faces in G∗ could have at most two and
9-faces at most three adjacent 5-faces to which they send charge. However, their final
charge will remain non-negative.

A 10-face, which sends charge to at most four 5-faces has non-negative final charge.
It remains only to consider a 10-cycle with five adjacent 5-faces. This configuration is
reducible in G due to Lemma 5, since it corresponds to the configuration of Fig. 1(c).

We have shown that all faces in G∗ have non-negative charge and since G∗ is cubic,
also its vertices have non-negative final charge. Thus, we obtain a contradiction which
establish the theorem. �

Figure 3: A subcubic planar graph with girth 10 and injective chromatic number 4, and
a subcubic planar graph with chromatic index 4
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Not every subcubic planar graph is injectively 3-colorable. We pose such a graph of girth
10.

Proposition 6 The planar subcubic graph on the left side of Fig. 3 is not injectively
3-colorable.

Proof. We try to injectively 3-color the graph H on the left side of Fig. 3. Consider the
neighboring graph H(2). It has two components. The vertices of the first component are
drawn as squares, and the vertices of the second component are drawn as circles in the
same figure.

Observe that it is equivalent to 3-color properly the second component of H (2) and
to 3-edge-color the right graph of Fig. 3, since the first graph (the second component of
H(2)) is the line graph of the second (the right graph of Fig. 3). The second graph is the
Dodecahedron with one edge subdivided. Use now the well known fact that a cubic graph
with one edge subdivided is not 3-edge-colorable. �

3 Injective 4-coloring of subcubic planar graphs

Here we decrease the girth bound to 10 of Theorem 3 by using one extra color.

Theorem 7 Every subcubic planar graph G with girth ≥10 is injectively 4-colorable.

Proof. Suppose that the theorem is false and suppose that a subcubic planar graph G
with girth ≥ 10 is a minimal counterexample. We use again the Discharging method on
G∗ to obtain a contradiction.

Reducible configurations. First we pose few reducible configurations.

Lemma 8 The graph G neither contains a 1-vertex nor a 2-thread.

Proof. Since a 1-vertex is reducible for injective 3-colorings, it is also reducible for injec-
tive 4-colorings.

In a 2-thread uv, each vertex has at most three neighbors in G − u − v and therefore
at least one available color. However, vertices u and v have no common neighbor, and so
they could be same colored. Therefore the configuration is reducible. �

To prove the theorem of this section we explore again different configurations in G that
correspond to a 5-face in G∗. The first observation is this lemma:

Lemma 9 The configurations of Fig. 4 are reducible.

Proof. We prove the reducibility of each configuration separately.
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(a) Let H be the configuration of Fig. 4(a), and let H be a subgraph of G. By the
minimality, it follows that there exists an injective 4-coloring c of G − H . We
extend c to H . First, notice that all vertices of H have at least two free colors,
moreover each of a1, b1, b5 has three free colors.

As before, we want to color H(2) properly. The graph H(2) has two components, the
first one is the 5-cycle a1a2 . . . a5a1 and the second one is the 6-cycle b1b2 . . . b5vb1

plus the diagonal b1b5. In the first component, the vertex a1 has three available
colors, others have at least two. It is easy to color such a 5-cycle.

The second component is easily colored by the list version of Brooks Theorem, which
states that a connected graph is degree-choosable unless it is a Gallai tree, that is
each of its blocks is either complete graph or an odd cycle [2, 7].

(b) Let H be the configuration of Fig. 4(b), which is a subgraph of G. By the minimality
of G, there exists a proper injective 4-coloring c of the graph G−H . Afterwards, the
vertex b1 has all four colors available, a1, b2, a5 and b5 have three available colors,
and all the remaining vertices have at least two.

The vertices of H comprise two components in H (2). The first is the 8-cycle
a1a2 . . . a8a1 plus the edge a1a5 and the second is comprised of the cycles b1b2 . . . b5b1

and b1b6 . . . b9b1 together with the edges b2b9 and b5b6. Both components can be eas-
ily colored using the list version of Brooks Theorem. �

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

v

(a)

a1

a2

a3

a4

a5

a6

a7

a8

b1

b2

b3b4

b5

b6

b7 b8

b9

(b)

Figure 4: Reducible configurations for injective 4-colorings
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Discharging rule. In order to redistribute the initial charge, we use the following rule:

Rule R1: Every ≥7-face in G∗ sends 1
5

to every adjacent 5-face.

Final charge. Note that a 5-face is the smallest face in G∗ due to the girth assumption
of G and the fact that a 2-thread is reducible.

Graph G∗ is cubic, so there is no vertex with negative charge. Therefore, G∗ contains
a ≤ 5-face due to the negative total charge. Next, we show that after applying the
discharging rule R1 to G∗, each face has a non-negative charge, therefore a contradiction
is obtained.

Two adjacent 5-faces in G∗ contain in G a configuration isomorphic to the one of
Fig. 4(a), which is reducible by Lemma 9. Such a configuration cannot occur in G∗ due
to the minimality of G. A 5-face adjacent to a 6-face in G∗ induces in G a configuration
isomorphic to the configuration of Fig. 4(b). Again it cannot happen. Knowing that
5-faces have five adjacent faces of size ≥ 7, after applying R1, they have a non-negative
final charge. Faces of size ≥ 8 have enough charge even if all their neighbors are 5-faces.
So we have to consider 7-faces. However, knowing that two 5-faces cannot be adjacent,
it follows that each 7-face has at most three adjacent 5-faces, and so it has non-negative
final charge. Each vertex and face of G∗ has a non-negative charge, therefore we obtain a
contradiction. �

Notice that there exist graphs which are not injective 4-colorable. Such a graph is pre-
sented in [9].

4 Injective 5-coloring of subcubic planar graphs

In this section we prove a theorem about injective 5-colorings of subcubic planar graphs.

Theorem 10 Every subcubic planar graph G with girth ≥7 is injectively 5-colorable.

Proof. Suppose that the theorem is false. Let a subcubic planar graph G with girth ≥7
be a minimal counterexample. We will obtain a contradiction.

Reducible configurations. From the previous section we know that a 1-vertex and
a 2-thread are reducible for 4-colorings, therefore they are also reducible for 5-colorings.
We use two more configurations:

Lemma 11 The configurations (a) and (b) of Fig. 5 are reducible.

Proof. (a) Let H be the configuration of Fig. 5(a) that is a subgraph of G. Then,
by the minimality, it follows that there exists an injective 5-coloring c of G − H .
Extending c on G would prove the reducibility of H . The vertex v has at least one
free color, vertices u and w have at least two. We color first v with its available
color. Afterwards, we color differently the remaining two vertices, which still have
two available colors.
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u w

v

(a)

a1

a2

a3
a4

a5

a6

a7

(b)

Figure 5: Reducible configurations for injective 5-colorings

(b) Let H be the configuration of Fig. 5(b), and let H be a subgraph of G. By the
minimality it follows that there exists an injective 5-coloring of the graph G − H .
Now, the vertex a5 has at least one free color, vertices a4 and a6 have three, and
vertices a1, a2, a3 and a7 have at least two free colors. Let us color the graph H (2).
It consists of a 7-cycle a1a2a3a4a5a6a7. First, color the vertex a5. That reduces
the number of free colors of its neighbors a4 and a6, they have now two free colors.
What remains is a 6-path with each vertex having at least two available colors. Such
a path is easily colored, thus a contradiction is obtained. �

The graph G∗ is again cubic and as such contains at least one 5-face. It cannot contain
smaller faces, due to the reducibility and the girth assumption in graph G. Afterwards,
note that each 5-face in G∗ is reducible in G, since at least two edges have to be subdivided
by one vertex, due to the girth assumption, and such a configuration is reducible by
Lemma 11. �

5 Injective ∆-coloring of the planar graphs

The results for subcubic graphs are in the following few sections generalized to the graphs
with higher maximum degree.

Theorem 12 Every planar graph G with maximum degree ∆ ≥ 4 and girth ≥ 19 is
injectively ∆-colorable.

Proof. Suppose that the theorem is false. Let a planar graph G with maximum degree
∆ ≥ 4 and girth ≥ 19 be a minimal counterexample for injective ∆-coloring. We will
obtain a contradiction.

Reducible configurations. We have proved that a 1-vertex and a 4-thread are re-
ducible for injective 3-colorings in subcubic graphs. These configurations are reducible
also for injective ∆-colorings, from very similar reasons.
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Lemma 13 The configurations of Fig. 6 are reducible, where in configuration (b) one of
the vertices a1, a2 is of degree ≤∆ − 1.

a1

a2

a3

a4

a5

b1

b2

b3

b4
b5

b6

b7

b8

b9

b10

c1

c2

c3

c4

c5

(a)

a1 a2

a3

a4

a5

b1

b2

b3

b4

b5 b6

b7

b8

b9

b10

c1

c2c3

c4

(b)

Figure 6:Reducible configurations for injective ∆-colorings

Proof. (a) Let H be the configuration of Fig. 6(a), and let H be a subgraph of G. By
the minimality of G, there exists an injective coloring c of the graph (G − H) ∪
{a1, a2, . . . , a5}. Now, the vertices b1, b2, . . . , b10 have at least two free colors, and
the vertices c1, c2, . . . , c5 have ∆ − 2 of them.

Let K(2) be the graph obtained from H (2) by removing the vertices a1, a2, . . . , a5.
A proper vertex coloring of K(2), with the number of free colors for each vertex as
defined above, is a proper injective coloring of H − {a1, a2, . . . , a5} and also gives
the extension of c to G. The graph K(2) has six components. Five of them are
trivial - including just one vertex with ∆ − 2 available colors. The last component
is the 10-cycle b1b2 . . . b10 where each vertex has two available colors. So, they can
be colored. It follows that the configuration H is reducible.

(b) The proof of reducibility of the configuration of Fig. 6(b) is similar as for the previous
one. Without loss of generality, we assume that vertex a1 is of degree ∆ − 1. Let
H be the configuration of Fig. 6(b), and let H be a subgraph of graph G. By the
minimality of G, there exists a coloring c of the graph (G − H) ∪ {a1, a2, . . . , a5}.

The non-colored vertices are b1, b2, . . . , b10 and c1, c2, c3, c4. Vertex b10 has at least
one available color, b2 has three, every other vertex bi, i ∈ {1, 3, 4, . . . , 9}, has two,
and vertices c1, . . . , c4 have ∆ − 2 free colors. Let us define the graph K(2) :=
H(2)−{a1, a2, . . . , a5} and color it. The graph K(2) has five components, four trivial
with just one vertex, and a 9-path. First, we color the trivial components. Those
are vertices ci, i ∈ {1, 2, 3, 4}, which have ∆−2 free colors, therefore they are easily
colored. It remains to color the path b1b2 . . . b10. We start at b10 and then continue
easily with b9, b8 to the last one, which is b1. The graph K(2) is colored, so the
coloring c can be extended to the graph G, and the configuration H is reducible.�
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Discharging rule. We use the following rule to redistribute the initial charge of G and
establish a contradiction by obtaining positive final charge:

Rule R1: Every k-vertex in G∗, k ≥ 4, sends 1
5

to each adjacent 5-face.

Final charge. Due to the reducibility of a 4-thread and the girth assumption, G∗ has
only ≥5-faces. We will redistribute the charge in such a way that every vertex and every
face in G∗ will have positive final charge.

Using the Lemma 13 we see that each vertex of the 5-face in G∗ is of degree ∆ ≥ 4
in G and thus also in G∗. Therefore, when applying rule R1 to G∗, each 5-face f receives
5 · 1

5
of charge, and its final charge is non-negative.

Now, we only have to show that vertices does not have negative charge after applying
rule R1. The initial charge for vertices is non-negative, since the minimal degree of vertices
in G∗ is 3. After applying R1, the final charge of a ≥4-vertex v is at least

ch0(v) −
1

5
d(v) = 2d(v) − 6 −

1

5
d(v) =

9

5
d(v) − 6 > 0.

All the vertices and faces have non-negative charge, therefore we obtain a contradiction
which establishes the theorem. �

6 Injective (∆ + 1)-coloring of the planar graphs

In this section the result on coloring graphs with (∆ + 1) colors is presented.

Theorem 14 Every planar graph G with girth ≥ 10 and maximum degree ∆ ≥ 4 is
injectively (∆ + 1)-colorable.

Proof. Suppose that the theorem is false. Let a planar graph G, with ∆ ≥ 4 and girth
≥10, be a counterexample with the smallest number of vertices and edges. We will obtain
a contradiction.

Reducible configurations. We start again at reducible configurations.

Lemma 15 The following configurations are reducible:

(a) a 1-vertex and a 2-thread;

(b) The configuration of Fig. 7 if one of the vertices u1, u2, u3, and u4 has degree
≤∆ − 1.

Proof. (a) A 1-vertex is reducible for injective ∆-colorings, therefore it is also for in-
jective (∆ + 1)-colorings.

Each vertex in a 2-thread has at most ∆ neighbors at distance two, so exactly one
available color. Vertices of a 2-thread have no common neighbor, therefore they can
be colored with the same color, if necessary. So, every coloring can be extended to
this configuration, thus it is reducible.
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a4
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u1

u2

u3

u4

v

Figure 7: Reducible configuration for injective (∆ + 1)-colorings

(b) Let H be a configuration of Fig. 7, and let it be a subgraph of G. Proving the
reducibility of H , we distinguish two cases: either one of the vertices u1, u4 is of
degree < ∆ or one of the vertices u2, u3 is of degree < ∆. In both cases by the
minimality of G, there exists an injective (∆ + 1)-coloring c of the graph (G −
H) ∪ {v, u1, u2, u3, u4}. So, in both cases it remains only to color vertices ai, i ∈
{1, 2, 3, 4}, and bj , j ∈ {1, 2, . . . , 5}.

Suppose first u1 is of degree <∆ (for u4 it is symmetric). Notice that b1 and b5 have
at least two free colors, and b2, b3 and b4 have at least ∆− 1 available colors. Now,
we define a graph K(2) := H(2) − {v, u1, . . . , u4}. Graph K(2) has two components.
First is the 5-cycle b1b2 . . . b5 which is trivially colorable, since two vertices have at
least two available colors, and three vertices have at least ∆ − 1 ≥ 3 free colors.
The second component is the 4-path a1a2a3a4 where the vertex a4 has only one free
color, and each of the remaining vertices has at least two available colors. Such a
path is colorable, so we can extend the coloring c to G.

Considering the second case, suppose u2 is of degree <∆ (for u3 it is symmetric). We
define the graph K(2) as in the previous case. Each of the vertices bj has at least two
available colors, so the 5-cycle b1b2 . . . b5 is colorable. The vertices a1 and a4 have
only one available color, a2 has three free colors, enabling the path to be properly
colored. The K(2) can be colored, therefore the configuration H is reducible. �

Discharging rules. We redistribute the initial charge of the vertices and faces of G∗

using the following two rules:

Rule R1: Every ≥4-vertex of graph G∗ sends 1
2

of charge to every adjacent 5-face.

Rule R2: Let v be the vertex of degree ∆ and u its neighbor in G of degree 3. If u
lies on a 5-face f such that v and f are not incident, then v sends 1

4
to f .

14



Final charge. We show that the total charge of G∗ is non-negative after applying the
discharging rules. Let us start with faces again. The inital charge is negative only for
5-faces. Every 5-face in G∗ contains either two ≥4-vertices or at least four 3-vertices with
all neighbors ui of degree ∆, where each ui corresponds to a vertex v of rule R2, otherwise
a reducible configuration in G is encountered. In the former case, each of ≥ 4-vertices
sends 1

2
by rule R1, so the 5-face receives 1. In the latter case, every vertex ui sends 1

4
by

rule R2. We have at least four such vertices, thus the 5-face receives 1 of charge, and it
is non-negative again.

It remains to show that all vertices have non-negative charge. The 3-vertices have
non-negative charge, since the rules do not affect them.

Let v be a k-vertex, 4 ≤ k < ∆ in G∗. It sends charge only by rule R1. The k-vertex v
has at most k adjacent 5-faces, therefore it sends at most k

2
of charge, and its final charge

is non-negative.
Now, only the ∆-vertices remain to be considered. They send charge by rules R1 and

R2. Suppose the ∆-vertex v has k adjacent 5-faces. Observe that if there exists a 3-vertex
u in G adjacent to a ∆-vertex v, then the edge uv is not adjacent to a 5-face in G∗ due
to the girth assumption. Therefore, rule R2 is at most ∆− 2k times applied at v. So, the
final charge is

ch∗(v) ≥ ch0(v) −
1

2
k −

1

4
(∆ − 2k) =

7

4
∆ − 6 > 0.

All charges are non-negative, a contradiction. �

7 Injective (∆ + 4)-coloring

In this section we show that ∆ + 4 colors are sufficient to injectively color a planar graph
G with girth >4 and large enough maximum degree ∆. Notice that girth >4 is necessary,
since there are graphs of girth four that have precisely 3

2
∆ colors. For example, take a

∆-regular Shanon’s triangle with each edge subdivided and ∆ even.

Theorem 16 Every planar graph G with girth ≥5 and maximum degree ∆ ≥ 139 can be
injectively colored with ∆ + 4 colors.

Proof. Suppose that the theorem is false. Let a graph G be a minimal counterexample.
We will obtain a contradiction.

Let ǫ ≤ 1
5
, ǫ ∈ R

+, and b = ⌈6
ǫ
⌉ ≥ 30. If a vertex has degree ≥ b, it is called a big

vertex. Vertices which are not big are small.

Reducible configurations. In the previous sections, we proved that a 1-vertex and
a 2-thread are reducible for the injective (∆ + 1)-coloring, thus they are also for the
injective (∆ + 4)-coloring. In the proof we also use the reducible configurations of Fig. 8.
Small vertices are drawn as squares and circled vertices have degree as it is depicted or
denoted. We want to emphasize that in Fig. 8 drawings are not fixed. Only the types of
the neighborhoods of the vertex v are prescribed. For example, in (C4) the vertices w1

and w2 can be consecutive around v in the embedding of G.
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Lemma 17 The configurations of Fig. 8 are reducible.

Proof. We prove the reducibility of each configuration separetly. In each proof we sup-
pose that the configuration is contained in the counterexample G. By minimality of G,
we assume that there exists a coloring c of the graph G/uv, where uv is an edge in each
configuration of Fig. 8. We expand back the edge uv and extend the coloring c to G by
recoloring vertices u and v. In this way, we establish the reducibility of the configuration.

For each non-colored vertex x ∈ {u, v}, we define L(x) as the list of its free colors.
Let l(x) = |L(x)| be the number of available colors for vertex x. Notice that the number
of available colors is obtained by counting all the possible neighbors at distance two. We
subtract this number from ∆ + 4 in order to obtain a lower bound of l(x).

Since we use the same procedure in all proofs, as it was described above, we list just
the lower bounds of l(u) and l(v) for all configurations of Fig. 8. Since u and v have no
common neighbor, it is sufficient for each of them to preserve one available color.

(C1) l(v) ≥ 1 and l(u) ≥ 3;

(C2) l(v) ≥ ∆ − 2b + 7 and l(u) ≥ 3;

(C3) l(v) ≥ ∆ − 5b + 12 and l(u) ≥ ∆ − 2b + 3;

(C4) l(v) ≥ 2 and l(u) ≥ 2;

(C5) l(v) ≥ ∆ − 2b + 6 and l(u) ≥ 2;

(C6) l(v) ≥ 1 and l(u) ≥ 1;

(C7) l(v) ≥ ∆ − 2b + 5 and l(u) ≥ 1;

(C8) l(v) ≥ ∆ − 2 and l(u) ≥ ∆ − b + 1;

(C9) l(v) ≥ ∆ − b + 1 and l(u) ≥ ∆ − b + 1;

(C10) l(v) ≥ ∆ − 2b + 4 and l(u) ≥ ∆ − b + 1;

(C11) l(v) ≥ ∆ − 5 and l(u) ≥ ∆ − b − 2;

(C12) l(v) ≥ ∆ − b − 1 and l(u) ≥ ∆ − b − 1;

(C13) l(v) ≥ ∆ − 2b + 3 and l(u) ≥ ∆ − b.

Notice that vertices u and v in all configurations have enough available colors for ∆ >
5b − 12 ≥ 138. �

Initial charge. We assign charge to vertices and faces of G. For every v ∈ V (G), we
assign an initial vertex charge ch0(v) = 9

5
d(v)− 6, and for every face f ∈ F (G), we assign

an initial face charge ch0(f) = 6
5
r(f) − 6. Using Euler’s formula, in a similar way as in

the introduction, one can easily show that the total amount of charge is −12.
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Figure 8: Reducible configurations for the injective (∆ + 4)-coloring
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Discharging rules. We use the following discharging rules to make the final charge of
all faces and vertices positive.

Rule R1: A ≥3-vertex sends 6
5

to every adjacent 2-vertex.

Rule R2: A big vertex v sends 9
5
−ǫ to each adjacent 3-vertex w, if w has an adjacent

2-vertex. If other two neighbors of w are of degree ≥3, then v sends 3
5

to w.

Rule R3: A small vertex v of degree ≥5 sends ǫ to each adjacent 3-vertex w, if the
other two neighbors of w are a 2-vertex and a big vertex.

Rule R4: Suppose a big vertex v has an adjacent vertex w of degree 3, 4, 5 or 6.
Then, v sends 1

5
to each neighbor z of w that has a degree 3 and that has the other two

neighbors small.

Rule R5: A small vertex of degree ≥7 sends 1
5

to an adjacent 3-vertex w if the other
two neighbors of w are small and of degree ≥3.

Rule R6: A big vertex sends 6
5

to an adjacent 4-vertex, which has at least two adja-
cent 2-vertices.

Rule R7: A big vertex sends 3
5

+ 2ǫ to an adjacent 5-vertex.

Rule R8: A big vertex sends 2ǫ to an adjacent 6-vertex.

Rule R9: A big vertex sends 6
5

to an adjacent 6-vertex w, if all other neighbors of w
are 2-vertices.

Rule R10: Suppose that a big vertex v has an adjacent 2-vertex w. Then, v sends 2
5

to the other neighbor of w if it is of degree 6, 7, 8 or 9.

Rule R11: A big vertex sends 4
5

to each adjacent 7-vertex.

Final charge. Let v be a d-vertex of G. We consider several cases regarding d:

• v is a 2-vertex. It cannot have an adjacent 2-vertex, since the 2-threads are reducible.
Therefore, v does not send any charge. It receives 6

5
of charge from each neighbor

by rule R1, so its final charge is

ch∗(v) = −
12

5
+ 2 ·

6

5
= 0.

• v is a 3-vertex. The initial charge of a 3-vertex v is −3
5
. To prove that its final

charge is non-negative, we consider a few subcases:
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(i) v has more than one adjacent 2-vertex. Then the reducible configuration (C1)
occurs.

(ii) v has only one adjacent 2-vertex. Then, v sends 6
5

to it by R1. We denote the
other two neighbors of v by x and y. Consider three possibilities. If d(x) ≤ 4
or d(y) ≤ 4, we obtain the reducible configuration (C1). In case that x and y
are both small, we obtain the reducible configuration (C2). Otherwise, one of
them is big and the other one has degree >4. Then, the discharging rules R2
and eventually R3 are used. So, the final charge is

ch∗(v) ≥ −
3

5
−

6

5
+

(

9

5
− ǫ

)

+ ǫ = 0.

(iii) v has no adjacent 2-vertex. If v is adjacent with some big vertex, then the
rule R2 is applied, hence v receives 3

5
and it has non-negative final charge. If

v has no big neighbor, then rule R4 or R5 applies, since the configuration (C3)
is reducible. From discharging rules, we obtain that each neighbor sends or it
is sent through it exactly 1

5
of charge, so in total 3

5
, which is sufficient for v to

have non-negative charge.

• v is a 4-vertex. It has 6
5

of initial charge. We consider few subcases again:

(i) v has at least three adjacent 2-vertices. Then, we obtain the reducible config-
uration (C4).

(ii) v has exactly two adjacent 2-vertices. If it has also an adjacent big vertex, then
the rule R6 is used. Thus, the big vertex sends 6

5
of charge and v gives away

12
5
, therefore its final charge is 0. If there is no adjacent big vertex, we obtain

(C5).

(iii) v has at most one adjacent 2-vertex. In this case, it has enough charge, since
it sends at most 6

5
.

• v is a 5-vertex. It has initial charge 15
5

and it sends 6
5

of charge to every adjacent
2-vertex by R1, and ǫ to every adjacent 3-vertex by R3. We consider three subcases:

(i) v has at least four adjacent 2-vertices. Then, the configuration (C6) occurs.

(ii) v has exactly three adjacent 2-vertices. If it has no adjacent big vertex, then it
is reducible by (C7). And, if there is a big neighbor, v receives 3

5
+ 2ǫ by R7,

so the final charge of v is

ch∗(v) ≥
15

5
− 3 ·

6

5
− ǫ +

(

3

5
+ 2ǫ

)

= 0.

(iii) v has at most two 2-neighbors. Then, it has final charge

ch∗(v) ≥
15

5
− 2 ·

6

5
− 3ǫ ≥ 0.
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• v is a 6-vertex. It has initial charge ch0(v) = 24
5
. The vertex v may send 6

5
to

adjacent 2-vertices by rule R1, and ǫ to adjacent 3-vertices by rule R3. We consider
four subcases:

(i) v has six adjacent 2-vertices. If there is a small vertex at distance two, the
configuration is reducible by (C8). On the other hand, if there are only big
vertices at distance two, each of them sends 2

5
to v by R10, and so the final

charge of v is

ch∗(v) =
24

5
− 6 ·

6

5
+ 6 ·

2

5
= 0.

(ii) v has five adjacent 2-vertices. If v has a big neighbor, then v receives 6
5

by R9.
Thus the final charge is

ch∗(v) =
24

5
− 5 ·

6

5
+

6

5
= 0.

Now, we assume that v has no big neighbor. If v has a small vertex at distance
two with a 2-vertex as a common neighbor, then we obtain (C9). Otherwise,
we obtain a configuration with five big vertices at distance two, whose common
neighbors with v are the five 2-vertices. Each of them sends 2

5
to v by R10.

The vertex v may also send charge by R3 to the neighbor of degree ≥ 3. So,
we infer

ch∗(v) =
24

5
− 5 ·

6

5
+ 5 ·

2

5
− ǫ > 0.

(iii) v has four adjacent 2-vertices. If v has an adjacent big vertex, then its final
charge is

ch∗(v) ≥
24

5
− 4 ·

6

5
− 2ǫ + 2ǫ = 0.

If v has no adjacent big vertex, then it has a big vertex u at distance two with
a 2-vertex as a common neighbor, otherwise we get the reducible configuration
(C10). The vertex u sends 2

5
of charge by R10, so the final charge of v is

ch∗(v) ≥
24

5
− 4 ·

6

5
− 2ǫ +

2

5
≥ 0.

(iv) v has at most three adjacent 2-vertices. Then, its final charge is

ch∗(v) =
24

5
− 3 ·

6

5
− 3ǫ ≥ 0.

• v is a d-vertex with d ∈ {7, 8, 9}. In this case, the vertex v may also send charge to
other vertices by R1, R3 or R5. Let d2 be the number of adjacent 2-vertices and d3

the number of adjacent 3-vertices of v. Since d ≥ d2 + d3, the final charge of v is

ch∗(v) ≥
9

5
d − 6 −

6

5
d2 −

1

5
d3

≥
9

5
d − 6 −

6

5
d2 −

1

5

(

d − d2

)

≥
8

5
d − 6 − d2.
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Thus, the vertex v has non-negative final charge, if d2 ≤
8
5
d− 6. Now, it remains to

consider only the possibilities d = 7 with d2 ∈ {6, 7}, d = 8 with d2 ∈ {7, 8}, and
d = 9 with d2 = 9.

(a) Suppose that d = 7, 8 or 9 and d2 = d. If v has an adjacent small vertex at
distance two, we have a reducible configuration by (C11). Otherwise, v gets 2

5
d

of charge by the rule R10, and so it has enough charge to send to all adjacent
2-vertices.

(b) Suppose that d = 7 or 8 and d2 = d − 1. In this case, v has an adjacent
≥ 3-vertex w. We denote vertices at distance two that are not adjacent to w
by w1, w2, . . . , wd−1. If w and some vertex wi are small, then the reducible
configuration (C12) is obtained. In case that all vertices wi are big, we use the
rule R10 to obtain enough charge. Finally, if w is a big vertex, then the final
charge of v is

ch∗(v) =
9

5
d −

6

5

(

d − 1
)

+
4

5
≥ 0.

• v is a small vertex of degree ≥10. It sends at most 6
5

along each edge, thus its final
charge is at least

ch∗(v) ≥
9

5
d − 6 −

6

5
d =

3

5
d − 6 ≥ 0.

• v is a big vertex. It sends at most 9
5
− ǫ along each edge, thus it sends at most

(9
5
− ǫ)d of charge. So, after appying the discharging rules its final charge is

ch∗(v) ≥
9

5
d − 6 −

(

9

5
− ǫ

)

d = ǫ d − 6.

Considering that v has degree d ≥
⌈

6
ǫ

⌉

, we infer that their final charge is non-
negative.

This establishes the theorem. �
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