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Abstract

For a graph G and its spanning tree T the backbone chromatic number,
BBC(G,T ), is defined as the minimum k such that there exists a coloring
c : V (G) → {1, 2, . . . , k} satisfying |c(u) − c(v)| ≥ 1 if uv ∈ E(G) and
|c(u) − c(v)| ≥ 2 if uv ∈ E(T ).

Broersma et al. [1] asked whether there exists a constant c such that for
every triangle-free graph G with an arbitrary spanning tree T the inequality
BBC(G,T ) ≤ χ(G) + c holds. We answer this question negatively by
showing the existence of triangle-free graphs Rn and their spanning trees
Tn such that BBC(Rn, Tn) = 2χ(Rn) − 1 = 2n − 1.

In order to answer the question we obtain a result of independent in-
terest. We modify the well known Mycielski’s construction and construct
triangle-free graphs Jn, for every integer n, with chromatic number n and
2-tuple chromatic number 2n (here 2 can be replaced by any integer t).
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1 Introduction

1.1 Backbone colorings

The backbone coloring problem is related to frequency assignment problems in
the following way, the transmitters are represented by the vertices of a graph and
they are adjacent in the graph if the corresponding transmitters are close enough
or transmitters are strong enough. The problem is to assign frequency channels
to the transmitters in such a way that the interference is kept at an ”acceptable”
level. One way of putting these requirements together is following: Given graphs
G1, G2 such that G1 is a spanning subgraph of G2. Determine a coloring of G2

that satisfies certain restriction of one type in G1 and of the other type in G2.
In this concept, backbone colorings were introduced and motivated and put

into a general framework of related coloring problems in [1]. Let us recall some
basic definitions. In the sequel we deal with undirected simple graphs, i.e. without
loops and/or multiedges. By the symbol [n] we understand the set {1, 2, . . . , n},
by the symbol χ(G) the chromatic number of G, and by the symbol G[W ] the
subgraph induced by the vertex set W ⊆ V (G). For a graph G, we define a
coloring ν : V → {1, 2, . . . , k} to be a backbone k-coloring of a graph G with a
backbone graph H ⊆ G, if for every two different vertices u and v of G, it holds

• |ν(u) − ν(v)| ≥ 1, if uv ∈ E(G) \ E(H);

• |ν(u) − ν(v)| ≥ 2, if uv ∈ E(H).

The minimum k for which G with backbone H admits a backbone k-coloring is
called the backbone chromatic number of G with backbone H . It is denoted by
BBC(G, H). In this paper we consider only the case when a backbone graph H
is acyclic.

We refer to several results concerning backbone colorings of graphs. The
connection between the backbone chromatic number and the chromatic number
is studied in [1]. The authors showed that the backbone chromatic number of a
graph G is at most 2χ(G)− 1, while they provided examples where this bound is
attained. To show this inequality it is sufficient to color the graph G with colors
1, 3,. . . , 2χ(G)−1. The decision problem if there exists a backbone coloring of a
graph G with backbone tree T with l colors is NP-complete for l ≥ 5. Broersma
et al. in [3] showed that the backbone chromatic number of planar graphs with
backbone matchings is at most six. Other results on backbone colorings appear
in [2, 4, 9].

We deal with the intriguing question posed by Broersma et al. [1].

Question 1.1. Does there exists a constant c such that BBC(G, T ) ≤ χ(G) + c
holds for every triangle-free graphs G with T being a tree?
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We will present infinite class of triangle-free graphs answering the question
negatively. More precisely, for every integer n, we will show the existence of a
triangle-free graph G with a backbone tree T such that BBC(G, T ) = 2χ(G)−1 =
2n − 1.

1.2 Triangle-free graphs and their colorings

For integers k and t we define a t-tuple k-coloring of a graph G to be a function
c : V (G) →

(

[k]
t

)

such that c(u) ∩ c(v) = ∅ whenever uv ∈ E(G). The minimum
possible k that G has a t-tuple k-coloring is called the t-tuple chromatic number,
denoted by χt(G).

The procedure of giving a negative answer to Question 1.1 will proceed in the
following steps:

Step I. For a given triangle-free graph G, we will construct an infinite triangle-free
graph RG with a backbone tree TG such that BBC(RG, TG) ≥ χ2(G) − 1
and χ(RG) = χ(G).

Step II. For a given triangle-free graph G, we will present a Mycielski-type con-
struction of a triangle-free graph J(G) such that χ2(J(G)) ≥ χ2(G) + 2
and χ(J(G)) ≤ χ(G) + 1. In particular, it follows that χ(Jn) = n and
χ2(Jn) = 2n, where Jn = Jn−2(K2) and K2 is the complete graph on 2
vertices.

Step III. From the previous two steps, BBC(RJn
, TJn

) ≥ 2n− 1 = 2χ(RJn
)− 1. The

graph RJn
is infinite; however, by the principle of compactness there exists

a finite (connected) subgraph Rn ⊆ RJn
such that BBC(Rn, TJn

[V (Rn)]) ≥
2n−1. TJn

[V (Rn)] is a subforest of Rn thus it can be extended to a spanning
tree Tn of Rn. We know that BBC(Rn, Tn) ≥ 2n−1 and χ(Rn) ≤ χ(RJn

) =
n. Actually, equalities hold since BBC(G, T ) ≤ 2χ(G)− 1 for any graph G
with backbone T .

The construction from Step I follows an idea of Broersma et al. [1]. It will be
described in Section 2.

The crucial step is Step II. Its task is to construct a triangle-free graph Jn, for
every integer n, such that χ(Jn) = n and χ2(Jn) = 2n. This construction may
be of an independent interest. The well known fractional chromatic number of a
graph G is defined as

χf = inf
t∈N

χt(G)

t
.

Since χ(G) ≥ χ2G

2
≥ χf(G), it would be natural to look for a class, say Fn, of

triangle-free graphs such that χ(Fn) = χf(Fn) = n. Unfortunately, we are not
aware of such a class of graphs. There is a lot of known examples of triangle-free
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graphs with a large chromatic number, however it seems that none of them is the
case. We just give a note on some of them:

Larsen, Propp and Ullman [7] proved that a Mycielski graph with the chro-
matic number n has fractional chromatic number approximately equal to

√
2n.

Kneser graphs KG3n−1,n are triangle-free graphs with chromatic number n+1
and fractional chromatic number 3n−1

n
< 3. More details about colorings of

Kneser graphs can be found e.g. in [6, 8].
By the probabilistic method, Erdős [5] showed that exist triangle-free graphs

with an arbitrary large chromatic number actually proving that the independence
number of such graphs is small (an thus even fractional chromatic number is
large). However, it does not give an intuition, how far away the chromatic number
and the fractional chromatic number are.

The construction of graphs Jn is a generalization of Mycielski’s construction.
It will be precisely described in Section 3.

For Step III we just remark that with some extra effort it is possible to
work just with finite graphs and avoid any use of the principle of compactness.
However, some of the proofs would be more complicated and more technical, thus
we rather prefer to work with infinite graphs.

2 Relation between backbone colorings and 2-

tuple colorings

In this section, for a given graph G we construct a pair of graphs (RG, TG) as
mentioned in Step I in the introduction.

Definition 2.1. Let G be a graph. We define a pair of infinite graphs (RG, TG)
in the following way:

1. The graph RG is the OR-product of G and N (as independent set), i.e.

• V (RG) = V (G) × N;

• E(RG) = {{(v1, n1), (v2, n2)} | v1v2 ∈ E(G)}.

2. TG is a spanning tree of G defined recursively in the following way: Fix a
good linear ordering � on V (RG). Let T 1

G is the graph with just one vertex
– the smallest element of V (RG). Suppose that T i

G is already defined.
Let us define T i+1

G ⊃ T i
G: First, we call occupied all the vertices of T i

G.
Gradually for every vertex (v, k) ∈ TG (from the smallest one to the largest
one) and for every edge uv ∈ E(G), choose j such that (u, j) is the smallest
possible unoccupied vertex and add this vertex among the occupied vertices.
Moreover, add the vertex (u, j) among the vertices of T i+1

G and the edge
{(v, k), (u, j)} among the edges of T i+1

G . Finally, we define TG =
⋃

i∈N

T i
G.
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Figure 1: The path P3 and the pair (RP3
, TP3

), where the ordering � is chosen
so that vertices with higher altitude in the figure are smaller in �. Labels at
vertices are the smallest such i that the corresponding vertex belongs to T i

P3
.

An example of the construction is depicted on Figure 1. Notice, that the
spanning tree TG is not defined uniquely; however, for our purposes it is not
important to have a unique definition. The following lemma easily follows from
the construction.

Lemma 2.2. For any graph G, the pair (RG, TG) has the following properties:

1. TG is a spanning tree of RG.

2. If G is triangle-free then RG is triangle-free.

3. For every vertex (v, j) of RG and for every edge uv of G, there exits an
integer j′ such that {(v, j), (u, j′)} is an edge of TG.

�

The following proposition relates the 2-tuple chromatic number of a graph G
and the backbone chromatic number of the pair (RG, TG).

Proposition 2.3. Let G be a graph. Then

1. χ(RG) = χ(G);

2. BBC(RG, TG) ≥ χ2(G) − 1.
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Proof. We prove each of the claims separately:

1. The graph RG[V (G) × {1}] is isomorphic to G, hence χ(G) ≤ χ(RG).

On the other hand, any coloring of G induces a coloring of RG: For every
v ∈ V (G) and n ∈ N the vertices (v, n) ∈ V (RG) are assigned with the
color of v. Hence χ(RG) ≤ χ(G).

2. First, observe that BBC(RG, TG) is finite since BBC(RG, TG) ≤ 2χ(RG) −
1 = 2χ(G) − 1. Let k = BBC(RG, TG) and let ν be a backbone k-coloring
of (RG, TG). Our goal will be to construct a 2-tuple (k +1)-coloring c of G.
First, we define a function c′ : V (G) → 2[k] \ {∅}:

c′(v) = {n ∈ [k] | exists j ∈ N : ν(v, j) = n} .

Now, we define a function c : V (G) →
(

[k+1]
2

)

in the following way:

• c(v) = {i, i + 1} if c′(v) = {i}.
• c(v) is any 2-element subset of c′(v) if |c′(v)| ≥ 2.

It remains to show that c is a 2-tuple coloring of G. First, observe that
c′(u) ∩ c′(v) = ∅ for every uv ∈ E(G), since {(u, j1), (v, j2)} ∈ E(RG) for
every j1, j2 ∈ N. For any uv ∈ E(G), we will show that c(u) ∩ c(v) = ∅ by
considering three cases:

|c′(u)| ≥ 2 and |c′(v)| ≥ 2: Since c′(u)∩ c′(v) = ∅, we infer c(u)∩ c(v) = ∅.
c′(u) = {i} and |c′(v)| ≥ 2 (or vice versa): Since c′(u) ∩ c′(v) = ∅, we

infer i /∈ c(v). It remains to show that i + 1 /∈ c(v) ⊆ c′(v). For
a contradiction, suppose that i + 1 ∈ c′(v). Let (v, j) ∈ RG be a
vertex such that ν(v, j) = i + 1 and (u, j′) be its neighbor in TG due
to Lemma 2.2(3). Then ν(u, j′) = i since c′(u) = {i}. It contradicts
the fact that ν is a backbone coloring of (RG, TG).

c′(u) = {i1} and c′(v) = {i2}: Since c′(u)∩c′(v) = ∅, we have i1 6= i2. Thus
without loss of generality, we can assume that i1 < i2. Moreover,
i1 + 1 /∈ {i2} from a similar reason as in the previous case. Thus,
i1 + 1 < i2 implies that c(u) ∩ c(v) = ∅.

3 Mycielski-type construction

Mycielski [10] was among the first authors who showed the existence of triangle-
free graphs with arbitrarily large chromatic number. We wish, in addition, to
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z1

z2

V (G) W ′

G D(G, W, z1, z2)

Figure 2: An example of Construction D. In the graph G, the subgraph G[W ]
is indicated by a thick line; circular vertices belong to A1 and square vertices
belong to A2.

relate the chromatic number and the 2-tuple chromatic number. More precisely,
we will show that for every n ∈ N there exists a triangle-free graph which chro-
matic number is n and 2-tuple chromatic is 2n. We will present a construction
that increases the chromatic number by 1, the 2-tuple chromatic number by 2, and
preserves the property being triangle-free. The construction has several steps.

Construction D. Suppose that we are given a graph G; a set W ⊆ V (G) such
that G[W ] is bipartite with parts A1 and A2 (possibly empty); and two vertices
z1, z2 /∈ V (G).

We construct a graph1 D = D(G, W, z1, z2). Let2 W ′ = W × {W} be a copy
of W and let w′ be an abbreviation for (w, W ) ∈ W ′ where w ∈ W . We define

V (D) = V (G) ∪ W ′ ∪ {z1, z2}, and

E(D) = E(G)

∪ {w′
1w

′
2 | w1, w2 ∈ W, and w1w2 ∈ E(G)}

∪ {vw′ | v ∈ V (G) \ W, w ∈ W, and vw ∈ E(G)}
∪ {w′zi | w ∈ Ai, i ∈ {1, 2}}.

An example of the construction is depicted on Figure 2. It is easy to check
that the following lemma holds:

Lemma 3.1. The graph D = D(G, W, z1, z2) from Construction D has the fol-
lowing properties:

1. If G is triangle-free then D is triangle-free.

1Formally, the graph D also depends on a partition of W to A1 and A2. For our purposes,
it will be convenient to suppose that W is always already given with such a partition.

2For the most of the purposes W × {W} could be replaced by W × {1}. However it will be
convenient later on to get different copies for different W .
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G

W ′
1

W ′
2

...

W ′
t

z1

z2

Figure 3: A scheme of Construction H.

2. The graph D[(V (G) \ W ) ∪ W ′] is isomorphic to G.

�

We define another auxiliary graph:

Construction H. Suppose that we are given a graph G, and two vertices z1, z2 /∈
V (G).

We define the graph H(G, z1, z2) in the following way: Order all W ⊆ V (G)
such that G[W ] is bipartite in a sequence W1, W2,. . . , Wt (and choose parts A1,
A2 for each of them). Construct graphs Di = D(G, Wi, z1, z2). Finally, define

H = H(G, z1, z2) =

t
⋃

i=1

Di,

i.e. H consists of union of sets D(G, Wi, z1, z2) where G, z1 and z2 are identified
in all the copies, however the sets W ′

i are not identified (see Figure 3).

The following lemma is the key lemma for our construction.

Lemma 3.2. Let H = H(G, z1, z2) be a graph from Construction H.

1. If G is triangle-free, then H is also triangle-free.

2. Let k be the 2-tuple chromatic number of G. Then, there is no 2-tuple
(k + 1)-coloring c of H such that c(z1) = c(z2).

Proof. The first claim easily follows from Lemma 3.1(1).
For the second claim, assume to the contrary that c is a 2-tuple (k + 1)-

coloring of H such that c(z1) = c(z2) = {k, k + 1}. Recall that H contains G.
Let W = {v ∈ V (G) | c(v) ∩ {k, k + 1} 6= ∅}. It is easy to see that G[W ] is a
bipartite, thus there exists i ∈ [t] (where t is defined as in Construction H) such

8



H(G, z
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H(G, z2, zr)

H(G
, z3,

zr
)
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, z1,

z2)

H(
G, z1

, z3
)

H
(G

, z
2
, z
3
)

zr

z1

z2

z3

Figure 4: A scheme of Construction J.

that W = Wi. The graph G′ = H [(V (G)\Wi)∪W ′
i ] is isomorphic to G according

Lemma 3.1(2) (where W ′
i = Wi × {Wi} is defined as in Construction D).

We claim that c(v) ∩ {k, k + 1} = ∅ for every v ∈ V (G′): If v ∈ V (G) \ Wi

then it follows from the definition of W = Wi, if v ∈ W ′
i then either z1 or z2 is

a neighbor of v. Thus c restricted to G′ is a 2-tuple (k − 1)-coloring of a graph
isomorphic to G contradicting the assumptions of the lemma.

Finally, for a graph G we define the graph J(G) that will satisfy our require-
ments.

Construction J. Let G be a graph, k = χ2(G), r =
(

k+1
2

)

+ 1, and let Z be the
graph with V (Z) = {z1, z2, . . . , zr} and E(Z) = ∅. For every i, j ∈ [r], i 6= j,
let Gij be an isomorphic copy of G, formally, V (Gij) = V (G) × {{i, j}} and
E(Gij) = {{(u, {i, j}), v, {i, j}} | uv ∈ E(G)}. Then, we define

J(G) =
⋃

{i,j}⊂[r]

H(Gij, zi, zj),

i.e., J(G) consists of an independent set Z where between each two vertices zi,
zj of Z there is inserted a copy of H(G, zi, zj).

Theorem 3.3. Let G be a graph. The graph J(G) satisfies the following proper-
ties:

1. If G is triangle-free then J(G) is also triangle-free.

2. χ2(J(G)) ≥ χ2(G) + 2.

3. χ(J(G)) ≤ χ(G) + 1.

In fact it is not difficult to derive that χ2(J(G)) = χ2(G) + 2 and χ(J(G)) =
χ(G) + 1, but we will not need it for our purposes.

Proof. We prove each of the claims separately:

9



1. This claim follows from Lemma 3.2(1) and from the fact that no two zi and
zj are adjacent in H(Gij, zi, zj).

2. We use the notation from Construction J. Let k = χ2(G). We will show that
there is no 2-tuple (k + 1)-coloring c of J(G). For a contradiction, suppose
that such c exists. From the pigeonhole principle, there are i, j ∈ [r] such
that c(zi) = c(zj). But it contradicts Lemma 3.2(2) for H = H(Gij, zi, zj).

3. Again, we use the notation from Construction J. Let l = χ(G), we will
show that there is an (l + 1)-coloring γ of J(G). First, we color all the
vertices of Z with color l + 1, i.e. γ(Z) = {l + 1}. Then it is sufficient
to color every H(Gij, zi, zj) separately. For notational convenience, we will
color H(G, z1, z2) following Construction H so that γ(z1) = γ(z2) = l + 1.
The graph G is l-colorable, hence the coloring γ can be extended to G so
that γ is a coloring of G using only colors 1, 2,. . . , l. Finally, for i ∈ [t] and
for (w, Wi) ∈ Wi × {Wi} we define γ(w, Wi) = γ(w). It is easy to check
that γ is an (l + 1)-coloring of H(G, z1, z2).

Corollary 3.4. For every n ∈ N there exists a (connected) triangle-free graph Jn

such that χ(Jn) = n and χ2(Jn) = 2n.

Proof. Let J1 is the graph consisting of a single vertex. For n ≥ 2, let Jn =
Jn−2(K2). Theorem 3.3 implies that χ(Jn) ≤ n and χ2(Jn) ≥ 2n, however, it is
easy to see that χ2(G) ≤ 2χ(G) for any graph G.

The proof of the following corollary, answering negatively Question 1.1, is
explicitly written in the introduction (Step III):

Corollary 3.5. For every n ∈ N there exists a (finite) triangle-free graph Rn and
its spanning tree Tn such that BBC(Rn, Tn) = 2χ(Rn) − 1 = 2n − 1.

�

4 Conclusion

We showed the existence of triangle-free graphs Rn such that their backbone
colorings (with suitable spanning tree) need 2χ(Rn)−1 = 2n−1 colors. However,
these graphs contain 4-cycles. For further research, it could be interesting to
describe the behavior of maximum possible backbone number for graphs with
given chromatic number χ and given girth g.

The construction of a graph Jn can be for every t ≥ 2 generalized in an obvious
way to get triangle-free graphs J t

n such that χ(J t
n) = n and χt(J

t
n) = tn (compare
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with Corollary 3.4). In a bit more detail, to construct graphs J t
n, consider t-

colorable subgraphs W instead of bipartite subgraphs in Constructions D and H
and put r =

(

k+t−1
t

)

+ 1 in Construction J. Motivated by these results we pose
the following conjecture:

Conjecture. For every n ∈ N there exists a finite triangle-free graph Fn such
that χ(Fn) = χf(Fn) = n.
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