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Abstract

A graph G is k-choosable if every vertex of G can be properly colored whenever
every vertex has a list of at least k available colors. Grötzsch’s theorem states that
every planar triangle-free graph is 3-colorable. However, Voigt [13] gave an example
of such a graph that is not 3-choosable, thus Grötzsch’s theorem does not generalize
naturally to choosability. We prove that every planar triangle-free graph without
7- and 8-cycles is 3-choosable.

1 Introduction

All graphs considered in this paper are simple and finite. The concept of list colorings
and choosability was introduced by Vizing [11] and independently by Erdős et al. [3]. A
list assignment of G is a function L that assigns to each vertex v ∈ V (G) a list L(v) of
colors. An L-coloring is a function λ : V (G) →

⋃
v L(v) such that λ(v) ∈ L(v) for every

v ∈ V (G) and λ(u) 6= λ(v) whenever u and v are adjacent vertices of G. If G admits an
L-coloring then it is L-colorable. A graph G is k-choosable if, for every list assignment L
with |L(v)| ≥ k for all v ∈ V (G), there exists an L-coloring of G.

Thomassen [9] proved that every planar graph is 5-choosable. Voigt [12] showed that
not all planar graphs are 4-choosable. By 3-degenericity, every planar triangle-free graph
is 4-choosable, and Voigt [13] exhibited an example of a non-3-choosable triangle-free
planar graph.

Sufficient conditions for 3-choosability of planar graphs are studied intensively. We
present a table of known results for triangle-free graphs, where the additional assumptions
are given by other forbidden cycle lengths. Many other criteria, some of them applicable
even to graphs with triangles, were studied, see e.g. [7, 8] for more results in this direction.
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There are many possible combinations of cycles one may try to forbid. We would
like to explicitly mention one, which was our initial motivation to study 3-choosability of
planar graphs:

Problem 1.1. Is there k such that forbidding all odd cycles of length ≤ k is a sufficient
condition for 3-choosability of planar graphs?

Such a condition makes the graph locally bipartite and would strengthen the result of
Alon and Tarsi [1] that every bipartite planar graph is 3-choosable.

We use the following notations. Let G be a plane graph. We denote the set of its
vertices by V (G), the set of its edges by E(G), and the set of its faces by F (G). We
denote the degree of a vertex v by deg(v). In a plane graph G, we denote the size of a
face f (the length of its facial walk) by `(f). A vertex of degree d (respectively at least d,
respectively at most d) is said to be a d-vertex (respectively a (≥d)-vertex, respectively a
(≤ d)-vertex ). The notion of an l-face (respectively an (≥ l)-face, respectively an (≤ l)-
face) is defined analogously regarding the size of a face. Given a graph G and S ⊆ V (G),
let G−S be the graph obtained from G by removing vertices in S and the edges incident
with them. A vertex v and a face f are incident if v ∈ V (f). Similarly, an edge uv and a
face f are incident if uv ∈ E(f). Faces f1 and f2 are adjacent if they share at least one
edge.

2 Colorings planar graphs without 3-,7-,8-cycles

Our goal is to prove the following theorem.

Theorem 2.1. Every plane graph G without 3-, 7- and 8-cycles is 3-choosable. Moreover,
any precoloring of a 4- or 5-face h can be extended to a list coloring of G provided that
each vertex not in V (h) has at least three available colors.

Proof. Suppose that Theorem 2.1 is false, and let G be a minimal counterexample. In case
that h is precolored, we assume that h is the outer face of G. We shall get a contradiction
by using the Discharging Method. Here is an overview of the proof: First we study some
reducible configurations which cannot occur in the smallest counterexample because of
the minimality. Next, we identify some additional configurations which are forbidden by
the assumptions of the theorem. Finally, we show that there is no planar graph satisfying
all the constraints. To prove it, we assign each vertex and face an initial charge such that
the total charge is negative. Afterwards, the charge of faces and vertices is redistributed
according to prescribed rules in such a way that the total charge stays unchanged, and
thus negative. Under the assumption that the identified configurations are not present in
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G, we show that the final charge of each vertex and each face is non-negative, which is a
contradiction.

Lemma 2.2. No 4- or 5-cycle is separating.

Proof. Let C be a separating 4- or 5-cycle. By the minimality of G, color first the part
of G outside of C, and then extend the coloring of C to the part of G inside C.

Reducible configurations. We use the term configuration for a graph H, possibly with
degree constraints on its vertices when considering H as a potential subgraph of G. We
say that a configuration H is reducible if it cannot appear in the minimal counterexample
G.

Lemma 2.3. The following configurations of non-precolored vertices are reducible:

(1) a (≤ 2)-vertex v;

(2) an even cycle C2k whose vertices have degree 3;

(3) two 4-cycles v1v2v3v4 and v1v5v6v7 consisting of mutually distinct vertices v1, . . . ,
v7, such that v1 is a 4-vertex and vi has degree 3 for 2 ≤ i ≤ 7, see Figure 1.

v3

v2

v1

v4

v5

v6

v7

Figure 1: A reducible configuration.

Proof. Let L be an arbitrary list assignment of G such that each vertex is assigned pre-
cisely 3 colors. We show that G is L-colorable provided that it contains one of the three
configurations.

If G has a non-precolored 2-vertex v, then by the minimality of G, the graph G− v is
L-colorable. This coloring can be extended to v, since it has three available colors and at
most two neighbors.

Suppose now that G contains an even cycle C of non-precolored 3-vertices. Let ϕ be
an L-coloring of G − C. For each v ∈ V (C), if v has a neighbor w in G − C, then let
L′(v) = L(v)\{ϕ(w)}. Otherwise (if all three neighbors of v belong to C), let L′(v) = L(v).
The graph induced by the vertices of C, say G[C], is a 2-connected graph different from
a clique and an odd cycle, such that degG[C](v) = |L′(v)| for each v ∈ V (G[C]). Hence,
G[C] is L′-colorable by [3]. This completes the proof of Lemma 2.3.(2).

Finally suppose that G contains the third configuration K. Note that vi for 2 ≤ i ≤ 7
has two neighbors in K and the third neighbor, denoted by wi, must be in G − K.
Otherwise, G contains a triangle, which is forbidden by the assumptions of the theorem,
or a separating 4- or 5-cycle which contradicts Lemma 2.2.

Let ϕ be an L-coloring of G−K. Let L′(v1) = L(v1) and let L′(vi) = L(vi) \ {ϕ(wi)}
for 2 ≤ i ≤ 7. We show that there exists a proper L′-coloring ϕ′ of v2, v3 and v4 such that
|L′(v1) \ {ϕ′(v2), ϕ

′(v4)}| ≥ 2. Consider the following cases:
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• L′(v2) ∩ L′(v4) 6= ∅: Let a be a common color of v2 and v4. We color v2 and v4 by
a, and extend this coloring to v3.

• L′(v2) ∩ L′(v4) = ∅: Then |L′(v2) ∪ L′(v4)| ≥ 4. Hence, there exists a color a ∈
(L′(v2) ∪ L′(v4)) \ L′(v1). Without loss of generality assume that a ∈ L′(v2). We
assign a to v2, and afterwards L′-color v3 and v4.

Since the 4-cycle v1v5v6v7 is 2-choosable, we can extend ϕ′ to an L′-coloring of K,
giving an L-coloring of G.

We can assume that the outer face h of G is a precolored 4- or 5-cycle: if G has no
precolored 4- or 5-face, then every vertex has degree ≥ 3 according Lemma 2.3(1). Euler’s
formula implies that G has a 4- or 5-face f . So we can fix some coloring of the vertices of
f and redraw G such that f becomes the outer face.

Lemma 2.4. A 4-face f 6= h cannot be adjacent to 5- or 6-face. Moreover, f can share
at most two edges with other 4-faces. If a 4-face shares edges with two other 4-faces, then
they surround a vertex of degree three.

Proof. Let f = v1v2v3v4 be a 4-face sharing at least one edge with a face f ′ = v1v2u3 . . . ut,
where t ∈ {4, 5, 6}. As G has no triangles, u3 6= v4 and ut 6= v3. If u3 = v3, then
deg(v2) = 2 and thus v1v2v3 is a part of the outer face h. Observe that f ′ = h since
2-vertex v2 can be shared by at most two faces and h 6= f . In this case, we remove v2 and
color v4 instead. Therefore, u3 6= v3, and by symmetry, ut 6= v4.

Suppose that t = 5. If u4 6∈ {v3, v4}, then v1u5u4u3v2v3v4 would be a 7-cycle, and if
u4 ∈ {v3, v4}, then G contains a triangle, which is a contradiction. Therefore, G does not
contain a 4-face adjacent to a 5-face.

Consider the case that t = 6. If {u4, u5} ∩ {v3, v4} = ∅, then v1u6u5u4u3v2v3v4 would
be an 8-cycle, thus assume that say u4 ∈ {v3, v4}. As G does not contain triangles,
u4 6= v3, and hence u4 = v4. But, the 4-cycle v4v1v2u3 separates v3 from u5, which is a
contradiction. It follows that G does not contain a 4-face adjacent to a 6-face.

Suppose now that t = 4 and that f shares an edge with one more 4-face f ′′. Assume
first that f ′′ = v3v4u5u6. Observe that {u5, u6} ∩ {v1, v2} = ∅. If {u5, u6} ∩ {u3, u4} = ∅,
then v1u4u3v2v3u6u5v4 is an 8-cycle, thus assume that say u5 ∈ {u3, u4}. As G does not
contain triangles, u5 6= u4, thus u5 = u3. However, G then contains a separating 4-cycle
u3v2v1v4.

It follows that f ′′ = v1v4u5u6. By symmetry, f does not share the edge v2v3 with a 4-
face, thus f does not share edges with three 4-faces. Also, as G does not contain 8-cycles,
{u5, u6}∩{u3, u4} 6= ∅. Note that u5 6= u3 because of the separating 4-cycle u3v2v1v4, and
u5 6= u4 and u6 6= u3, as G does not contain triangles. It follows that u4 = u6, thus v1 has
degree three and it is surrounded by 4-faces f , f ′ and f ′′.

Lemma 2.5. No two 5-faces f and f ′ distinct from h are adjacent.

Proof. Let f = v1v2v3v4v5 and f ′ = v1v2u3u4u5. As f 6= h and f ′ 6= h, v1 and v2 have
degree at least three, thus v3 6= u3 and v5 6= u5. As G does not contain triangles, v3 6= u5

and v5 6= u3. As v2v3v4v5v1u5u4u3 is not an 8-cycle, {v3, v4, v5} ∩ {u3, u4, u5} 6= ∅. By
symmetry, we may assume that v4 ∈ {u3, u4}. As G does not contain triangles, v4 6= u3,
thus v4 = u4. However, at least one of 4-cycles u4u3v2v3 or u4u5v1v5 is distinct from h,
contradicting Lemma 2.2 or Lemma 2.4.

4



Initial charges. We assign the initial charge to each non-precolored vertex v and the
initial charge to each face f 6= h, respectively, by

ch(v) := 2 deg(v)− 6 and ch(f) := `(f)− 6.

A precolored vertex v of h has initial charge ch(v) := 2 deg(v) − 4 and the outer face h
has initial charge ch(h) := 0.

It is easy to see that every vertex has non-negative initial charge, and that only the
(≤ 5)-faces 6= h have negative charge. We are interested in the total amount of charge of
G. By Euler’s formula, the total amount of charge is∑
v∈V (G)

ch(v) +
∑

f∈F (G)

ch(f) =
∑

v∈V (G)

(2 deg(v)− 6) + 2`(h) +
∑

f∈F (G)

(`(f)− 6) + 6− `(h)

= (4|E(G)| − 6|V (G)|) + (2|E(G)| − 6|F (G)|) + 6 + `(h)

= 6(|E(G)| − |V (G)| − |F (G)|) + 6 + `(h)

= −6 + `(h).

As `(h) ≤ 5, the total charge is negative.

Rules. We use the following discharging rules to redistribute the initial charge, see
Figure 2. A vertex v is big if deg(v) ≥ 4 or it is precolored and deg(v) = 3.

Rule 1. Let a (≥ 9)-face f share an edge e with a 4-face g 6= h. If g contains only one
big vertex, then f sends charge 1/3 to g through the edge e.

Rule 2. Let two (≥ 9)-faces f1 and f2 share a 3-vertex v with a 4-face g 6= h which
contains only one big vertex. Let e be the common edge of f1 and f2 that is incident
with v. Then each of f1 and f2 sends charge 1/6 to g through the edge e.

Rule 3. Let a (≥ 9)-face f share a common edge uv with a 4-face g, which has no
precolored vertex, and deg(v) = 4. Let uvw be a part of the facial walk of f . If v is
the only big vertex of g, then f sends charge 1/6 to g through the edge vw.

Rule 4. A (≥ 9)-face sends charge 1/3 to an adjacent 5-face g 6= h through their common
edge e = uv, if u and v are of degree three.

Rule 5. A 6-face sends charge 1/4 to an adjacent 5-face g 6= h through their common
edge e = uv, if u and v are of degree three.

Rule 6. A big vertex v sends charge to an incident 4-face g 6= h. If deg(v) = 4 and
v is not precolored, or deg(v) = 3 (and v is precolored), then v sends charge 1.
Otherwise, v sends charge 4/3 to g.

Rule 7. A big vertex sends charge 1/2 to every adjacent 5- or 6-face g 6= h.

Note that rules apply simultaneously. Hence, for example Rule 1 and Rule 2 can both
send charge from one face to some other. Also multiplicity is considered, for example, a
face can send charge to another face through several edges.

Final charges. We use ch∗(x) to denote the final charge of a vertex or face x. Next we
show that the final charge of every vertex and face is non-negative, thus establishing the
theorem.
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Figure 2: The discharging Rules 1–7. A black vertex denotes a big vertex, a white vertex
denotes a non-precolored 3-vertex, and a gray vertex can be of any degree in G. A thick
edge is used for transferring charge and a gray face is a (≥ 9)-face.

Let v be a vertex of degree d of G. If v is not big, then its initial charge is zero, and no
charge is sent or received by it, hence its final charge is zero as well. Therefore, assume
that v is big. If d = 3, then v is incident with h, hence its initial charge is 2, As v sends
charge of at most 1 to each of the two incident faces distinct from h, its final charge is
nonnegative. Therefore, assume that d ≥ 4.

The vertex v sends charge by Rules 6 and 7 to 4-, 5-, and 6-faces. Let a be the number
of 4-faces distinct from h incident with v. Let b be the number of 5-faces and 6-faces
(other than h) incident with v. The final charge of v is

ch∗(v) ≥ 2d− 6− 4

3
a− 1

2
b.

If a = 0, then the final charge of v is at least 2d− 6− 1
2
b ≥ 3d

2
− 6 ≥ 0. Suppose now

that a > 0. A 4-face distinct from h cannot be adjacent to a 5- or 6-face by Lemma 2.4.
Hence if v is not incident with h, there must be at least two (≥ 7)-faces incident with v,
and if v is incident with h, then there must be at least one (≥ 7)-face incident with v. In
both cases, a+ b ≤ d− 2. The final charge of v is at least 2d− 6− 4

3
(a+ b) ≥ 2d−10

3
, which

is nonnegative if d ≥ 5.
Finally, consider the case that d = 4. Since a > 0, we have a+ b ≤ 2. If v is incident

with h, then its initial charge is 4, and the final charge is at least 4− 4
3
(a+ b) ≥ 4

3
. If v is

not incident with h, then its initial charge is 2, and it sends at most one to each incident
face of length at most 6, thus its final charge is at least 2− (a+ b) ≥ 0. We conclude that
the final charge of each vertex is nonnegative.

Let f be an arbitrary face of G. If f is the outer face h, then ch∗(h) = ch(h) = 0.
Therefore, we assume that f 6= h.

We consider the following cases regarding `(f):
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`(f) ≥ 9: We show that f sends charge of at most 1/3 through each of its edges. Then,

ch∗(f) ≥ `(f)− 6− `(f)

3
≥ 2`(f)

3
− 6 ≥ 0.

Let e = uv be an edge of f and let g be the face incident with e distinct from f . If
g = h, then no charge is sent through e, hence assume that g 6= h. Note that if f
sends charge through e only once, then this charge is at most 1/3. We consider the
following subcases regarding the size of g:

• `(g) = 4 and g is incident with only one big vertex: f sends charge 1/3 to g
through e by Rule 1. The face f can send further charge through e only by
Rule 3. Then, we may assume that v is a 4-vertex, vw is an edge of f and it
is incident with some 4-face g′ for which v is also the only big incident vertex,
and no vertex of g′ is precolored. As v is the only big vertex of g, no vertex of
g is precolored as well. But then g and g′ form a reducible configuration, by
Lemma 2.3(3).

• `(g) = 4 and g is incident with more than one big vertex: then the charge is
sent through e only by Rule 3, for the total of at most 1/6 + 1/6 = 1/3.

• `(g) = 5: In this case, f sends either at most 1/3 through e by Rule 4 (if both
u and v have degree three) or at most twice 1/6 by Rule 3 (if u or v have degree
four).

• `(g) = 6: The face f sends at most twice 1/6 through e by Rule 3.

• `(g) ≥ 9: The charge of 1/6 is sent at most twice through e by Rule 2 or Rule 3.

This case analysis establishes the claim.

If `(f) ≤ 6, then the boundary of f is a cycle, thus if f contains a precolored vertex
of degree two, then it contains at least two precolored vertices of degree at least
three, and these two vertices are big. Similarly, if `(f) ≤ 6 and f is incident with a
precolored vertex of degree three, then f contains at least two big vertices.

`(f) = 6: By Lemma 2.3(2), f cannot consist of only non-precolored 3-vertices, thus f
contains a big vertex v. The face f receives 1/2 from v by Rule 7, and at most
twice sends 1/4 by Rule 5 (as two 5-faces distinct from h cannot share an edge by
Lemma 2.5 and f contains a big vertex). Therefore, ch∗(f) ≥ 0 + 1/2− 2/4 = 0.

`(f) = 5: The face f has initial charge −1 and it sends no charge. By Lemmas 2.4 and
2.5, f is not adjacent to any face of length at most 5 distinct from h. We consider
several possibilities regarding the number of big vertices incident with f .

If f contains at least two big vertices, then Rule 7 applies twice, and thus ch∗(f) ≥
−1 + 2/2 = 0.

If f contains one big vertex v, then no vertex of f except possibly for v is precolored.
Note that Rule 7 applies once. Moreover, f contains three edges whose endvertices
are non-precolored vertices of degree 3. The charge is received by f through these
three edges by Rules 4 and 5. Thus, ch∗(f) ≥ −1 + 1/2 + 3/4 > 0.

If f is incident with no big vertex, then all its vertices are of degree 3 and are not
precolored. Then, f receives charge by Rules 4 and 5 through each incident edge,
and ch∗(f) ≥ −1 + 5/4 > 0.
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`(f) = 4: By Lemma 2.3(2), the face f must contain a big vertex. If f contains at least
two big vertices, then Rule 6 applies twice, and ch∗(f) ≥ −2 + 2 = 0. Therefore,
we may assume that f is incident with exactly one big vertex v. In particular, no
vertex of f other than v is precolored, and if v is precolored, then deg(v) ≥ 4.

If at most one edge of f is shared with another 4-face, then at least three edges of
f are incident with faces of size at least 9 by Lemma 2.4. After applying Rule 6
and three times Rule 1, we obtain ch∗(f) ≥ −2 + 1 + 3/3 = 0. By Lemma 2.4, the
4-face f cannot share three edges with other 4-faces. Therefore, we may assume
that f shares exactly two edges with other 4-faces f1 and f2, and the three 4-faces
surround a 3-vertex y. Note that v 6= y, otherwise, v is precolored and hence f
contains at least two big vertices.

If v is incident with f1 or f2, then Rule 6, twice Rule 1 and twice Rule 2 apply
and ch∗(f) ≥ −2 + 1 + 2/3 + 2/6 = 0. Now assume that v is not adjacent to any
of the other two 4-faces. If v is precolored or deg(v) ≥ 5, then Rule 6 and twice
Rule 1 apply and ch∗(f) ≥ −2 + 4/3 + 2/3 = 0. Finally, if v is a non-precolored
4-vertex, then Rule 6, twice Rule 1, and twice Rule 3 apply, and we infer that
ch∗(f) ≥ −2 + 1 + 2/3 + 2/6 = 0.
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