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Abstract

We study backbone colorings, a variation on classical vertex color-
ings: Given a graph G and a spanning subgraph H of G (the backbone
of G), a backbone coloring for G and H is a proper vertex k-coloring
of G in which the colors assigned to adjacent vertices in H differ by at
least 2. The minimal k ∈ N for which such a coloring exists is called
the backbone chromatic number of G. We show that for a graph G of
maximum degree ∆ with the backbone graph being a d-degenerated
subgraph of G, the backbone chromatic number is at most ∆ + d + 1
and moreover, in the case when the backbone graph being a matching
we prove that backbone chromatic number is at most ∆ + 1. We also
present examples where these bounds are attained.

Finally, the asymptotic behavior of the backbone chromatic number
is studied regarding the degrees of G and H. We prove for any sparse
graph G that if the maximum degree of a backbone graph is small
compared to the maximum degree of G, then the backbone chromatic
number is at most ∆(G) −

√

∆(G).

Keywords: coloring, backbone coloring, channel assignment, coloring num-
ber, distant labelings
MSC: 05C15

1 Introduction

The backbone coloring problem is related to frequency assignment problems
in the following way: the transmitters are represented by the vertices of a
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graph and they are adjacent in the graph if the corresponding transmitters
are close enough or transmitters are strong enough. The problem is to assign
frequency channels to the transmitters in such a way that interference is kept
at an ”acceptable” level. One way of putting these requirements together
is following: Given graphs G1, G2 such that G1 is a spanning subgraph
of G2. Determine a coloring of G2 that satisfies certain restriction of one
type in G1 and of the other type in G2. In this way, backbone colorings
were introduced and motivated and put into a general framework of related
coloring problems in [1].

In further we deal with undirected simple graphs, i.e. without loops
and/or multiedges, although we recall some basic definitions. For a graph
G we define a coloring ν : V → {1, 2, . . . , k} to be a vertex λ-backbone k-
coloring of a graph G with backbone graph H ⊆ G if for every two different
vertices u and v of G, one has

• |ν(u) − ν(v)| ≥ 1, if uv ∈ E(G) \ E(H);

• |ν(u) − ν(v)| ≥ λ, if uv ∈ E(H).

The minimum k for which G admits a vertex backbone k-coloring is called
the λ–backbone chromatic number of G with backbone H, BBCλ(G, H).
When we speak about the 2-backbone chromatic number of G with backbone
T , we write BBC(G, T ) instead of BBC2(G, T ).

We refer to several results concerning backbone colorings. At the be-
ginning some special classes of graphs were studied in view of backbone
colorings, see [3, 2]. The connection between the backbone chromatic num-
ber and the chromatic number was studied in [1, 4]. It was shown that the
2-backbone chromatic number of G with backbone H ⊆ G is at most twice
its chromatic number, since if we use only odd numbers for coloring of G
that the conditions of the backbone coloring of G are satisfied. The authors
in [1] also provided examples where this bound is attained. The backbone
coloring of planar graphs was also studied with respect to their chromatic
number. Using the Four Color Theorem one can prove that the 2-backbone
chromatic number of planar graphs with backbone matchings is at most six,
and moreover if a backbone graph is a tree then the 2-backbone chromatic
number is at most seven, see Broersma et al. [3].

The complexity of the decision problem: “Is there a backbone k-coloring
of a graph G with backbone tree T?” was shown to be NP-complete even
for k ≥ 5, see [3]. For recent results on λ-backbone colorings see also [2, 8].

As mentioned above the backbone chromatic number has been mostly
investigated in view of the chromatic number. The main goal of this paper is
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to study the behavior of backbone colorings according to maximum degree
of a graph G and the maximum degree of a backbone graph H. Since the
chromatic number is connected to the maximum degree of a graph, many
results were derived in this direction but no general results concerning the
maximum degree of graphs and the backbone colorings are known.

In the first section we deal with the backbone coloring of a graph G
of maximum degree ∆ with the backbone graph R. We show that there is
always backbone coloring of a graph G with backbone graph H with at most
∆ + col(H) colors, where col(G) = max{δ(R) + 1 |R ⊆ G} represents the
coloring number of a graph G. Similarly, a graph G is said to be d-degenerate
if every its subgraph has a vertex of degree at most d. Further, we deal
with graphs with backbone forests, and especially matchings. We show that
BBC(G, T ) ≤ ∆ + 2 if the backbone graph is a tree T and BBC(G, M) ≤
∆ + 1 in the case that the backbone graph is a matching M . We also show
that there are non-trivial classes of graphs where these bounds are sharp.
We conclude by investigating the asymptotic behavior of the λ-backbone
colorings of graphs. Surprisingly, if a sparse graph G is large enough and
H is a backbone graph with ∆(H) << ∆, then the λ-backbone chromatic
number of G with λ << ∆, is at most ∆ −

√
∆.

2 Degenerated graphs

As mentioned above in this section we present several results concerning
λ-backbone colorings of graphs with backbones being d-degenerated graphs.
For the sake of a clear and simple exposition, we deal only with 2-backbone
colorings of graphs, but with small technically involved modifications one
can prove similar bounds for λ-backbone colorings.

Theorem 2.1. Let G be a graph of maximum degree ∆ and let T be a
d-degenerated subgraph of G. Then, BBC(G, T ) ≤ ∆ + d + 1.

Proof. Let v1, v2, . . . , vn be an ordering of the vertices of G such that each
vi is preceded by at most d neighbors from T . Such an ordering is possible
since T is d-degenerated.

Now, we apply the following procedure for coloring the vertices:

1: for each color c ∈ {1, . . . ,∆ + d + 1}; do

2: for each i ∈ {1, . . . , n}; do

3: if vi is not colored and

4: neither c appears on the neighborhood of vi in G
5: nor c − 1 appears on the neighborhood of vi in T then
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6: λ(vi) := c.

We claim that after applying the above procedure we obtain a proper
backbone coloring λ of G. Obviously, if vivj is an edge of G then λ(vi) 6=
λ(vj). Moreover, if vivj is an edge of T then |λ(vi) − λ(vj)| ≥ 2. Thus, it is
enough to show that each vertex has assigned a color.

Suppose that vi is an uncolored vertex of G after the procedure is com-
pleted. Notice that the following holds:

• each preceding neighbor vj of vi in T forbids only the colors λ(vj) and
λ(vj) + 1 to be assigned to vi;

• each succeeding neighbor vj of vi in T forbids only the color λ(vj) + 1
to be assigned to vi;

• each preceding neighbor vj of vi in G− T forbids only the color λ(vj)
to be assigned to vi;

• each succeeding neighbor vj of vi in G − T forbids no color to be
assigned to vi.

Now, easily follows that at most 2d + ∆− d = ∆ + d colors are forbidden to
vi. Since we have available ∆+ d+1 colors, it follows that in the procedure
vi is colored, a contradiction.

The above bound is sharp for d = 1 and G being an odd cycle or a
complete graph. In the former case T is a spanning path and in the later
case it is a spanning star of G.

3 Matching backbones

In this section we study graphs with backbone being a matching. In this
case we show that an upper bound on the 2-backbone chromatic number
presented above can be decreased.

Proposition 3.1. Let M be a matching in the cycle Cn. Then BBC(Cn, M) ≤
3.

Proof. Let Cn = v1v2 · · · vn. If n is even and M is perfect, then color the
vertices one by one alternatively by colors 1 and 3 as they appear on Cn.

So, assume now that n is odd or M is not perfect. Then, Cn has a
vertex, say vn, non-incident with any edge of M . Now, color the vertices
v1, v2, . . . , vn−1 alternatively by 1 and 3. Finally, choose a color for vn from
{1, 2, 3} which does not appear at v1 and vn−1.
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Notice, that the above result can be easily extended to BBCλ(G, M) ≤
λ + 1 for any λ ≥ 2.

Proposition 3.2. Let M be a matching in the complete graph Kn, n ≥ 3.
Then BBC(Kn, M) ≤ n.

Proof. Let e1, e2, . . . , es with s ≤ ⌊n
2
⌋ be the edges of the matching M . We

may assume that s ≥ 2; otherwise color Kn as usually with colors 1 and n
assigned on the possible single edge of M .

For each i ∈ {1, . . . , s}, color the end-vertices of ei by the colors i and
s + i. The remaining vertices color one by one with the colors 2s + 1, . . . , n.
The procedure gives a proper backbone coloring of Kn, since s ≥ 2 and
s ≤ ⌊n

2
⌋.

The backbone coloring is influenced by certain structures in the graphs
and their backbones. We refer to a result concerning an existence of special
structure.

Theorem 3.3 (Bryant [5]). For a 2-connected graph G the following three
statements are equivalent:

(i) G is a complete graph or a cycle;

(ii) the removal from G of any two non-adjacent vertices disconnects it;

(iii) the removal from G of any two vertices at distance 2 apart disconnects
it.

Let x, y be two non-adjacent neighbors of a vertex v in a graph G such
G − x − y is connected. Then we say that (v; x, y) is a fork. We do not
distinguish between (v; x, y) and (v; y, x). Notice that above theorem claims
that each 2-connected graph distinct from a cycle and a complete graph
contains a fork. Now, we show the existence of a fork that ”avoids” a given
vertex in a particular class of 2-connected graphs.

Proposition 3.4. Let G be a 2-connected graph whose all vertices are of
degree d ≥ 3 except a particular vertex v which is of degree < d. Then, G
has a fork (w; x, y) such that v 6= x and v 6= y.

Proof. Suppose that the claim is false and G is a counterexample. By 2-
connectivity of G, the graph G − v is connected. Notice that G − v has at
least three vertices, so it is distinct from K2.

We claim that G−v is not 2-connected. Otherwise, if G−v is 2-connected,
then by the degree assumptions of G, it follows that G is neither a complete
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graph nor a cycle. So by Theorem 3.3, G − v contains some fork (w; x, y).
Observe that (w; x, y) is a fork in G as well, a contradiction.

Since G−v 6= K2 is connected but not 2-connected, it follows that G−v
has at least two end-blocks in its tree-block representation. Let B be an
end-block. Note that B has at least three vertices, and so each vertex of B
has degree at least 2 in B. Let w be the unique cut-vertex of G − v that
belongs to B. By 2-connectivity of G, v has a neighbor in every end-block of
G− v, which is distinct from the unique cut-vertex of that end-block. Thus,
v has neighbor in B −w, say z. Let x be a neighbor of w in B distinct from
z; we can choose x since dB(w) ≥ 2. Define H = G−v− (B−w) and choose
a neighbor y of w in H.

We claim that (w; x, y) is a fork of G, which will give us a contradiction.
Notice that x and y are non-adjacent neighbors of w; otherwise they belong
to a same block of G − v. In order to establish the claim, it is enough to
show that G − x − y is connected. Observe that B − x is connected and z
from B − x is adjacent to v. Thus, B − x + v is connected. From other side
H − y may not be a connected; this may happen only if y is a cut-vertex
in G − v. As we observed before, v has a neighbor in every end-block of
G − v distinct from the unique cut-vertex of that end-block. This implies
that H − y + v is connected. Finally, from connectivity of B − x + v and
H − y + v, the connectivity of G − x − y easily follows.

We proceed with the theorem.

Theorem 3.5. Let M be a matching in a graph G of maximum degree ∆.
Then BBC(G, M) ≤ ∆ + 1.

Proof. Obviously, we may assume that G is connected. By Propositions 3.1
and 3.2, we may also assume that G is neither an odd cycle nor a complete
graph.

Consider an ordering v1, v2, . . . , vn of the vertices of G such that each vi

(i < n) has a succeeding neighbor. Since G is connected, such an ordering
exists, and it can be constructed by a depth-first search starting at the vertex
vn. Actually, we may choose for vn any vertex of G.

Consider the procedure from the proof of Theorem 2.1 on G regarding
the above ordering. A vertex vi with i 6= n, has at most ∆ forbidden colors,
so the procedure color it. But the last vertex vn may have forbidden all
∆ + 1 colors. Suppose, that this is the case.

We claim that G is a regular graph and M is a perfect matching. Oth-
erwise, we may choose for vn a vertex that is of degree < ∆ or that it is not
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incident with an edge of M . In both cases, the procedure will color also the
vertex vn.

We now claim that G is 2-connected. Otherwise, let B be an end-block
in G incident with a cut-vertex v. By Proposition 3.4, B has a fork (w; x, y)
with w, x, y ∈ V (B) and v 6∈ {x, y}. Since x 6= v and y 6= v, it follows that
G−x−y is connected, so (w; x, y) is a fork in G as well. By the definition of
the fork, we can order vertices of G in order v1, v2, . . . , vn such that v1 = x,
v2 = y and vn = v. According to this ordering v1 and v2 receive the same
color by the procedure, which assures that vn is also colored.

Finally, we may assume that G is 2-connected. Since G is neither an
odd cycle nor a complete graph, Theorem 3.3 assures existence of a fork.
Now, we can apply a similar argument as above in order to color G. This
establish the proposition.

4 Graphs with large backbone chromatic number

In this section we show that there exist classes of graphs with backbone
trees, for which the upper bound presented above is sharp. As mentioned in
the previous section, such classes are complete graphs and odd cycles. One
may wonder if all such graphs are only of these two types as it is the case
of the usual coloring.

In what follows, we show that there exist graphs distinct from complete
graphs and odd cycles with backbone trees T such that BBC(G, T ) = ∆(G)+
2.

Proposition 4.1. Let ∆ ∈ N. There exists a graph G with maximum degree
∆ and a backbone tree T such that

BBC(G, T ) = ∆ + 2.

Proof. We construct the desired graph. At first observe that the backbone
chromatic number of the complete graph Kn with the backbone been a
spanning star S1,n−1 is n + 1. Moreover, in any optimal coloring the central
vertex of the star S1,n−1 must be colored by 1 or n + 1. Notice that n =
∆(Kn) + 1.

Next, let R be the graph on 2n + 2 vertices v1, . . . , v2n+2 with the edge
set

E(R) = {vivj | i, j ∈ {1, . . . , n + 1}}
∪ {vivj | i, j ∈ {n + 2, . . . , 2n + 2}}
∪ {vn+1vn+2},
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x y

x1 y1

x2 y2

x3 y3

Figure 1: Graphs R and G

and let its backbone tree be a double spanning star Sn,n, with centers x =
vn+1 and y = vn+2. See the graph on the left side of Fig. 1 for an illustration.
Observe that any backbone (∆(R) + 1)-coloring of R has a property that
the colors of x and y comprise the set {1, ∆(R) + 1}.

Finally, we define G to be the graph on 3n+6 vertices v1, . . . , v3n+6 with
the edge set

E(G) = {vivj | i, j ∈ {1, . . . , n + 1}}
∪ {vivj | i, j ∈ {n + 2, . . . , 2n + 2}}
∪ {vivj | i, j ∈ {n + 3, . . . , 2n + 3}}
∪ {vivj | i, j ∈ {2n + 4, . . . , 3n + 4}}
∪ {vivj | i, j ∈ {2n + 5, . . . , 3n + 5}}
∪ {vivj | i, j ∈ {3n + 6, 1, . . . , n}}
∪ {vn+1vn+2, v2n+3v2n+4, v3n+5v3n+6}.

For an illustration see the graph on the right side of Fig. 1, where vn+1 =
x1, vn+2 = y1, v2n+3 = y2, v2n+4 = y3, v3n+5 = x3, v3n+6 = x2. Notice that
the graph G can be constructed from three copies of R by identification of
some cliques. The backbone tree T is the one with the thick edges in the
graph on the right side of Fig. 1, i.e.

E(T ) = {vivn+1 | i ∈ {1, . . . , n}}
∪ {vivn+2 | i ∈ {n + 3, . . . , 2n + 2}}
∪ {viv2n+4 | i ∈ {2n + 5, . . . , 3n + 4}}
∪ {vn+1vn+2, v2n+3v2n+4, v3n+5v3n+6, v3n+6v1, v2n+2v2n+3}.

We show that the graph G has backbone chromatic number at least ∆+2,
and hence equal to ∆+2 by Theorem 2.1. Let us suppose for a contradiction
that the backbone chromatic number of the graph G is at most ∆ + 1. The
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graph G contains a copy of Kn+1, hence BBC(G, T ) ≥ n + 2 = ∆ + 1. The
vertices x1 = vn+1 and y1 = vn+2 are colored by 1 and ∆ + 1, respectively,
since they correspond to the vertices x and y on Fig. 1. Without loss of
generality, let x1 be colored by 1. Then all colors from 3 to n + 2 are used
among the vertices v1, . . . , vn. Hence, the vertex x2 = v3n+6 must be colored
by 1 or 2. Similarly, the vertex y2 = v2n+3 is colored by n + 1 or n + 2. The
vertex y3 = v2n+4 is colored by 1, since the edge y2y3 ∈ E(T ) is a backbone
edge and {v2n+4, . . . , v3n+4} induces a copy of Kn+1. This implies that the
vertex x3 = v3n+5 can be colored only by the color 1 or 2. Again x2x3 is a
backbone edge, and hence it cannot be colored with the colors from {1, 2},
a contradiction.

In the previous claim the maximum degree of the backbone graph is the
same as the maximum degree of the graph G. We show that there exist
graphs with backbone graphs (forests) for which ∆(T ) < ∆(G) and still the
bound from Theorem 2.1 is sharp.

Proposition 4.2. Let ∆ ∈ N. There exist a graph G of maximum degree
∆ and a backbone tree T with ∆ > ∆(T ) such that

BBC(G, T ) = ∆ + 2.

Proof. Let J be the graph on 2n+5 vertices v1, . . . , v2n+5 with the edge set

E(J) = {vivj | i, j ∈ {1, . . . , n + 1}}
∪ {vivj | i, j ∈ {n + 2, . . . , 2n + 2}}
∪ {vivj | i, j ∈ {n + 3, . . . , 2n + 3}}
∪ {vivj | i, j ∈ {2n + 5, 1, . . . , n}}
∪ {vn+1vn+2, v2n+3v2n+4, v2n+4v2n+5},

x

Kn J4

J3

J2
J1

x4
x3

x2
x1

Figure 2: Graphs J and G
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and let the backbone tree be the one with the thick edges in the graph on
the left side of Fig. 2, i.e.

E(T ) = {viv2n+5 | i ∈ {1, . . . , n}}
∪ {viv2n+3 | i ∈ {n + 3, . . . , 2n + 2}}
∪ {v1vn+1, vn+1vn+2, vn+2vn+3}.

At first observe that in any backbone coloring with n+2 colors the vertex
x = v2n+4 of the graph J cannot obtain neither color 1 nor n + 2 by using
a similar argument as in the proof of the previous proposition.

Finally, we construct G consisting of n disjoint copies Ji of J with vertices
xi corresponding to x, and all the edges between vertices xi, i ∈ {1, . . . , n}.
Notice that xi’s induce a copy of Kn. The backbone graph of G is union of
backbone graphs of Ji and a star S1,n−1 on vertices xi’s with center x1.

Suppose now that the central vertex x1 of S1,n−1 is colored with the
color c. The vertices x2, . . . , xn cannot be colored with the colors 1, n+2, c.
Moreover, at least one color c + 1 or c− 1 is also not used by these vertices.
Hence, we have at most ∆ + 1 − 4 = n + 2 − 4 = n − 2 available colors for
coloring {x2, . . . , xn}, which is impossible. This contradiction establish the
claim.

5 Asymptotic behavior of the backbone chromatic

number

In this section we present an upper bound on the backbone chromatic num-
ber of a sparse graph G with a backbone graph H such that ∆(H) << ∆(G).
We also show that the bound is asymptotically almost best possible. Let
us recall standard well known Talagrand’s inequality [10], see also [9, p. 81]
and its consequence.

Theorem 1 (Talagrand’s Inequality). Let X be a non–negative random
variable, not identically 0, which is determined by n independent trials
T1, T2, . . . , Tn, and for some c, r > 0 satisfying the following:

(a) changing the outcome of any trial can affect X by at most c; and

(b) for any s, if X ≥ s then there is a set of at most rs trials whose
outcomes certify that X ≥ s.

Then, for any 0 ≤ t ≤ E(X) it holds

P (|X − E(X)| > t + 60c
√

rE(X)) ≤ 4e
− t

2

8c2rE(X) .
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Theorem 2 (Simple Concentration Bound [9, p. 79]). If X is a random
variable determined by n independent trials T1, T2, . . . , Tn such that changing
the outcome of any trial changes the values of X by at most by c, then

P (|X − E(X)| > t) ≤ 2e−
t
2

2c2n

for t > 0.

For a purposes of the following theorem we also recall the Lovász Local
Lemma [6], see also [9, p. 40].

Theorem 3 (Lovász Local Lemma). Consider a set E of events such that
for each A ∈ E

(a) P (A) ≤ p < 1; and

(b) A is mutually independent of a set of all but at most d other events.

If 4pd ≤ 1 then with positive probability, none of the events in E occur.

Now, we show that a sparse graph G of large enough maximum degree
∆ >> λ and the backbone H having maximum degree d << ∆ satisfy
BBC(G, H) ≤ ∆−

√
∆. This is an interesting fact since for backbone graphs

with high maximum degree, there exist graphs with 2-backbone chromatic
number equals to ∆ + 2, due to Proposition 4.1. Let us recall that the
neighborhood NG(v) of a vertex v ∈ V (G), is the set of all vertices adjacent
to it, and so v 6∈ NG(v).

Theorem 5.1. Let G be a graph of large enough maximum degree ∆ and
H its subgraph of maximum degree d ≤ ∆

6
. If the neighborhood NG(v) of any

vertex v ∈ V (G) contains at most
(

∆
2

)

−B edges, for B ≥ ∆
3
2

√

3000 e16 log ∆,
then

BBCλ(G, H) ≤ ∆ + 1 + (2λ − 1)d − B

e8∆
.

Proof. Let C = {1, . . . , ⌊∆
2
⌋} and c = |C|. For every vertex x of G we assign

to x a uniformly random color from C with probability 1
c
. Next, we uncolor

all vertices that are present in some conflict, i.e. there is an edge between
two vertices sharing the same color or there is a backbone edge between
two vertices with colors at distance 1. In such a situation, we uncolor both
end-vertices. We are interested in the random variable Xv, that counts the
number of colors assigned to at least two non-adjacent neighbors of a given
vertex v ∈ V (G) and retained by all of them.
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For each v ∈ V (G), let Av be the event that Xv < B
e8∆

. We show that the
probability P (Av) < 1

4∆5 . Moreover, the event Av is mutually independent
of all but at most ∆4 other events, since two events Au and Av can be
dependent only if dist(u, v) ≤ 4. We proceed with two claims.

Claim 1. For every vertex v ∈ V (G), it holds

E(Xv) >
2B

e4∆
.

We focus on the random variable X ′
v that counts number of colors of vertices

so that it was assigned to exactly two vertices and retained by both of them.
Trivially, Xv ≥ X ′

v, and hence E(Xv) ≥ E(X ′
v).

Let u, w ∈ NG(v). The probability that both vertices u, w were assigned
a color α is p1 = 1

c2
. The probability that no other vertex in NG(v) was

assigned the color α is p2 >
(

1 − 1
c

)∆
. The probability that the color α

at u did not cause any conflict on NG(u) is p3 ≥
(

1 − 3
c

)d ·
(

1 − 1
c

)∆−d ≥
(

1 − 1
c

)
3
2
∆

since d ≤ ∆
6

and there are at most d neighbors of u in H. A
similar computation applies to p4, the probability that the color α at w did
not cause any conflict on NG(w). Now, by the fact ∆ ≥ 2c we have that the
probability of the event that each of u, w is assigned and retained α and no
other vertex in NG(v) was assigned α is at least

p1 p2 p3 p4 ≥ 1

c2

(

1 − 1

c

)8c

≥ 1

e8c2
.

There are c choices for α and at least B choices for u, w, therefore by linearity
of expectation we infer

E(Xv) ≥ E(X ′
v) ≥ c B

1

e8c2
≥ 2B

e8∆
.

This establish Claim 1.

Claim 2. For every vertex v ∈ V (G), it holds

P

(

|Xv − E(Xv)| >
1

2
E(Xv)

)

<
1

4∆5
.

In order to prove the claim, we will consider two random variables Yv and
Zv, where
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• Yv is the number of colors that were assigned (but maybe not retained)
to at least two non-adjacent neighbors of v.

• Zv is the number of colors that were assigned to at least two non-
adjacent neighbors of v and removed from at least one of them.

We have Xv = Yv − Zv. Using Simple concentration bound, and the fact
that assignment of a color to u ∈ N(v) can change Yv by at most 2, we have

P (|Yv − E(Yv)| > t) < 2e−
t
2

8∆ .

Similarly, assignment of a color to a vertex v can change Zv by at most 2.
Next, for Zv ≥ s we can take for every color β of these s removed colors
two vertices from the neighborhood of v assigned by β and one vertex that
caused conflict in this color β, i.e. at most 3s vertices. Using Talagrand’s
Inequality with c = 2 and r = 3 we have

P (|Zv − E(Zv)| > t) < 4 exp

(

−(t − 120
√

3E(Zv) )2

96E(Zv)

)

< 4 exp

(

− t2

100∆

)

.

In order to obtain the second inequality, we use this facts t ≥
√

∆ log ∆ and
E(Zv) ≤ ∆.

By linearity of expectation, E(Xv) = E(Yv)−E(Zv). If |Xv−E(Xv)| > t
then we must have either |Yv − E(Yv)| > t

2
or |Zv − E(Zv)| > t

2
. By the

concentration of Yv, Zv and the subadditivity of probability measure, we
infer

P (|Xv − E(Xv)| > t) ≤ P
(

|Yv − E(Yv)| > t
2

)

+ P
(

|Zv − E(Zv)| > t
2

)

< 2e−
t
2

32∆ + 4e−
t
2

400∆ < 8e−
t
2

400∆ .

The maximum degree ∆ of G is sufficiently large and using t = 1
2
E(Xv) ≥√

∆ log ∆, we obtain

P (|Xv − E(Xv)| > 1
2
E(Xv)) < 8e−

B
2

400e16∆3 ≤ 8e−
3000 e

16 log ∆

400e16

≤ 8∆− 3000e
16

400e16 < 1
4∆5 .

This establish Claim 2.

Probability that Av occurs is at most P (|Xv − E(Xv)| > 1
2
E(Xv)) and

this probability is bounded from above by 1
4∆5 . Moreover, Av is mutually
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independent of all but ∆4 other events. Since 4 1
4∆5 ∆4 < 1, the assumption

“4pd” of the Lovász Local Lemma is satisfied. So we conclude that none of
Av occurs with positive probability. This means that for every uncolored
vertex v there are at least B

e8∆
colors that are used on at least two neighbors

of v. In other words for coloring of the vertex v it is enough to have

∆ − B

e8∆
+ (2λ − 1)d + 1

colors. This ends the proof of the theorem.

Corollary 5.2. Let G be a graph of large enough maximum degree ∆ >> λ,
λ ∈ N, and H its subgraph of maximum degree d << ∆. If the neighborhood
NG(v) of any vertex v ∈ V (G) contains at most

(

∆
2

)

− B edges for B ≥
∆

3
2

√

3000 e16 log ∆, then

BBCλ(G, H) ≤ ∆ −
√

∆.

Proof. From the previous theorem we have

BBCλ(G, H) ≤ ∆ + 1 + (2λ − 1)d − B
e8∆

≤ ∆ + 1 + (2λ − 1)d − ∆
3
2
√

3000 e16 log ∆

e8∆

= ∆ −
√

∆ +

(

1 + (2λ − 1)d −
√

∆

(√
3000 e16 log ∆

e8 − 1

))

≤ ∆ −
√

∆.

Notice that the last inequality holds since d << ∆ and λ << ∆.

We end by showing that with some relaxation on the constraint B ≥
∆

3
2

√

3000 e16 log ∆, there are graphs which 2-backbone chromatic number
is at least ∆ − B

∆
− 1. Moreover this hold for any choice of the backbone.

Proposition 5.3. For every ∆ ∈ N and D ≤ ∆
3
2 −∆ there is a graph G in

which the neighborhood of any vertex v ∈ V (G) contains at most
(

∆
2

)

− D
edges such that

BBC2(G, H) > ∆ − D

∆
− 1,

for any backbone graph H ⊆ G.

14



Proof. Let G1 be a complete graph on k + 1 vertices, and G2 be an edgeless
graph on ∆ − k vertices where k = ⌊y⌋ and y is a solution of the equation

y2 − y =

(

∆ − D

∆

)2

−
(

∆ +
D2

∆2

)

.

It is not hard to show that y > ∆ − D
∆
− 1.

Now we define our graph G with V (G) = V (G1) ∪ V (G2) and E(G) =
E(G1) ∪ {v0w |w ∈ V (G2)} for a fixed v0 ∈ V (G1). Next let H be an
arbitrary subgraph of G. The complete graph Kk+1 is a subgraph of G, and
hence χ(G) ≥ k + 1. Any backbone coloring of a graph G is also a proper
coloring of G and therefore

BBC2(G, H) ≥ χ(G) ≥ k + 1 > y > ∆ − D

∆
− 1.

Now we show that our graph also satisfies the ”neighborhood” condition.
There are at most

(

k
2

)

edges in the neighborhood of any vertex v ∈ V (G).
Since

(

k

2

)

≤ y2 − y

2
=

(

∆ − D
∆

)2 −
(

∆ + D2

∆2

)

2
=

(

∆

2

)

− D,

we are done.

Notice that D is chosen such that the maximal complete graph on k + 1
vertices satisfying the ”neighborhood” condition with such a choice of D,
has chromatic number exactly ⌈∆ − D

∆
− 1⌉ ≥ ∆ − D

∆
− 1.
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