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Abstract

In this paper, we study cyclic edge-cuts in fullerene graphs. First, we show
that the cyclic edge-cuts of a fullerene graph can be constructed from its trivial
cyclic 5- and 6-edge-cuts using three basic operations. This result immediatelly
implies the fact that fullerene graphs are cyclically 5-edge-connected. Next, we
characterize a class of nanotubes as the only fullerene graphs with non-trivial
cyclic 5-edge-cuts. A similar result is also given for cyclic 6-edge-cuts of fullerene
graphs.

1 Introduction

Since the discovery of the first fullerene molecule [9] in 1985, the fullerenes have been
the objects of interest of scientists all over the world. The name fullerenes was given to
cubic carbon molecules in which the atoms are arranged on a sphere in pentagons and
hexagons. A useful and comprehensive overview of the actual development is the book
of Fowler and Manolopoulos [6], where the authors bring results from several different
topics in mathematics and chemistry concerning fullerenes and their structure.

Many properties of fullerene molecules can be studied using mathematical tools.
Thus, mathematicians adopted the notion of fullerenes and defined the fullerene graphs

as the plane cubic 3-connected graphs with only pentagonal and hexagonal faces.
Various structural properties of fullerene graphs have been studied. See the papers

[1, 2, 4, 13] for results on perfect matchings i.e. Kekulé structures of fullerenes. In [7]
the independence number of fullerenes is studied. One of the central questions remains
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hamiltonicity of this class of graphs. See [10] for a list of open problems on fullerene
graphs.

Similar problems are studied also for the nanotubes. Nanotubes are members of the
fullerene structural family. They are cylindrical in shape, with the ends typically capped
with a hemisphere of the fullerene structure. See [11] for results on the number of Kekulé
structures in nanotubes. Nanotubes with the ends left open (open-ended nanotubes) are
also interesting objects, see e.g. [12].

Došlić proved that fullerene graphs are cyclically 4-edge connected [2] and cyclically
5-edge connected [3]. The cyclic edge-connectivity of a fullerene graph cannot exceed
5, since it contains twelve pentagons, thus, there are at least twelve cyclic 5-edge-cuts
– formed by the edges pointing outwards of each pentagonal face. There are also cyclic
6-edge-cuts formed by the edges pointing outwards of each hexagonal face. These cyclic
5- and 6-edge-cuts will be called trivial.

Regarding the edge-cuts, there are some natural questions to ask: Are the twelve
trivial cyclic 5-edge-cuts the only cyclic 5-edge-cuts in the fullerene graphs? Or, there
are fullerenes with more than twelve cyclic 5-edge-cuts! Similar questions can be posed
for the cyclic edge-cuts of bigger size.

In this paper, we study cyclic edge-cuts in fullerene graphs. First, as an auxiliary
result, we show that the cyclic edge-cuts of a fullerene graph can be constructed from its
trivial cyclic 5- and 6-edge-cuts using three basic operations. This result immediatelly
implies the fact that fullerene graphs are cyclically 5-edge-connected. Similar technique
is used in [5] to characterize boundary sequences in fullerene-like structures. Next, we
characterize a class of nanotubes as the only fullerene graphs with non-trivial cyclic
5-edge-cuts. A similar result is also given for cyclic 6-edge-cuts of fullerene graphs.

An edge-cut of a graph G is a set of edges C ⊂ E(G) such that G − C is discon-
nected. A graph G is k-edge-connected if G cannot be separated into two components
by removing less than k edges. An edge-cut C of a graph G is cyclic if each component
of G−C has a cycle. A graph G is cyclically k-edge-connected if G cannot be separated
into two components, each containing a cycle, by removing less than k edges.

A graph drawn in the plane such that the edges are not crossing is a plane graph.
A plane graph has one infinite face, called the outer face. All other faces are finite, and
they are called inner faces.

2 Generating the cyclic edge-cuts

In this section, we introduce three operations to construct all cyclic edge-cuts of a
fullerene graph from the trivial ones. These operations are used in the study of cyclic
5- and 6-edge-cuts in the next sections. In the figures of this paper, the edges of the
edge-cuts are marked by dotted lines passing through them. The pentagonal faces are
usually in the figures filled with grey color.

Let G be a fullerene graph and C ⊂ E(G) be a cyclic k-edge-cut. If we remove the
edges of C the graph G splits into two components, each containing a cycle. Because
there are twelve pentagons in G, at least one of the two components contains at most
six pentagons. Denote this component by H . The vertices of degree one and two in H
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are precisely the endvertices of the cut edges, thus they are all incident with the outer
face O of H . We use the following simple property of the edge-cuts in fullerene graphs:

Lemma 1 Let C be an edge-cut in a fullerene graph G. Suppose that a component H

of G− C does not contain any vertices of degree one. Let n2 be the number of vertices

of degree two, f5 the number of pentagons, and l the size of the outer face of H. Then,

6− f5 = 2n2 − l.

Proof. Let m be the number of edges, n3 the number of vertices of degree three, and
f6 the numbers of hexagons of H . Then, obviously

2n2 + 3n3 = 2m = 5f5 + 6f6 + l.

On the other hand, by Euler’s formula, we have

n2 + n3 + f5 + f6 + 1−m− 2 = 0.

Hence,
(4n2 + 6n3 − 4m) + (5f5 + 6f6 + l − 2m) + 2n2 + f5 − l − 6 = 0,

which finally implies that
6− f5 = 2n2 − l.

�

Now, we present the three operations. Each of the operations (Oi) modifies the cyclic
k-edge-cut C into another cyclic edge-cut Ci. Moreover, G − Ci contains a component
Hi which is a proper subgraph of H . Let n denote the number of vertices of H .

(O1) Suppose that v is a vertex of degree one in H . Then, exactly two edges incident
with v (in G) belong to the cut C, say e1 and e2. Let the third edge incident with
v be e3. Then, obviously C1 = C \ {e1, e2} ∪ {e3} is a cyclic (k − 1)-edge-cut in
G with a component H1 = H − v on n− 1 vertices having at most six pentagonal
faces. See Figure 1 for illustration.

H

v

e2e1

e3

C

→

H1

v

e2e1

e3

C1

Figure 1: If a component H contains a vertex of degree one, then using (O1) one can
modify the k-edge-cut C into a (k − 1)-edge-cut C1.

(O2) Suppose that H contains at least two inner faces and that v1 and v2 are two
adjacent vertices of degree two in H . Let e be the edge v1v2 and ei ∈ C, e′i 6∈ C

the other two edges incident with vi, i = 1, 2, see Figure 2. Then C2 = C \
{e1, e2} ∪ {e

′

1, e
′

2} is a k-edge-cut in G with a component H2 = H − v1 − v2 on
n− 2 vertices having at most six pentagonal faces. Notice that the assumption of
the number of inner faces of H assures that C2 is a cyclic edge-cut.
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H

v1 v2

e1 e2

e′
1

e′
2

C

→

H2

v1 v2

e1 e2

e′
1

e′
2

C2

Figure 2: If a component H contains two adjacent vertices of degree two, then using
using (O2) one can modify the k-edge-cut C into a k-edge-cut C2.

(O3) Suppose that the outer face O is of size 2k with k 2-vertices and k 3-vertices
alternating on O. Each of the 3-vertices on O is incident with exactly one edge
that is not on O.

H

C

→

H3

C3

Figure 3: If the vertices of the outer faces of H are consequently of degree 2 and 3, then
using (O3) one can modify the k-edge-cut C into a k-edge-cut C3.

We claim that C3 is a k-edge-cut. See Figure 3 for illustration. Let v1, v2, . . . , vk

be the vertices of degree three on O in a cyclic order. If some vi and vi+1 (where
vk+1 = v1) were adjacent, there would be a triangular face, what is not possible.
If vi and vj (j > i + 1) were adjacent, then also vi+1 and vj−1 would be adjacent,
otherwise there would be a face of size at least seven. But then also vi+2 and vj−2

would be adjacent, etc., and after finitely many such steps we get a face of size 3
or 2, what is impossible. Therefore, each vi is adjacent to a vertex not on O.

Now we prove that C3 is a cyclic edge-cut. Suppose that the graph H3 obtained
from H by removing the vertices incident with O contains a vertex w of degree
at most one in H3. Then, w is linked to at least two vertices on O, say vi and vj ,
i < j. If j = i + 1, then there would be a face of size four. On the other hand, if
j > i+1, then there would be a face of size at least eight. Altogether, we conclude
that H3 is of minimum degree two, hence, it contains a cycle.

Notice, that if C is a trivial cyclic edge-cut and the component H is a cycle on 5 or
6 vertices, then the operations (O1), (O2), and (O3) cannot be applied.

Lemma 2 Let C be a non-trivial cyclic k-edge-cut in a fullerene graph G, and let H be

a component of G−C which contains at most six pentagons. Then, one of the operations

(O1), (O2), and (O3) can be applied to get another cyclic edge-cut C∗ with a component

H∗ of G− C∗ such that it is a proper subraph of H.

Proof. If the component H contains a vertex of degree one, then the operation (O1)
can be easily applied, and we are done. Thus, in what follows, we assume that H is of
minimum degree two.
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Notice that H has at least two inner faces; otherwise we infer that H is a trivial
cyclic 5- or 6-edge-cut, which is excluded by the assumption of the lemma. Now, if H

contains two adjacent vertices of degree two, then the operation (O2) can be applied to
obtain a new edge-cut that satisfies the requirements of the lemma.

Suppose now that there are no vertices of degree two adjacent in H . Lemma 1 gives
us the equality

6− f5 = 2n2 − l,

where f5 is the number of pentagons in H , n2 is the number of 2-vertices, and l is the
size of the outer face O. Because of the choise of the component H , it holds 6− f5 ≥ 0.
On the other hand, since there is at least one vertex of degree three between each two
vertices of degree two on O, we have 2n2 − l ≤ 0. Therefore, we conclude that f5 = 6
and l = 2n2 = 2k. Hence, there are k 2-vertices and k 3-vertices alternating on O, so
the operation (O3) can be applied. �

Theorem 1 The cyclic edge-cuts of a fullerene graph can be constructed from the trivial

ones using the reverse operations of (O1), (O2), and (O3).

Proof. Let C be a cyclic edge-cut in a fullerene graph G. If C is not trivial, we apply
Lemma 2. As the number of vertices of the component H is decreasing, after finitely
many reverse operations of (O1), (O2), (O3) we obtain a trivial cyclic edge-cut. Now,
reversing this sequence of operations, one infers C. �

3 Cyclic edge-cuts in nanotubes

Consider the fullerene graphs and the cyclic edge-cuts in them. The number of pentagons
in the components of G− C may vary. If one of the components contains less than six
pentagons, then the other component can be arbitrarily large. On the other hand, if
both components contain at most six pentagons, we can apply the operations introduced
in the previous section to both of them.

A cyclic edge-cut C of a fullerene graph G is non-degenerate if both components
of G − C contain precisely six pentagons. Otherwise, C is degenerate. Obviously, the
trivial cyclic edge-cuts are degenerate.

There is a family of fullerene graphs, which have many non-degenerate cyclic edge-
cuts – the nanotubes. Nanotubes are cylindrical in shape, with the ends typically capped
with a hemisphere-like structure. The cylindrical part of the nanotube can be obtained
from a planar hexagonal grid by identifying objects lying on two parallel lines. The way
the grid is wrapped is represented by a pair of indices (p1, p2). The numbers p1 and p2

denote the coefficients of the linear combination of the unit vectors a1 and a2 such that
the vector p1a1 + p2a2 joins pairs of identified points, see Figure 4. The following result
is perhaps known, but for sake of completness, we include it:

Lemma 3 There are precisely six pentagons in each of the two caps of a nanotube.
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a1

a2

p1a1 + p2a2

h1

h2

h3 h4

C

e1

e2

e3

Figure 4: An example of a nanotube of type (6, 2) and a cyclic edge-cut C =
{e1, e2, e3, . . .} cutting through the hexagons h1, h2, h3, . . . in it.

Proof. Let G be a nanotube of type (p1, p2) and let p = p1 + p2. Then, inside the
cylindrical part of G, we can find a cyclic sequence of p hexagons (h1, h2, . . . , hp) such
that hi and hi+1 are adjacent (where hp+1 = h1). Moreover, if we identify each hexagon
with its central point, then the vector hi+1 − hi is either a1 or a2, i = 1, . . . , p. Let ei

be the edge incident with both hi and hi+1, i = 1, . . . , p. Then, C = {e1, . . . , ep} is a
non-degenerate cyclic p-edge-cut in G. It is easy to see that the length of the outer face
of both components H1 and H2 of G − C is equal, since the one is the translation of
the other for a vector a2 − a1. In this translation, the 2-vertices on the outer face of
H1 correspond to the 3-vertices on the outer face of H2 and vice-versa. On the other
hand, the number of 2-vertices on both of them is p, thus, the same is the number of
3-vertices. Now, for both components in the equation given by Lemma 1

6− f5 = 2n2 − l

we have 2k − (k + k) = 0 on the right side, thus the number f5 of pentagons is six in
both H1 and H2. �

Notice that the nanotubes are not the only fullerene graphs having non-degenerate
cyclic edge-cuts. The fullerene graph depicted in Figure 5 has precisely one non-
degenerate cyclic edge-cut, and obviously it is not a nanotube, since it needs more
than two unit vectors to traverse the hexagons around.

Figure 5: An example of a fullerene graph with non-degenerate cyclic edge-cut, which
is not a nanotube.
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4 Cyclic 5-edge-cuts

In this short section, we consider the cyclic 5-edge-cuts. Notice that Theorem 1 gives
immediately the following facts:

Corollary 1 Every fullerene graph is cyclically 5-edge-connected.

Proof. Since the size of the cyclic edge-cuts does not increase while using the operations
(O1), (O2), and (O3), the size of the cyclic edge-cut cannot be smaller than the size of
the trivial ones, therefore, there are no cyclic edge-cuts of size less than five. �

Corollary 2 There are no nanotubes of types (p1, p2) with p1 + p2 ≤ 4.

Proof. Each nanotube of type (p1, p2) contains a cyclic (p1 + p2)-edge-cut. Thus, p1 +
p2 ≥ 5. �

Another easy application of the Theorem 1 is the characterization of fullerene graphs
with non-trivial cyclic 5-edge cuts.

Figure 6: The graphs Gk are the only fullerene graphs with non-trivial cyclic 5-edge-cuts.

Let Gk denote the fullerene graph with the structure that two caps formed of six
pentagons are joined by k layers of hexagons, see Figure 6. Notice that for k ≥ 1
these graph are nanotubes of type (5, 0). Also notice that the graph G0 is isomorphic
to the dodecahedron. It is easy to see that the graph Gk has precisely k non-trivial
non-degenerate cyclic 5-edge cuts.

Theorem 2 A fullerene graph has non-trivial cyclic 5-edge-cuts if and only if it is

isomorphic to the graph Gk for some integer k ≥ 1.

Proof. As follows from Theorem 1, for each non-trivial cyclic 5-edge-cut there is a
finite sequence of operations which yields a trivial edge-cut. Since there are no cyclic
4-edge-cuts, there cannot be any operation (O1) in the sequence.

Let us reconstruct the original edge-cut. We start with a pentagon, the only trivial
cyclic 5-edge-cut. If the operation (O2) was used, there would be a quadrangular face.
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(O3)
←−

(O3)
←−

(O3)
←− etc.

Figure 7: The only possible way to reconstruct a cyclic 5-edge-cut.

So the operation (O3) has to be used, and hence a configuration of six pentagons is
obtained, see Figure 7.

In the next steps the operation (O2) cannot be used again, because there would be
more than six pentagons in the component inside the cut, so the only possible operation
is (O3). Therefore, for all non-trivial cyclic 5-edge-cuts C in a fullerene graph G one of
the components of G− C has the following structure: it contains a configuration of six
pentagons then surrounded by certain number of rings each contanining five hexagons.
Moreover, since the cut is non-trivial, the other component cannot be a pentagon only,
thus it also has the structure described above. Altogether, the fullerene graph G is
isomorphic to Gk for some k ≥ 1. �

Corollary 3 All non-trivial cyclic 5-edge-cuts in fullerene graphs are non-degenerate.

Proof. By Theorem 2, the graphs Gk are the only fullerene graphs with non-trivial
cyclic 5-egde-cuts and all non-trivial cyclic 5-edge-cuts of the graphs Gk are non-dege-
nerate. �

Corollary 4 The graphs Gk, k ≥ 1, are the only nanotubes of type (p1, p2) with p1+p2 =
5.

Proof. The claim easily follows from Theorem 2 and the fact that each nanotube of
type (p1, p2) has a non-degenerate (p1 + p2)-edge-cut. �

5 Cyclic 6-edge-cuts

Unlike the non-trivial cyclic 5-edge-cuts, not all the non-trivial cyclic 6-edge-cuts of
fullerene graphs are non-degenerate. In Figure 8, a sequence of six degenerate cyclic
6-edge-cuts is depicted.

Theorem 3 There are precisely seven non-isomorphic graphs that can be obtained as

components of degenerate cyclic 6-edge-cuts with less than six pentagons. Moreover, the

graphs with i pentagons are unique for i = 0, 1, . . . , 4.

Proof. By Theorem 1 each degenerate cyclic 6-edge-cut can be reconstructed from a
trivial one.
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(O1)
←−

(O2)
←−

(O2)
←−

(O2)
←−

(O2)
←−

(O2)
←−

(O2)
←−

Figure 8: Degenerate cyclic 6-edge-cuts that can be reconstructed from a pentagon.

If we start with a trivial cyclic 6-edge-cut, which is degenerate, then the operation
(O1) yields a cyclic 7-edge-cut, the operation (O2) creates a quadrangular face, and the
operation (O3) gives a configuration containing six pentagons.

Let us start with a pentagon. To avoid creating cyclic 7-edge-cuts, quadrangular
faces, or too many pentagons, we can only use the operation (O1) once and then the
operation (O2) several times, see Figure 8. More precisely, we can use (O2) consequently
at most five times. Using (O2) once more yields a configuration of six pentagons. This
way we get all non-trivial degenerate cyclic 6-edge-cuts. �

In the sequel, we deal with non-degenerate cyclic 6-edge-cuts. In Figures 9 and 10,
the nanotubes of the types (p1, p2) with p1 + p2 = 6 with examples of non-degenerate
cyclic 6-edge-cut in them are depicted.

Figure 9: The nanotubes of types (6, 0) and (5, 1) with examples of cyclic 6-edge-cut in
both of them.

Nanotubes end with caps, each containing six pentagons. For the nanotubes of type
(5, 0) there is only such cap possible, see Figure 7. How can the caps of nanotubes of
the types (p1, p2) with p1 +p2 = 6 look like? Is there at least one cap possible for all four
types of nanotubes? The answers are consequences of the following characterization:

Theorem 4 A fullerene graph has a non-degenerate cyclic 6-edge-cut if and only if it a

nanotube of type (p1, p2) with p1 + p2 = 6, or it is a nanotube of type (5, 0) with at least

two layers of hexagons.
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Figure 10: The nanotubes of types (4, 2) and (3, 3) with examples of cyclic 6-edge-cuts
in them.

Proof. It is easy to see that all the nanotubes of type (p1, p2) with p1 + p2 = 6 have
non-degenerate cyclic 6-edge-cuts, e.g. those illustrated in Figures 9 and 10. Notice
that the nanotube G1 of type (5, 0) has only one non-degenerate cyclic edge-cut of size
five. The nanotubes Gk, k ≥ 2 of type (5, 0) have non-degenerate cyclic 6-edge-cuts,
e.g. those depicted in Figure 12.

Suppose a fullerene graph G has a non-degenerate cyclic 6-edge-cut C, separating
the graph into the components H1 and H2. Then we can reconstruct the cut C from
the trivial ones with respect to H1 and also with respect to H2.

To reconstruct a cyclic 6-edge-cut, one can start with a trivial 5-edge-cut or a trivial
6-edge-cut.

(O3)
←−

(O3)
←− (6, 0)

Figure 11: The cyclic 6-edge-cuts reconstructed from a hexagon.

If we start with a hexagon, the operation (O1) cannot be used. If the operation (O2)
was used, there would be a quadrangular face. So the operation (O3) has to be used and
a configuration containing six pentagons is obtained, see Figure 11. In the next steps
only the operation (O3) can be used again, otherwise there are more than six pentagons
inside the cut. This way we get a cap of the nanotube of type (6, 0).

If we start with a pentagon, the operation (O1) has to be used exactly once, since
the operations (O2) and (O3) do not change the size of the edge-cut. If (O1) is not used
as a first operation, we first get some non-trivial cyclic 5-edge-cut, thus the fullerene
is the nanotube of type (5, 0). Starting with some nontrivial 5-edge-cut, after applying
the operation (O1), the operation (O2) can be used at most four times, see Figure 12. If
there was only one layer of hexagons, all these cyclic 6-edge-cuts would be degenerate,
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(O1)
←−

(O2)
←−

(O2)
←−

(O2)
←−

(O2)
←−

(O2)
←−

Figure 12: The cyclic 6-edge-cuts reconstructed from a non-trivial cyclic 5-edge-cut.

therefore there are at least two layers of hexagons in the nanotube.
If we start with a pentagon and first apply the operation (O1), as a second step we

have to use (O2). In the next steps we get the cyclic 6-edge-cuts depicted in Figures 13
and 14. In some steps both (O2) and (O3) can be applied, in some steps only (O2) or
only (O3) is applicable. Once there are six pentagons in the component and only one of
the operations can be used, we do not continue in listing more edge-cuts, because the
structure of the corresponding components is determined by the configuration of the
six pentagons. In all such cases we get the caps of the nanotubes of type (p1, p2) with
p1 + p2 = 6. �

(O2)
←−

(O2)
←−

(O2)
←−

(O2)
←−

↑ (O3) ↑ (O3) ↑ (O3) ↑ (O3)

↑ (O3) ↑ (O3) ↑ (O3) ↑ (O3)

(6, 0) (6, 0) (6, 0) (6, 0)

Figure 13: The cyclic 6-edge cuts reconstructed from a trivial cyclic 5-edge-cut (first
part). These cuts lead to nanotubes of type (6, 0).

Corollary 5 There are five possible caps for the natotubes of type (6, 0). On the other

hand, the configurations of the six pentagons in the caps of the nanotubes of types (5, 1),
(4, 2), and (3, 3) are unique.
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(O2)
←−

(O2)
←− (3, 3)

ւ (O2) ւ (O2)

(O2)
←−

(O2)
←−

(O2)
←−

(O2)
←− (5, 1)

տ (O2) տ(O2)

(O2)
←−

(O2)
←− (4, 2)

Figure 14: The cyclic 6-edge cuts reconstructed from a trivial cyclic 5-edge-cut (second
part). These cuts lead to the nanotubes of other types.

Proof. In the proof of Theorem 4, we listed all possible configuration of at most six
pentagons in components of cyclic 6-edge-cuts. The configurations of the six pentagons
in the caps of the nanotube (6, 0) can be seen in Figure 11, right, and in Figure 13, the
second row. The configuration of the six pentagons for the nanotubes of types (5, 1),
(4, 2), and (3, 3) are determined uniquely, see Figure 14. �

Corollary 6 A fullerene graph has a non-trivial cyclic 6-edge-cut different from a pen-

tagon with a pending edge if and only if it contains at least one pair of adjacent pentagons.

Proof. The claim immediately follows from the proof of the Theorem 4, since all non-
trivial cyclic 6-edge-cuts different from a pentagon with a pending edge contain at least
one pair of adjacent pentagons. �
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