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k-chromatic number of graphs on surfaces∗

Zdeněk Dvořák† Riste Škrekovski‡

Abstract

A well-known result (Heawood [6], Ringel [11], Ringel and Youngs
[10]) states that the maximum chromatic number of a graph embedded
in a given surface S coincides with the size of the largest clique that can
be embedded in S, and that this number can be expressed as a simple
formula in the Eulerian genus of S. We study maximum chromatic
number of k edge-disjoint graphs embedded in a surface. We improve
the previously known upper bounds, and show that in many cases,
the new upper bound coincides with the lower bound obtained from
embedding disjoint cliques in the surface. In the proof of this result,
we derive a variant of Euler’s Formula for union of several graphs that
might be interesting independently.

1 Introduction and Definitions

We consider simple undirected graphs with no loops and parallel edges. Let
e(G) and n(G) denote the number of edges and the number of vertices of
a graph G, respectively. When the graph G is clear from the context, we
simply use e and n. A proper coloring of a graph G by k colors is assignment
of colors 1, 2,. . . , k to vertices of G such that no two adjacent vertices have
the same color. The chromatic number χ(G) of graph G is the minimum k
such that G has a proper coloring by k colors.

Let Σh denote the orientable surface obtained from the sphere by attach-
ing h handles, and let Πh be the nonorientable surface obtained from the
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sphere by inserting h crosscaps. We define Eulerian genus g(S) of a surface
S by g(Σh) = 2h and g(Πh) = h. Let g(G) denote the Eulerian genus of
the graph G, i.e., the minimal Eulerian genus of a surface into which G is
embeddable.

Colorings of graphs on surfaces have been studied extensively. The fun-
damental result in this area is the well-known Four Color Theorem, that was
proved by Appel and Haken [1] in 1977, and a shorter proof was later found
by Robertson, Sanders, Seymour and Thomas [12]. Regarding the graphs on
surfaces of genus g ≥ 1, Heawood [6] showed that each graph embedded in
such a surface has chromatic number at most

H(g) =

⌊

7 +
√

24g + 1

2

⌋

.

Later, Ringel [11] and Ringel and Youngs [10] found the corresponding lower
bounds, by showing that the complete graph on H(g) vertices can be em-
bedded into any surface of Eulerian genus g, with the exception of the Klein
bottle, where the correct bound on the chromatic number is 6 (established
by Franklin [4]).

We consider the properties (especially regarding the chromatic number)
of partitions of a graph into several subgraphs. The partition of a graph
G to k parts consists of k edge-disjoint subgraphs G1, . . . , Gk such that
E(G) = E(G1) ∪ E(G2) ∪ . . . ∪ E(Gk). Note that we do not require that
the subgraphs Gi are spanning, i.e., possibly n(Gi) < n(G) for some i. We
always assume that the graphs Gi do not contain isolated vertices. We call
the subgraphs Gi parts of the partition.

The k-chromatic number χk(G) is the maximum of
∑k

i=1
χ(Gi) over all

partitions G1, G2, . . . , Gk of G into k parts. The parameter χk has been
studied for general graphs as well as for graphs of bounded genus. The
fact that for a graph G with n vertices, χ2(G) ≤ n + 1 follows from the
well-known theorem of Nordhaus and Gaddum [8]. Plesńık [9] proved that

n +
(

k

2

)

≤ χk(Kn) ≤ n + 2(k+1

2 ) and conjectured that χk(Kn) = n +
(

k

2

)

.
Watkinson [15] has improved the upper bound to χk(Kn) ≤ k!

2
and Füredi et

al. [5] to χk(Kn) ≤ n + 7k.
Regarding the graphs with bounded genus g, let us define χk(S) to be

maximum of χk(G) over all graphs G that can be embedded in S. Stiebitz
and Škrekovski [14] has determined the exact values of χ2 for all surfaces.
Füredi et al. [5] have shown that

χk(S) ≤
⌊

7k +
√

24kg + 49k2 − 48k

2

⌋

,
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and found a lower bound of order

7k +
√

24kg + k2

2
.

In this paper, we decrease the upper bound; this way, we obtain exact values
for many surfaces and values of k.

An embedding of a graph in a surface is called cellular if the interior of
each face is homeomorphic to an open disk. In particular, the boundary walk
of each face in a cellular embedding is connected. For a face f of such an
embedding, let ℓ(f) be the length of its boundary walk. If G is a simple
connected graph with at least three vertices, then ℓ(f) ≥ 3 for each face f .
A block of a graph G is a maximum 2-connected induced subgraph of G. Let
us recall some fundamental facts about graph embeddings and surfaces that
can be found e.g. in [7].

Theorem 1 Let G be a connected graph of Eulerian genus g. Then, any

embedding of G in a surface with Eulerian genus g is cellular.

Theorem 2 (Battle et al. [2], Stahl and Beineke [13]) If G1, G2, . . . ,

Gn are the blocks of a graph G, then

g(G) =

n
∑

i=1

g(Gi).

Theorem 3 (Franklin [4], Ringel [11], Ringel and Youngs [10])
Eulerian genus of the complete graph Kn is g = ⌈1

6
(n−3)(n−4)⌉. Kn can be

embedded into any surface with Eulerian genus g, with the exception of K7,

that cannot be embedded in Π2, i.e. the Klein bottle.

Theorem 4 (Euler’s Formula) If f is the number of faces of a cellular

embedding of a graph G into a surface of Eulerian genus g, then e(G) =
n(G) + f + g − 2.

In the following section, we derive a version of the Euler’s Formula that
provides more information about a graph split into several parts (Theorem 7).

A graph G is critical if for every edge e of G, χ(G − e) < χ(G). If G
is a critical graph and χ(G) = k, we say that G is k-critical. Obviously, if
G is k-critical, then δ(G) ≥ k − 1. For non-complete graphs, the following
stronger result known as Dirac’s inequality was shown in [3]:

Theorem 5 (Dirac) If G is a k-critical graph with k ≥ 4 and G is not a

clique, then 2e(G) ≥ (k − 1)n(G) + k − 3.
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2 Generalized Euler’s Formula

Let F be the set of the faces of a cellular embedding of a simple connected
graph G with at least 3 vertices. Then, △ =

∑

f∈F (ℓ(f) − 3) ≥ 0 is the
number of edges that must be added to G to make it a triangulation (possibly
introducing parallel edges and loops during the construction). One of the
well-know consequences of Euler’s Formula is the following lemma:

Proposition 6 If G is a simple connected graph with n ≥ 3 vertices and

e edges embedded cellularly to a surface of Eulerian genus g, then e + △ =
3n + 3g − 6. In particular, e ≤ 3n + 3g(G) − 6.

We include the proof for the sake of completeness.

Proof. Let F be the set of faces of G. Since each edge of G appears exactly
twice in the facial walks, we have 2e =

∑

f∈F ℓ(f), and consequently 2e−△ =
3|F |. Using Theorem 4, we infer 3e = 3n+3|F |+3g−6 = 3n+2e−△+3g−6,
from which the desired formula immediately follows. Also, by Theorem 1,
the embedding of G into a surface of Eulerian genus g(G) is cellular, and
since △ ≥ 0, we have e ≤ 3n + 3g(G) − 6. �

To prove our upper bound, we need to generalize this inequality for union
of several graphs:

Theorem 7 (Generalized Euler’s Formula) Let G be a simple graph and

let G1, . . . , Gk be a partition of G to k parts. Let ni = n(Gi) ≥ 3 for each

1 ≤ i ≤ k. If every component of each Gi has at least three vertices, then

e ≤ 3g(G) + 3

k
∑

i=1

(ni − 2).

Proof. Suppose that the claim is false, and let G together with its partition
to graphs G1, . . . , Gk be a counterexample that is “smallest” in the following
sense:

1.
∑k

i=1
(ni − 2) is the smallest possible, and

2. among all graphs that satisfy the first condition, n is the largest possi-
ble.

By Proposition 6, we know that k > 1. Let us now describe some of the
properties of G and its partition:
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(i) Each Gi is connected. Otherwise, we may assume without loss of gen-
erality that G1 is not connected, i.e., G1 = Ga

1 ∪ Gb
1, where Ga

1 and Gb
1

are vertex-disjoint. By the minimality, the partition G = Ga
1∪Gb

1∪G2∪
. . .∪Gk satisfies e ≤ 3g(G)+3n(Ga)−6+3n(Gb)−6+3

∑k

i=2
(ni−2) <

3g(G) + 3
∑k

i=1
(ni − 2), which is a contradiction with the fact that G

is a counterexample.

(ii) G is connected. Otherwise, G is a vertex-disjoint union of two smaller
graphs Ga and Gb, and we may assume that Ga = G1 ∪ . . . ∪ Gt and
Gb = Gt+1 ∪ . . . ∪ Gk (the graphs Gi are connected, thus they must
be subgraphs of one of these two graphs). By Theorem 2, g(G) =
g(Ga) + g(Gb), and since G is a minimal counterexample, we have
e(Ga) ≤ 3g(Ga)+3

∑t

i=1
(ni−2) and e(Gb) ≤ 3g(Gb)+3

∑k

i=t+1
(ni−2).

Summing these two inequalities brings a contradiction with the fact
that G is a counterexample.

(iii) Each ni is at least 4. Otherwise, we may assume that n1 = 3 and
let G′ be the union of graphs G2, . . . , Gk. Since g(G′) ≤ g(G) and
G is a minimal counterexample, it follows that e(G′) = e − e(G1) ≤
3g(G) + 3

∑k

i=2
(ni − 2). However, e(G1) ≤ 3 = 3(n1 − 2), and hence

e ≤ 3g(G) + 3
∑k

i=1
(ni − 2), which is a contradiction.

(iv) Minimum degree of each Gi is at least three. Otherwise, we may assume
that v is a vertex of G1 with degree d ≤ 2. Let G′

1 = G1 − v and let G′

be the union of graphs G′

1, G2, G3, . . . , Gk. Suppose that G′

1 satisfies the
assumptions of the theorem. Since g(G′) ≤ g(G) and G is a minimal
counterexample, we get e(G′) = e(G)−d ≤ 3g(G)+3

∑k

i=1
(ni−2)−3,

which is again a contradiction.

We need to verify that G1 satisfies the assumptions of the theorem.
This is trivial if v is not a cut-vertex of G1, since n1 ≥ 4 by the
previous item. Therefore, if d = 1 then the assumptions are satisfied,
and we may assume that G1 does not contain a vertex of degree 1. Let
us consider the case that d = 2 and v is a cut-vertex. Since δ(G1) ≥ 2,
both components of G′

1 have at least three vertices, hence in this case
G′

1 satisfies the assumptions of the theorem as well.

(v) G is 2-connected. Otherwise, suppose that G = Ga∪Gb, where Ga and
Gb share just a single vertex v. By Theorem 2, g(G) = g(Ga) + g(Gb).
Suppose that the graphs G1, . . . , Gt are subgraphs of Ga, the graphs
Gt+1, . . . , Gr are subgraphs of Gb, and for r < i ≤ k, Gi = Ga

i ∪ Gb
i ,

where Ga
i is a subgraph of Ga and Gb

i is a subgraph of Gb. Since
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the minimum degree of Gi is at least three, both Ga
i and Gb

i have
at least three vertices. Again, by summing the inequalities e(Ga) ≤
3g(Ga) + 3

∑t

i=1
(ni − 2) + 3

∑k

i=r+1
(n(Ga

i ) − 2) and e(Gb) ≤ 3g(Gb) +

3
∑r

i=t+1
(ni−2)+3

∑k

i=r+1
(n(Gb

i)−2), we obtain a contradiction with
the minimality of G.

(vi) Each two graphs Gi and Gj share at most one vertex. Otherwise, if
Gk−1 and Gk share t ≥ 2 vertices, then let G′

k−1 = Gk−1 ∪ Gk, and
apply the theorem on G split into graphs G1, . . . , Gk−2, G′

k−1. We

obtain e ≤ 3g(G) + 3
∑k

i=1
(ni − 2) + 6 − 3t, which is a contradiction

since 6 − 3t ≤ 0.

Let us now fix an embedding of G on a surface of Eulerian genus g(G).
Recall that this embeding is cellular by Theorem 1. Given a vertex v of
degree d in G, let e0, . . . , ed−1 be the edges of G in a cyclic ordering around
v. A segment is a maximum interval [a, b] such that all the edges ea, ea+1,
. . . , eb (with the indices taken modulo d) belong to a single graph Gi. The
edges ea and eb are called boundary edges of the segment. The length of the
segment is the number of its edges. The embedding of G has the following
properties:

• If a vertex v belongs to at least two parts, then there are at least two

segments of edges at v for each of these parts. Otherwise, suppose that
all the edges of G1 at v form just a single segment. In this case, we
may split v into two vertices v1 and v2 such that all edges of G1 at
v are incident to v1 and all the remaining edges at v are incident to
v2. The created graph G′ is a counterexample embedded in the same
surface with e(G′) = e(G) and n(G′) > n(G), which is a contradiction
with the choice of G.

• The following configuration (⋆) of edges cannot appear: e1 = vw belongs

to Gi, all the remaining edges of Gi at v belong to one segment [a, b],
and the vertex w appears at a face f incident to ea or eb. If this were
the case, we might redraw G in such a way that e1 is adjacent to ea or
eb in the list of edges at v, by drawing it through the face f . We could
then again split the vertex v, and obtain a contradiction.

We now plug the equality for △ from Proposition 6 in the formula that
we want to prove, thus obtaining the following equivalent inequality:

△− 3n + 3

k
∑

i=1

ni ≥ 6k − 6.
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Therefore, we need to show that either G has long faces, or the vertex sets
of the graphs Gi have a big overlap. In fact, we prove that if the embedding
of the graph G and its partition satisfies all the conditions described above,
then the following stronger claim holds:

△− 3n + 3
k

∑

i=1

ni ≥ 6k.

We proceed by the discharging method. We assign an initial charge to
each vertex and each face in the following way: a vertex v that belongs to
x of the graphs Gi has initial charge 3(x − 1). A face of length ℓ has initial
charge ℓ − 3. The sum of these charges is equal to △− 3n + 3

∑k

i=1
ni.

Next, we move some of this charge to the graphs Gi in such a way that
the final charge of each vertex and each face is nonnegative, and the final
charge of each Gi is at least 6. Since no charge is lost in the process, the
required inequality follows.

We use the following rules to redistribute the charge:

(R1) Each vertex v that belongs to x ≥ 2 graphs Gi sends charge 3/2 to
each of these graphs.

(R2) Let f be a ≥ 4-face and let v1v2v3v4v5 be a subwalk of the facial walk
of f such that edges v2v3 and v3v4 belong to the same graph Gi, and
neither v1v2 nor v4v5 belongs to Gi. Then, f sends 1/2 to Gi through
each of v2 and v4 (one unit of charge in total).

(R3) Let f = w v1v2w v4v5 be a 6-face such that the edges v1v2, v2w and
v1w belong to a graph Gi and the edges w v4, v4v5 and v5w belong to
a different graph Gj. Then, f sends 3/2 to each of Gi and Gj through
the vertex w.

(R4) Let f be a face of length at least t − 1 (where t > 5) for that Rule R3
does not apply, and let v1v2 . . . vt be a subwalk of the facial walk of f
such that the edges v2v3, v3v4, . . . , and vt−2vt−1 belong to the same
graph Gi, and neither v1v2 nor vt−1vt belongs to Gi. Then, f sends 1
to Gi through each of v2 and vt−1 (two units of charge in total).

Let us first show that after the rules are applied, the final charge of each
vertex and each face is nonnegative. If v is a vertex that belongs to x graphs
Gi, then its final charge is zero if x = 1 and it is 3(x−1)−3x/2 = 3x/2−3 ≥ 0
if x ≥ 2, by Rule R1. Now, consider the charge of the faces. Let f be an
arbitrary face of G:
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(a) If Rule R3 is applied to f , then its final charge is zero.

(b) If f is a 3-face, then either all of its edges belong to the same graph,
or each of them belongs to a different graph, as otherwise two of the
graphs Gi would intersect in at least two vertices. Therefore, no rule
applies to f , and the final charge of f is zero.

(c) Finally, suppose that Rule R2 applies a times and Rule R4 applies b
times on an ℓ-face f . The final charge of f is ℓ− 3− a − 2b; therefore,
it suffices to consider the case that a + 2b + 2 ≥ ℓ ≥ 4. On the other
hand, ℓ ≥ 2a + 3b, hence the final charge is at least a + b − 3, and
we may assume that a + b ≤ 2. It follows that ℓ ≤ 6 and exactly two
of the graphs Gi contain edges of the face f . Since these two graphs
may share only one vertex and the graph is simple, f must be a 6-face
consisting of two triangles, a = 0 and b = 2. But then we obtain case
(a), covered by Rule R3.

Now, let us consider the charge of the parts. We need to prove that the
final charge of each of the parts is at least six. Let Gi be one of the parts,
and let Y be the set of vertices that Gi shares with the rest of the graph
G. Since G is 2-connected, |Y | ≥ 2. By Rule R1, the subgraph Gi receives
3|Y |/2 units of charge, which is at least six if |Y | ≥ 4. Therefore, it suffices
to consider the cases |Y | = 2 and |Y | = 3.

We call a boundary edge e of a segment of Gi at a vertex v ∈ Y rich if
e does not connect v with another vertex of Y . Let e = vw be a rich edge
and let fe be a face that contains e and an edge incident to v that does not
belong to Gi. Since w 6∈ Y , all the edges incident to w must belong to Gi,
hence one of Rules R2, R3 or R4 applies and fe sends at least 1/2 units of
charge through v to Gi.

Suppose first that |Y | = 3. Let v be an arbitrary vertex in Y . The edges
of Gi at v form at least two segments. By the property (iv), the degree of
v in Gi is at least 3, hence there are at least three boundary edges incident
with v. Since |Y \ {v}| = 2, at least one of these edges is rich, hence Gi

receives at least 1/2 units of charge through v. Therefore, Gi receives 9/2
units of charge by Rule R1, and at least 1/2 units of charge by Rules R2–R4
through each vertex of Y , which sums to at least six units of charge.

Suppose now that |Y | = 2. The graph Gi receives three units of charge by
Rule R1. We prove that at least 3/2 units of charge are sent to Gi through
each vertex of Y by Rules R2–R4, thus showing that Gi receives at least six
units of charge. Suppose for contradiction that less than 3/2 units of charge
are sent to Gi through a vertex v ∈ Y . Then, there are at most two rich
edges incident with v. On the other hand, Gi has at least two segments at v,
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the degree of v is at least three by the property (iv), and Y \ {v} consists of
only one vertex w, thus at least two rich edges are incident with v. Hence,
we conclude that there are exactly two rich edges at v. This is only possible
in the following cases:

• The degree of v in Gi is three, and each of the edges of Gi incident with

v forms a segment of length one. However, note that in this case, each
of the four (not necessarily distinct) faces incident with the rich edges
sends 1/2 units of charge through v, for total of two units of charge.

• There are exactly two segments of Gi at v and one of them is of length

one. Let e0 = vu0 be the edge of the segment of length one, and
e1 = vu1 and e2 = vu2 the boundary edges of the other segment. Note
that u1 6= u2, as the degree of v is at least three. If w 6= u0 (say w = e1),
then each of the faces incident with e0 send 1/2 units of charge through
v and the face fe2

sends 1/2 units of charge, for total of 3/2 units.

Let us now consider the case that w = u0. The graph Gi receives 1/2
units of charge through v for each of e1 and e2. If Rules R3 or R4
applied at v at least once, Gi would receive additional 1/2 units of
charge, contradicting the choice of v. Let us assume that this is not
the case. Let w1 and w2 be the vertices following u1 and u2 in the facial
walks of fe1

and fe2
, respectively. For i = 1, 2, the vertices wi and v

are both neighbours of ui, hence w1 6= v 6= w2. The edges following
w1 and w2 in the facial walks do not belong to Gi, since otherwise one
of Rules R3 or R4 applies. This means that w1, w2 ∈ Y , and hence
w1 = w2 = w. This is the forbidden configuration (⋆), hence we obtain
a contradiction with the assumption that less than 3/2 is sent through
the vertex v.

It follows that the final charge of each of the graphs Gi is at least six,
thus we conclude that △ + 3(

∑k

i=1
ni − n) ≥ 6k, which finishes the proof.�

Theorem 7 is tight – for example, the equality is obtained for disjoint
union of k triangulations, or graphs obtained from this graph by identifying
the vertices in such a way that all edges of each graph form one segment at
each vertex. Also, it is not possible to relax the condition on the number of
vertices in Gi, as the claim is false if each Gi is just an edge.

3 Upper Bound

We are now ready to prove the upper bound on the k-chromatic number
χk(G) of a graph G of Eulerian genus g. Our method is similar to the one

9



used by Füredi et al. [5], except that we use a better estimate on the number
of edges of G obtained from Theorem 7.

Theorem 8 Let G be a simple graph G of Eulerian genus g. If k ≤ g, then

χk(G) ≤
⌊

7k +
√

24kg + k2

2

⌋

.

Proof. Let us embed G in a surface of Eulerian genus g. Let G1, . . . , Gk be
a partition of G into k parts. For each i, let G′

i ⊆ Gi be a critical subgraph
of Gi such that χ(G′

i) = χ(Gi) = ci. We may assume that c1 ≥ c2 ≥ . . . ≥ ck.
Let t be the largest number such that ct ≥ 7. Thus, t = 0 if c1 ≤ 6. We bound
the sum of chromatic numbers of the graphs G1,. . . ,Gt. Let ni = n(G′

i).
Let G′ = G′

1 ∪ . . . ∪ G′

t and e′ = e(G′). Using Theorem 7, we get

2e′ ≤ 6g + 6
t

∑

i=1

(ni − 2).

On the other hand, minimum degree of each G′

i is at least ci − 1, hence
(ci − 1)ni ≤ 2e(G′

i). This implies that

t
∑

i=1

(ci − 1)ni ≤ 6g + 6
t

∑

i=1

(ni − 2).

Using the fact that ci ≥ 7 and ni ≥ ci, we obtain

t
∑

i=1

[

(ci − 7/2)2 − 49/4
]

=
t

∑

i=1

(ci − 7)ci ≤
t

∑

i=1

(ci − 7)ni ≤ 6g − 12t.

By the inequality between the arithmetic and quadratic mean,

1

t

[

t
∑

i=1

(ci − 7/2)

]2

≤ 6g + t/4,

from which we infer

t
∑

i=1

ci ≤
7t +

√

24tg + t2

2
.

Taking into account the graphs Gt+1, . . . , Gk, we get
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k
∑

i=1

ci ≤
7t +

√

24tg + t2

2
+ 6(k − t).

If t ≤ g, this expression is increasing in t, thus we obtain

k
∑

i=1

ci ≤
7k +

√

24kg + k2

2
.

Since the expression on the left-hand side is integer, we may round the
expression on the right-hand side down, thus finishing the proof of this the-
orem. �

4 Lower Bound

The proof of the upper bound hints at how the lower bound examples should
look like. For each of the graphs in the partition, we should have ci = ni,
hence all the graphs Gi should be complete. Also, since we used the inequality
between arithmetic and quadratic means, their sizes should be the same. This
is only possible for special values of g and k. For example, consider the case
g = 1

6
k(t − 3)(t − 4) for some t ≥ 4, t ≡ 0, 1 (mod 3). Then, Kt can be

embedded in a surface of genus g/k (K7 cannot be embedded in the Klein
bottle, but it can be embedded in the torus), according to Theorem 3. By
Theorem 2, the disjoint union of k complete graphs on t vertices can be
embedded in a surface S of genus g, hence

χk(S) ≥ k t =
7k +

√

24kg + k2

2
.

For general g and k, we cannot hope for a nice formula like the one in
Theorem 8, thus we would be satisfied with some description of the best
possible example. A natural guess is that this example is a disjoint union of
cliques. We were not able to prove that this is the case – the best result that
we obtained in this direction is the following proposition:

Proposition 9 Let G1, . . . , Gk be a partition of a graph G of Eulerian genus

g to k parts, and let ci = χ(Gi) ≥ 7 for each i. Let G′

i be a ci-critical subgraph

of Gi. Suppose that ci ≡ 0, 1 (mod 3) whenever G′

i is a clique. Then, the

disjoint union of the cliques Kc1,. . . , Kck
has Eulerian genus at most g.
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Proof. Let e′ = e(G′

1 ∪ . . .∪G′

k), ni = n(G′

i), and let δi = 0 if G′

i is a clique
and δi = ci − 3 otherwise. By Theorem 7,

2e′ ≤ 6g + 6
k

∑

i=1

(ni − 2).

On the other hand, using Theorem 5, we get

2e′ ≥
k

∑

i=1

(ci − 1)ni + δi.

Therefore, we obtain

g ≥ 1

6

k
∑

i=1

(ci − 7)ni + 12 + δi

≥
k

∑

i=1

1

6
((ci − 7)ci + 12 + δi)

≥
k

∑

i=1

⌈

1

6
(ci − 3)(ci − 4)

⌉

=

k
∑

i=1

g (Kci
) ,

where the last inequality holds because δi ≥ 4 whenever ci ≡ 2 (mod 3), by
the assumptions of the lemma. The statement of the lemma follows from
Theorem 2. �

5 Conclusions

Let us call the complete graph Kn bad if it does not triangulate the minimal
surface in which it can be embedded, i.e., n ≡ 2 (mod 3). Proposition 9
shows that the best values of χk are achieved for disjoint unions of cliques,
unless bad cliques appear in the partition. It is natural to ask whether the
restriction on the appearance of the bad cliques is necessary, or whether it is
always possible to “disentangle” cliques:

Problem 1 Let G1, . . . , Gk be a partition of a graph G to k parts such that

each subgraph Gi is a clique. Is it true that the vertex-disjoint union of the

cliques Gi can be embedded in a surface of Eulerian genus g(G)?
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For k = 2, this follows from Theorem 2. The proof of Theorem 7 shows
that unless the graphs in the partition can be trivially disentangled, we may
decrease the bound by 6, which implies that the answer to Problem 1 is
positive for k = 3.

One way to answer the question in Problem 1 positively for k ≥ 4 would
be to improve Theorem 7, by decreasing the right hand side of the inequality
by 2 for each bad clique in the partition. Another way is suggested by the
following conjecture of Stiebitz and Škrekovski [14]:

Conjecture 1 Let G be an edge-disjoint union of a clique K and an arbi-

trary graph H. Let H ′ be the graph obtained from H by contracting the set

V (K) to a single vertex. Then, g(H ′) + g(K) ≤ g(G).

Because two complete graphs in a partition of a graph to k parts cannot
share more than one vertex, it is easy to show by induction that Conjecture 1
implies positive answer to Problem 1.

In our considerations, we do not distinguish between orientable and non-
orientable surfaces – we only focus on their Eulerian genus. While assymp-
totically there does not seem to be much difference, for some values k and g
the results may differ.

We have provided (almost) matching upper and lower bounds for k-
chromatic number of graphs with bounded genus g, assuming that the genus
is large enough relatively to k. The reason why our techniques cannot be
directly applied in the case k is larger than g is that we would need to con-
sider critical graphs with chromatic number ≤ 6. Graphs with chromatic
number ≤ 4 are easy to handle – we may assume that they appear only as
K4 disjoint with the rest of the graph, since they are planar and hence do not
affect genus of the graph. However, graphs with chromatic number 5 and 6
are difficult to deal with. For chromatic number 6, the list of critical graphs
is known only for surfaces with g ≤ 2, and for the chromatic number 5, there
even are infinitely many of them on each surface with g ≥ 1. Nevertheless,
it might be interesting to determine the exact values of χk for some special
cases, e.g., for graphs embedded in the torus or in the projective plane.
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