3-CHOOSABILITY OF TRIANGLE-FREE PLANAR GRAPHS WITH CONSTRAINT
 ON 4-CYCLES

Zdeněk Dvořák Bernard Lidický
Riste Škrekovski

ISSN 1318-4865

Ljubljana, February 3, 2009

3-choosability of triangle-free planar graphs with constraint on 4-cycles*

Zdeněk Dvořák ${ }^{\dagger}$ Bernard Lidický ${ }^{\ddagger}$ Riste Škrekovski ${ }^{\S}$

Abstract

A graph is k-choosable if it can be colored whenever every vertex has a list of at least k available colors. A theorem by Grötzsch [2] asserts that every triangle-free planar graph is 3 -colorable. On the other hand Voigt [10] gave such a graph which is not 3 -choosable. We prove that every triangle-free planar graph such that 4-cycles do not share edges with other 4 - and 5 -cycles is 3 -choosable. This strengthens the Thomassen's result [8] that every planar graph of girth at least 5 is 3 -choosable. In addition, this implies that every triangle-free planar graph without 6 - and 7 -cycles is 3 -choosable.

1 Introduction

All graphs considered in this paper are simple and finite. The concepts of list coloring and choosability were introduced by Vizing [9] and independently by Erdős et al. [1]. A list assignment of G is a function L that assigns to

[^0]each vertex $v \in V(G)$ a list $L(v)$ of available colors. An L-coloring is a function $\varphi: V(G) \rightarrow \bigcup_{v} L(v)$ such that $\varphi(v) \in L(v)$ for every $v \in V(G)$ and $\varphi(u) \neq \varphi(v)$ whenever u and v are adjacent vertices of G. If G admits an L-coloring, then it is L-colorable. A graph G is k-choosable if it is L-colorable for every list assignment L such that $|L(v)| \geq k$ for all $v \in V(G)$. Cycles C_{1} and C_{2} in a graph are adjacent if they intersect in a single edge, i.e., if $V\left(C_{1}\right) \cap V\left(C_{2}\right)=\{u, v\}$ for an edge $u v$.

Thomassen $[7,8]$ proved that every planar graph is 5 -choosable, and every planar graph of girth at least 5 is 3 -choosable. Kratochvíl and Tuza [3] observed that every planar triangle-free graph is 4-choosable. On the other hand, Voigt [10, 11] found a planar graph that is not 4-choosable, and a triangle-free planar graph that is not 3 -choosable. Numerous papers study additional conditions that force a triangle-free planar graph to be 3choosable, see e.g. $[4,6,12,13,14,15]$.

In particular, let us point out the result of Li [5], strengthening the result of Thomassen [8]: every planar triangle-free graph such that no 4-cycle shares a vertex with another 4 - or 5 -cycle is 3 -choosable. We further improve this result, only forbidding the 4 -cycles sharing an edge with other 4 - or 5 -cycles:

Theorem 1. Any planar triangle-free graph without 4-cycles adjacent to 4and 5-cycles is 3 -choosable.

In particular, we obtain:
Corollary 2. Any planar graph without 3-, 6- and 7-cycles is 3-choosable.
This strengthens the results of Lidický [6] that planar graphs without 3-, 6-, 7 - and 8 -cycles are 3 -choosable, and of Zhang and Xu [13] that planar graphs without 3 -, 6 -, 7 - and 9 -cycles are 3 -choosable. Theorem 1 also implies the result of Lam et al. [4] that planar graphs without 3, 5 and 6 -cycles are 3 -choosable.

2 Proof of Theorem 1

A path of length k (or a k-path) is a path on $k+1$ vertices. Using the proof technique of precoloring extension developed by Thomassen [8], we show the following extension of Theorem 1:

Theorem 3. Let G be a triangle-free planar graph without 4-cycles adjacent to 4- and 5-cycles, with outer face C, and P a path of length at most three such that $V(P) \subseteq V(C)$. The graph G can be L-colored for any list assignment L such that

- $|L(v)|=3$ for all $v \in V(G) \backslash V(C)$;
- $2 \leq|L(v)| \leq 3$ for all $v \in V(C) \backslash V(P)$;
- $|L(v)|=1$ for all $v \in V(P)$, and the colors in the lists give a proper coloring of the subgraph of G induced by $V(P)$;
- the vertices with lists of size two form an independent set; and
- each vertex with lists of size two has at most one neighbor in P.

Note that we view the single-element lists as a precoloring of the vertices of P. Also, P does not have to be a part of the facial walk of C, as we only require $V(P) \subseteq V(C)$. Theorem 3 has the following easy consequence:

Corollary 4. Let G be a triangle-free planar graph without 4-cycles adjacent to 4- and 5-cycles, with the outer face bounded by an induced cycle C of length at most 9. Furthermore, assume that

- if $\ell(C)=8$, then at least one edge of C does not belong to a 4-cycle; and
- if $\ell(C)=9$, then some two consecutive edges of C do not belong to 4and 5-cycles.

Let L be an assignment of lists of size 1 to the vertices of C and lists of size 3 to the other vertices of G. If L prescribes a proper coloring of C, then G can be L-colored.

Proof. The claim follows from Theorem 3 for $\ell(C)=4$. If $\ell(C) \in\{5,6,7\}$, then let $u_{1} w_{1} v w_{2} u_{2}$ be an arbitrary subpath of C. Let L^{\prime} be the list assignment obtained from L by removing the color $L(v)$ from the lists of vertices adjacent to v. We also set the lists of w_{1} and w_{2} to 2 -lists such that the precoloring of the other vertices of C forces the prescribed color $L\left(w_{1}\right)$ on w_{1} and $L\left(w_{2}\right)$ on w_{2}, i.e., $L^{\prime}\left(w_{1}\right)=L\left(w_{1}\right) \cup L\left(u_{1}\right)$ and $L^{\prime}\left(w_{2}\right)=L\left(w_{2}\right) \cup L\left(u_{2}\right)$. As all the vertices x with $\left|L^{\prime}(x)\right|=2$ are neighbors of a single vertex v, the
graph $G-v$ together with the list assignment L^{\prime} satisfies the assumptions of Theorem 3. It follows that we can L^{\prime}-color $G-v$, giving an L-coloring of G.

Let us now consider the case that $\ell(C)=8$, and let $C=w_{1} u v w_{2} r_{1} r_{2} r_{3} r_{4}$, where the edge $u v$ does not belong to a 4-cycle. Let us delete vertices u and v from G, remove the color in $L(u)$ from the lists of neighbors of u and the color in $L(v)$ from the lists of neighbors of v, and change the list of w_{1} to $L\left(w_{1}\right) \cup L\left(r_{4}\right)$ and the list of w_{2} to $L\left(w_{2}\right) \cup L\left(r_{1}\right)$, so that the precoloring of the path $P=r_{1} r_{2} r_{3} r_{4}$ forces the right colors on w_{1} and w_{2}. As $u v$ does not belong to a 4 -cycle, the vertices with lists of size two form an independent set. As C is induced, both w_{1} and w_{2} have only one neighbor in the 3 -path P. Let x be a neighbor of u other than v and w_{1}. The vertex x cannot be adjacent to both r_{1} and r_{4}, as the 4 -cycle $u x r_{4} w_{1}$ would be adjacent to a 5 -cycle $x r_{1} r_{2} r_{3} r_{4}$. Similarly, x cannot be adjacent to both r_{1} and r_{3} or both r_{2} and r_{4}. As G does not contain triangles, x has at most one neighbor in P. By symmetry, this is also true for the neighbors if v. Therefore, the graph satisfies assumptions of Theorem 3, and can be colored from the prescribed lists.

Finally, suppose that $\ell(C)=9$, and let $C=w_{1} u v w w_{2} r_{1} r_{2} r_{3} r_{4}$, where the edges $u v$ and $v w$ are not incident with 4 - and 5 -cycles. We argue similarly as in the previous case. We delete vertices u, v and w from G and remove their colors from the lists of their neighbors. We also set the list of w_{1} to $L\left(w_{1}\right) \cup L\left(r_{4}\right)$ and the list of w_{2} to $L\left(w_{2}\right) \cup L\left(r_{1}\right)$, so that the precoloring of the path $r_{1} r_{2} r_{3} r_{4}$ forces the right colors on w_{1} and w_{2}. Observe that the resulting graph satisfies assumptions of Theorem 3, hence it can be colored.

Before we proceed with the proof of Theorem 3, let us describe the notation that we use in figures. We mark the precolored vertices of P by full circles, the vertices with list of size three by empty circles, and the vertices with list of size two by empty squares. The vertices for that the size of the list is not uniquely determined in the situation demonstrated by the particular figure are marked by crosses.

Proof of Theorem 3. Suppose G together with lists L is the smallest counterexample, i.e., such that $|V(G)|+|E(G)|$ is minimal among all graphs that satisfy the assumptions of Theorem 3, but cannot be L-colored, and $\sum_{v \in V(G)}|L(v)|$ is minimal among all such graphs. Let C be the outer face of G and P a path with $V(P) \subseteq V(C)$ as in the statement of the theorem. We
first derive several properties of this counterexample. Note that each vertex v of G has degree at least $|L(v)|$.
Lemma 5. The graph G does not contain separating cycles of length at most seven. Every edge of each separating 8 -cycle K belongs to a 4-cycle lying inside K. And, at least one of every two consecutive edges of each separating 9 -cycle K belongs to a 4- or 5 -cycle lying inside K.

Proof. Let K be the separating cycle. We may assume that K is induced, as otherwise we could consider a shorter separating cycle of length at most 7. Let G_{1} be the subgraph of G induced by the exterior of K (including K) and G_{2} the subgraph of G induced by the interior of K (including K). By the minimality of G, Theorem 3 holds for G_{1} and G_{2} and their subgraphs. Therefore, there exists a coloring of G_{1} from the prescribed lists, and this coloring can be extended to G_{2} by Corollary 4 . This is a contradiction, as G cannot be colored from the lists.

A chord of a cycle K is an edge in G joining two distinct vertices of K that are not adjacent in K. As G does not have triangles and 4 -cycles adjacent to 4 - and 5 -cycles, a cycle of length at most 7 does not have a chord. Therefore, Lemma 5 implies that every cycle of length at most 7 is a face. Similarly, a cycle K of length 8 with an edge that does not belong to a 4 -cycle in the interior of K is either an 8 -face, or it has a chord splitting it to a 4 -face and a 6 -face, or two 5 -faces.

Lemma 6. The graph G is 2 -connected.
Proof. Obviously, G is connected. Suppose now that v is a cut vertex of G and G_{1} and G_{2} are nontrivial induced subgraphs of G such that $G=G_{1} \cup G_{2}$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\}$. Both G_{1} and G_{2} satisfy the assumptions of Theorem 3. If v is precolored, then by the minimality of G there exist L colorings of G_{1} and G_{2}, and they combine to a proper L-coloring of G. If v is not precolored, then we may assume that $P \subseteq G_{1}$. An L-coloring of G_{1} assigns a color c to v. We change the list of v to $\{c\}$, color G_{2} and combine the colorings to an L-coloring of G.

By Lemma $6, C$ is a cycle. A k-chord of C is a path $Q=q_{0} q_{1} \ldots q_{k}$ of length k joining two distinct vertices of C, such that $V(C) \cap V(Q)=\left\{q_{0}, q_{k}\right\}$ (e.g., 1-chord is just a chord).

Lemma 7. The cycle C has no chords.

Figure 1: A chord of C

Proof. Suppose $e=u v$ is a chord of C, separating G to two subgraphs G_{1} and G_{2} intersecting in e. If both u and v are precolored, then we L-color G_{1} and G_{2} by the minimality of G and combine their colorings. Otherwise, by symmetry assume that $u \notin V(P)$, and that $\left|V(P) \cap V\left(G_{1}\right)\right| \geq\left|V(P) \cap V\left(G_{2}\right)\right|$. In particular, $\left|\left(V(P) \cap V\left(G_{2}\right)\right) \backslash\{u, v\}\right| \leq 1$. Furthermore, let us choose the chord in such a way that G_{2} is as small as possible; in particular, the outer face of G_{2} does not have a chord. Let us find an L-coloring of G_{1} and change the lists of u and v to the colors assigned to them. If G_{2} with these new lists satisfies assumptions of Theorem 3, then we find its coloring and combine the colorings to an L-coloring of G, hence assume that this is not the case.

Let $X=\left(V(P) \cap V\left(G_{2}\right)\right) \backslash\{u, v\}$. As G_{2} does not satisfy assumptions of Theorem 3, there exists a vertex z with list of size two adjacent to two precolored vertices. As G is triangle-free, we conclude that X is not empty, say $X=\{w\}$ (see Figure 1), and z is adjacent to u and w. As G_{2} does not contain chords and separating 4 -cycles and $z \in V(C), G_{2}$ is equal to the cycle uvwz. Since $|L(z)|=2$, it holds that $|L(u)|=3$. Let c_{1} be the color of u in the coloring of G_{1}, and c_{2} the single color in the list of w. If $L(z) \neq\left\{c_{1}, c_{2}\right\}$, then we can color z and finish the coloring of G, hence assume that $L(z)=\left\{c_{1}, c_{2}\right\}$. Let c be a color in $L(u) \backslash\left(\left\{c_{1}\right\} \cup L(v)\right)$ (this set is nonempty, as $|L(v)|=1$ and $|L(u)|=3)$.

Let us now color z by c_{1} and set the list of u to $\{c\}$. If G_{1} with this list at u satisfies assumptions of Theorem 3, we can color G_{1}, and thus obtain an L-coloring of G. Since G does not have such an L-coloring, the assumptions are violated, i.e., either u is adjacent to a vertex of P other than v, or G_{1} contains a vertex (with list of size two) adjacent to both u and a vertex of P. This is a contradiction, as G would in both of these cases contain either a triangle, or a 4 - or 5 -cycle adjacent to the 4 -cycle uvwz.

By the previous lemma, P is a part of the facial walk of C, and C is an

Figure 2: Possible 2-chords in G
induced cycle.
Lemma 8. $\ell(C) \geq 8$.
Proof. Suppose that $\ell(C) \leq 7$. If $V(C) \neq V(P)$, then color the vertices of C properly from their lists. This can be done, as C is chordless and contains at least one vertex with list of size three. If $5 \leq \ell(C) \leq 7$, then the claim follows from the proof of Corollary 4, as by the minimality of G, all subgraphs of G satisfy Theorem 3. If $\ell(C)=4$, then we delete one of the vertices of C and remove its color from the lists of its neighbors. It is easy to verify that the resulting graph satisfies the assumptions of Theorem 3, hence it has a proper coloring by the minimality of G. This coloring extends to an L-coloring of G, which is a contradiction.

Lemma 9. No 4-cycle shares an edge with another 4- or 5-cycle.
Proof. Suppose that $C_{1}=v_{1} v_{2} v_{3} v_{4}$ and $C_{2}=v_{1} v_{2} u_{3} \ldots u_{t}$ are cycles sharing the edge $v_{1} v_{2}, \ell\left(C_{1}\right)=4$ and $t=\ell\left(C_{2}\right) \in\{4,5\}$. Note that $C_{1} \neq C$ and $C_{2} \neq C$ by Lemma 8. By Lemma 5, both C_{1} and C_{2} bound a face. If $v_{3}=u_{3}$, then v_{2} would be a 2 -vertex with list of size three. Thus, $v_{3} \neq u_{3}$ and by symmetry, $v_{4} \neq u_{t}$. As G does not contain triangles, $v_{3} \neq u_{t}$ and $v_{4} \neq u_{3}$, and in case that $t=5, v_{3} \neq u_{4}$ and $v_{4} \neq u_{4}$. Therefore, C_{1} and C_{2} are adjacent, contradicting the assumptions of Theorem 3.

Note that we can assume that $|V(P)|=4$, as otherwise we can prescribe color for more of the vertices of C, without violating assumptions of Theorem 3. Let $P=p_{1} p_{2} p_{3} p_{4}$. We say that a k-chord Q of C splits off a face F from G if $F \neq C$ is a face of both G and $C \cup Q$. See Figure 2 for an illustration of 2-chords splitting off a face.

Lemma 10. Every 2-chord uvw of C splits off a k-face F such that

Figure 3: A 2-chord of C
(a) $|V(F) \cap V(P)| \leq 2$ and $\{u, w\} \nsubseteq V(P)$,
(b) $k \leq 5$, and
(c) if $|V(F) \cap V(P)| \leq 1$, then $k=4$.

In particular, the cycle C has no 2-chord with $|L(w)|=2$ and $u \neq p_{2}, p_{3}$.
Proof. Suppose first that $u, w \in V(P)$. By Lemma 5, the 2-chord uvw together with a part of P bounds a face K. Color v by a color different from the colors of u and w, and remove $V(K) \backslash\{u, v, w\}$ from G, obtaining a graph G^{\prime}. Note that a path of length at most three is precolored in G^{\prime}. Since G cannot be L-colored, we may assume that G^{\prime} does not satisfy assumptions of Theorem 3, i.e., there exists z with $|L(z)|=2$ adjacent to both v and a vertex $y \in V(P) \cap V\left(G^{\prime}\right)$. As G is triangle-free, $y \notin\{u, w\}$. It follows that yuvz or $y w v z$ is a 4 -face. This is a contradiction, as K would be an adjacent 4 -face. Therefore, $\{u, w\} \nsubseteq V(P)$, and by symmetry we assume that $w \notin V(P)$.

The 2 -chord uvw splits G to two subgraphs G_{1} and G_{2} intersecting in uvw. Let us choose G_{2} such that $\left|V(P) \cap V\left(G_{2}\right)\right| \leq\left|V(P) \cap V\left(G_{1}\right)\right|$, see Figure 3. Note that $\left|V(P) \cap V\left(G_{2}\right)\right| \leq 2$. Let us consider the 2-chord uvw such that $\left|V(P) \cap V\left(G_{2}\right)\right|$ is minimal, subject to the assumption that G_{2} is not a face. By the minimality of G, there exists an L-coloring φ of G_{1}. Let L^{\prime} be the list assignment for G_{2} such that $L^{\prime}(u)=\{\varphi(u)\}, L^{\prime}(v)=\{\varphi(v)\}$, $L^{\prime}(w)=\{\varphi(w)\}$ and $L^{\prime}(x)=L(x)$ for $x \in V\left(G_{2}\right) \backslash\{u, v, w\}$. Let P^{\prime} be the precolored path in G_{2} (consisting of u, v, w, and possibly one other vertex p of P adjacent to u). As C has no chords and G_{2} is not a face, P^{\prime} is an induced subgraph. Since G cannot be L-colored, we conclude that G_{2} cannot be L^{\prime}-colored, and thus G_{2} with the list assignment L^{\prime} does not satisfy the assumptions of Theorem 3. Therefore, there exists a vertex z with $|L(z)|=2$, adjacent to two vertices of P^{\prime}.

Since G_{2} is not a face, Lemmas 5 and 7 imply that z is not adjacent to both w and p. Similarly, z is not adjacent to both u and w. It follows that z is adjacent to v and p, and thus $\left|V(P) \cap V\left(G_{2}\right)\right|=2$. Since we have chosen the 2-chord uvw so that $\left|V(P) \cap V\left(G_{2}\right)\right|=2$ is minimal among the 2-chords for that G_{2} is not a face, the 2-chord $w v z$ splits off a face F^{\prime} from G. Let x be the neighbor of z in F^{\prime} other than v. Since $|L(z)|=2$, it holds that $|L(x)|=3$. As F^{\prime} is a face, $\operatorname{deg}(x)=2$, which is a contradiction. It follows that for every 2-chord, G_{2} is a face. The choice of G_{2} establishes (a).

Let wvuv $_{4} \ldots v_{k}$ be the boundary of the face G_{2}. Note that $V(P) \cap$ $V\left(G_{2}\right) \subseteq\left\{u, v_{4}\right\}$, and v_{4}, \ldots, v_{k} have degree two. If $k>5$, then at least one of v_{5} and v_{6} has list of size three, which is a contradiction, proving (b). Similarly, if $|V(F) \cap V(P)| \leq 1$ and $k=5$, then at least one of v_{4} and v_{5} would be a 2 -vertex with list of size three, proving (c).

Consider now a 2-chord uvw such that $|L(w)|=2$ and $u \notin\left\{p_{2}, p_{3}\right\}$, and let x be the neighbor of w in G_{2} distinct from v. As $u \notin\left\{p_{2}, p_{3}\right\}$, no vertex of $V(P) \backslash\{u\}$ lies in G_{2}. Therefore, $|L(x)|=3$ and $\operatorname{deg}(x)=2$, a contradiction. We conclude that no such 2-chord exists.

Let us now consider the 3 -chords of C :
Lemma 11. Every 3 -chord $Q=u v w x$ of C such that $u, x \notin\left\{p_{2}, p_{3}\right\}$ splits off a 4- or 5-face.

Proof. Suppose that Q splits G into two subgraphs G_{1} and G_{2} intersecting in uvwx, such that $V(P) \cap V\left(G_{2}\right) \subseteq\{u, x\}$. Let us L-color G_{1} and consider the vertices u, v, w and x of G_{2} as precolored according to this coloring. If $u x$ were an edge, then Q would split off a 4 -face. It follows that Q is an induced path thus this precoloring of Q is proper. Similarly, as Q does not split off a 5 -face, u and x do not have a common neighbor with list of size two. Neither v nor w is adjacent to a vertex with list of size 2 by Lemma 10 . Therefore, G_{2} satisfies assumptions of Theorem 3, and the coloring can be extended to G_{2}, giving an L-coloring of G. This is a contradiction.

Let $x_{1} x_{2} x_{3} x_{4}$ be the part of the facial walk of C such that x_{1} is adjacent to p_{4} and $x_{2} \neq p_{4}$. By Lemma $8,\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap V(P)=\emptyset$. Let us now show a few properties of the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and their neighbors.
Lemma 12. Let $Q=v_{0} v_{1} \ldots v_{k}$ be a k-chord starting and ending in vertices of $x_{1} x_{2} x_{3} x_{4}$, or a cycle intersecting C in a single vertex $x \in\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. The following holds (for some $i \in\{1,2,3,4\}$):

Figure 4: A 2-chord from p_{1} or p_{2} to $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$

- If $\ell(Q)=2$, then $Q=x_{i} v_{1} x_{i+2}$ splits off a 4-face.
- If $\ell(Q)=3$, then Q splits off either a 4-face $x_{i} x_{i+1} v_{1} v_{2}$, or a 5 -face $x_{i} x_{i+1} x_{i+2} v_{1} v_{2}$.
- If $\ell(Q)=4$, then Q forms a boundary of a 4 -face $x_{i} v_{1} v_{2} v_{3}$, or splits off a 5-face $x_{i} x_{i+1} v_{1} v_{2} v_{3}$, or splits off a 6 -face $x_{i} x_{i+1} x_{i+2} v_{1} v_{2} v_{3}$.

Proof. By a simple case analysis. The details are left to the reader.
Note also that if Q splits off a face of form $x_{i} x_{i+1} x_{i+2} v_{1} \ldots v_{k-1}$, then $\operatorname{deg}\left(x_{i+1}\right)=\left|L\left(x_{i+1}\right)\right|=2$.
Lemma 13. If Q is a k-chord with $k \leq 3$, starting in a vertex x_{i} (where $1 \leq i \leq 4$) and ending in a vertex with list of size two, then $k=3$ and Q bounds a 4-face.

Proof. Let $Q=q_{0} q_{1} \ldots q_{k}$, where $q_{0} \in\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $\left|L\left(q_{k}\right)\right|=2$. By Lemmas 7 and $10, k>2$. If $k=3$, then by Lemma $11, Q$ splits off a 4 - or 5 -face. However, the latter is impossible, as $\left|L\left(q_{3}\right)\right|=2$, so the remaining vertex of the 5 -face, whose degree is two, would have a list of size three.

Lemma 14. There is no 2 -chord from $\left\{p_{1}, p_{2}\right\}$ to $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.
Proof. Suppose $Q=p_{i} v x_{j}$ is such a 2 -chord, and let K be the cycle formed by Q and $p_{i} \ldots p_{4} x_{1} \ldots x_{j}$. Note that $\ell(K) \leq 9$. Let us choose Q such that $\ell(K)$ is minimal. By Lemma 10, Q splits off a face F such that $\ell(F) \leq 5$. Furthermore, if $\ell(K)=9$, then $i=1$, and hence $|V(P) \cap V(F)|=1$. In that case, the claim (c) of Lemma 10 implies $\ell(F)=4$. See Figure 4 for

Figure 5: The construction of the set X_{1}
illustration. It follows that the edges $p_{i} v$ and $v x_{j}$ are not incident with a 4face inside K, and if $\ell(K)=9$, then they are not incident with a 5 -face. By Lemma $5, K$ is not separating. If $\ell(K) \leq 7$, then K is a face, and $\operatorname{deg}(v)=2$, which is a contradiction. Similarly, if $\ell(K)>7$, then K has a chord incident with v. By the minimality of $\ell(K), v$ is adjacent to p_{3} or p_{4}. However, this contradicts Lemma 10(a).

If both x_{1} and x_{2} have lists of size three, then we remove one color from $L\left(x_{1}\right)$ and find a coloring by the minimality of L (note that x_{1} is not adjacent to any vertex with list of size two, and has only one neighbor in P, as C does not have chords). Therefore, exactly one of x_{1} and x_{2} has a list of size two. Let x_{5} be the neighbor of x_{4} in C distinct from x_{3}. We now distinguish several cases depending on the lists of vertices in $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, in order to choose a set $X_{1} \subseteq\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ of vertices that we are going to color (and remove).
(C1) If $\left|L\left(x_{1}\right)\right|=2$ and $\left|L\left(x_{2}\right)\right|=\left|L\left(x_{3}\right)\right|=3$ (see Figure 5(1)), then we set $X_{1}=\left\{x_{1}\right\}$.
(C2) If $\left|L\left(x_{1}\right)\right|=2,\left|L\left(x_{2}\right)\right|=3,\left|L\left(x_{3}\right)\right|=2,\left|L\left(x_{4}\right)\right|=3$ and $\left|L\left(x_{5}\right)\right|=3$ (see Figure 5(2)), then we set $X_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$.
(C3) If $\left|L\left(x_{1}\right)\right|=2,\left|L\left(x_{2}\right)\right|=3,\left|L\left(x_{3}\right)\right|=2,\left|L\left(x_{4}\right)\right|=3$ and $\left|L\left(x_{5}\right)\right| \leq 2$ (see Figure 5(3)), then we set $X_{1}=\left\{x_{2}, x_{3}, x_{4}\right\}$.
(C4) If $\left|L\left(x_{1}\right)\right|=3,\left|L\left(x_{2}\right)\right|=2,\left|L\left(x_{3}\right)\right|=3$ and $\left|L\left(x_{4}\right)\right|=3$ (see Figure 5(4)), then we set $X_{1}=\left\{x_{1}, x_{2}\right\}$.

Figure 6: The construction of the set X_{2}
(C5) If $\left|L\left(x_{1}\right)\right|=3,\left|L\left(x_{2}\right)\right|=2,\left|L\left(x_{3}\right)\right|=3$ and $\left|L\left(x_{4}\right)\right|=2$ (see Figure 5(5)), then we set $X_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$.

Let $m=\max \left\{i: x_{i} \in X_{1}\right\}$. Note the following properties of the set X_{1} :

- $\left|X_{1}\right| \leq 3$.
- If $\left|L\left(x_{m}\right)\right|=2$, then $m \leq 3$ and $\left|L\left(x_{m+1}\right)\right|=\left|L\left(x_{m+2}\right)\right|=3$.
- If $\left|L\left(x_{m}\right)\right|=3$, then $\left|L\left(x_{m+1}\right)\right| \leq 2$.

Let \mathcal{F} be the set of faces of G incident with the edges of the path induced by $X_{1}\left(\mathcal{F}=\emptyset\right.$ in the case (C1)). We define a set $X_{2} \subseteq V(G) \backslash V(C)$, together with functions $r: X_{2} \rightarrow X_{1}$ and $R: X_{2} \rightarrow \mathcal{F}$. A vertex $z \in V(G) \backslash V(C)$ belongs to X_{2} if

- z is adjacent to two vertices in X_{1} (see Figure 6(a) for an example). By Lemma $12, z$ lies in a (uniquely determined) 4 -face $F=x_{i} x_{i+1} x_{i+2} z$, where $x_{i}, x_{i+1}, x_{i+2} \in X_{1}$. We define $r(z):=x_{i}$ and $R(z):=F$. Or,
- there exists a path $x z v y$ such that $x, y \in X_{1}$ and $v \notin\left\{p_{1}\right\} \cup X_{1}$ (see Figure 6(b), (c) and (d) for examples). If $v=x_{m+1}$, then by Lemma 10, the 2 -chord $x z v$ splits off a 4 -face F. Otherwise the 3 -chord $x z v y$ splits off a 4- or 5 -face F by Lemma 12. We define $r(z):=x$ and $R(z):=F$. Note that $v \neq x_{1}$: otherwise, $x_{1} \notin X_{1}$ and we are in case (C3), hence
$\left|L\left(x_{1}\right)\right|=2$ and the 2 -chord $x_{1} z x$ would contradict Lemma 10. It follows that v also belongs to X_{2}, unless $v=x_{m+1}$.
Let us now show that $r(z)$ and $R(z)$ are well-defined. As a 4 -face cannot be adjacent to a 4 - or 5 -face and G is triangle-free, z does not have another neighbor in X_{1}. Also, if there existed another path $x z v^{\prime} y^{\prime}$ with $y^{\prime} \in X_{1}$ splitting off a face F^{\prime}, then both F and F^{\prime} would be 5 -faces; however, that would imply $\left|X_{1}\right| \geq 5$, which is a contradiction. Therefore, r and R are defined uniquely. Furthermore, v is the only neighbor of z in X_{2}, and $R(v)=R(z)$ (assuming that $v \neq x_{m+1}$).

We now find an L-coloring of $X_{1} \cup X_{2}$ that we aim to extend to a coloring of G.

Lemma 15. Let $H=G\left[V(P) \cup X_{1} \cup X_{2}\right]$ be the subgraph of G induced by $V(P) \cup X_{1} \cup X_{2}$. There exist an L-coloring φ_{1} of X_{1} and an L-coloring φ_{2} of X_{2} such that

- the coloring of H given by φ_{1}, φ_{2} and the precoloring of P is proper,
- if $\left|L\left(x_{m+1}\right)\right| \leq 2$, then $\varphi_{1}\left(x_{m}\right) \notin L\left(x_{m+1}\right)$,
- if $x_{1} \notin X_{1}$ (i.e., in the case (C3) of the definition of X_{1}), then $L\left(x_{1}\right) \neq$ $L\left(p_{4}\right) \cup\left\{\varphi_{1}\left(x_{2}\right)\right\}$, and
- if $z \in X_{2}$ is adjacent to x_{m+1}, then $\left|L\left(x_{m+1}\right) \backslash\left\{\varphi_{1}\left(x_{m}\right), \varphi_{2}(z)\right\}\right| \geq 2$.

Proof. Suppose first that there exists $z \in X_{2}$ adjacent to x_{m+1}. Note that z is unique, $m \geq 2$ and $R(z)=x_{m-1} x_{m} x_{m+1} z$ is a 4 -face. As G does not contain a 2-vertex with list of size three, $\left|L\left(x_{m}\right)\right|=2$ and $\left|L\left(x_{m-1}\right)\right|=\left|L\left(x_{m+1}\right)\right|=3$. This happens only in the cases (C2) and (C4) of the definition of X_{1}, thus $x_{1} \in X_{1}$ and $m \leq 3$. Furthermore, x_{m-1} is the only neighbor of z in X_{1} and z is not adjacent to any other vertex of X_{2}. As $R(z)$ is a 4 -face and G does not contain 4 -cycles adjacent to 4 - or 5 -cycles, z is not adjacent to p_{3} and p_{4}. By Lemma $14, z$ is not adjacent to p_{1} and p_{2}, either, thus any choice of the color for z is consistent with the precoloring of P. Let us distinguish the following cases:

- If $L(z) \cap L\left(x_{m}\right) \neq \emptyset$, then choose $c \in L(z) \cap L\left(x_{m}\right)$ and let $\varphi_{1}\left(x_{m}\right)=$ $\varphi_{2}(z)=c$.
- If $L(z) \neq L\left(x_{m+1}\right)$, then choose $\varphi_{2}(z) \in L(z) \backslash L\left(x_{m+1}\right)$ and $\varphi_{1}\left(x_{m}\right) \in$ $L\left(x_{m}\right)$ arbitrarily.
- Finally, consider the case that $L(z) \cap L\left(x_{m}\right)=\emptyset$ and $L(z)=L\left(x_{m+1}\right)$, i.e., the lists of x_{m} and x_{m+1} are disjoint. We choose $\varphi_{1}\left(x_{m}\right) \in L\left(x_{m}\right)$ and $\varphi_{2}(z) \in L(z)$ arbitrarily.

On the other hand, suppose that no vertex of X_{2} is adjacent to x_{m+1}. If $\left|L\left(x_{m+1}\right)\right|=2$, then choose $\varphi_{1}\left(x_{m}\right) \in L\left(x_{m}\right) \backslash L\left(x_{m+1}\right)$. Otherwise, choose $\varphi_{1}\left(x_{m}\right) \in L\left(x_{m}\right)$ arbitrarily (in case that $m=1$, choose a color different from the one in $L\left(p_{4}\right)$)

In both of these cases, the precoloring of x_{m} (and possibly z) can be extended to a proper coloring ψ of the subgraph induced by $\left\{x_{1}, \ldots, x_{m}, z\right\}$ consistent with the precoloring of P. We fix φ_{1} as the restriction of ψ to X_{1}.

Let us now construct (the rest of) the coloring φ_{2}. Consider a vertex $u \in X_{2}$ that is not adjacent to x_{m+1}. As $u \notin V(C)$, it holds that $|L(u)|=3$. If u has no neighbor in X_{2}, then it has two neighbors $r(u), x \in X_{1}$ and $R(u)$ is a 4 -face. We claim that u has no neighbor $p_{i} \in V(P)$. Otherwise, we obtain $i \geq 3$ by Lemma 14. By Lemma 10, the 2 -chord $p_{i} u r(u)$ splits off a 4 - or 5 -face. This face shares an edge with $R(u)$, which is a contradiction. Therefore, any choice of $\varphi_{2}(u) \in L(u) \backslash\left\{\varphi_{1}(x), \varphi_{1}(r(u))\right\}$ is consistent with the precoloring of P.

Finally, suppose that u has a neighbor $w \in X_{2}$. As we argued in the definition of X_{2}, each of u and w has exactly one neighbor in X_{1}, and u and w do not have any other neighbors in X_{2}. Also, w is not adjacent to x_{m+1}, as otherwise G would contain a triangle or two adjacent 4 -cycles. By Lemma 10(a), each of u and w has at most one neighbor in P. If one of them does not have any such neighbor, then we can easily color u and w, hence assume that $p_{i} u$ and $p_{j} w$ are edges. By Lemma $14, i, j \geq 3$. Without loss on generality, $j=3$ and $i=4$. This is a contradiction, as the 4 -face $p_{3} p_{4} u w$ shares an edge with $R(u)$.

Consider the colorings φ_{1} and φ_{2} constructed in Lemma 15. Let $G^{\prime}=$ $G-\left(X_{1} \cup X_{2}\right)$ and let L^{\prime} be the list assignment such that $L^{\prime}(v)$ is obtained from $L(v)$ by removing the colors of the neighbors of v in X_{1} and X_{2} for $v \neq x_{1}$, and $L^{\prime}\left(x_{1}\right)=L\left(x_{1}\right)$ if $x_{1} \notin X_{1}$. Suppose that G^{\prime} with the list assignment L^{\prime} satisfies assumptions of Theorem 3. Then there exists an $L^{\prime}-$ coloring φ of G^{\prime}, which together with φ_{1} and φ_{2} gives an L-coloring of G : this is obvious if $x_{1} \in X_{1}$. If $x_{1} \notin X_{1}$, then $\left|L\left(x_{1}\right)\right|=2$, and $L\left(p_{4}\right) \subseteq L\left(x_{1}\right)$
by the minimality of G (otherwise, we could remove the edge $p_{4} x_{1}$). By the choice of φ_{1}, it holds that $\varphi_{1}\left(x_{2}\right) \neq \varphi\left(x_{1}\right)$. Since no other vertex of X may be adjacent to x_{1} by Lemmas 7 and $10, \varphi$ together with φ_{1} and φ_{2} is a proper coloring of G. As G is a counterexample to Theorem 3, it follows that L^{\prime} violates assumptions of Theorem 3, i.e.,
(a) a vertex $v \in V\left(G^{\prime}\right)$ with $\left|L^{\prime}(v)\right|=2$ is adjacent to two vertices of P; or
(b) $\left|L^{\prime}(v)\right| \leq 1$ for some $v \in V\left(G^{\prime}\right) \backslash V(P)$; or
(c) two vertices $u, v \in V\left(G^{\prime}\right)$ with $\left|L^{\prime}(u)\right|=\left|L^{\prime}(v)\right|=2$ are adjacent.

Let us now consider each of these possibilities separately.
(a) A vertex $v \in V\left(G^{\prime}\right)$ with $\left|L^{\prime}(v)\right|=2$ is adjacent to two vertices of P. By Lemmas 7 and 10(a), this is not possible.
(b) $\left|L^{\prime}(v)\right| \leq 1$ for some $v \in V\left(G^{\prime}\right) \backslash V(P)$. If $\left|L\left(x_{m+1}\right)\right|=2$, then x_{m+1} does not have a neighbor in X_{2} by Lemma 10 and hence $\left|L^{\prime}\left(x_{m+1}\right)\right|=2$ by the choice of φ_{1}. If $\left|L\left(x_{m+1}\right)\right|=3$, then the choice of φ_{1} and φ_{2} according to Lemma 15 ensures $\left|L^{\prime}\left(x_{m+1}\right)\right| \geq 2$. Therefore, $v \neq x_{m+1}$.
Since G has neither chords nor 2-chords starting in X_{1} and ending in a vertex with list of size two, it holds that $|L(v)|=3$. Therefore, v has at least two neighbors $u_{1}, u_{2} \in X_{1} \cup X_{2}$. If at least one of u_{1} and u_{2} belonged to X_{1}, then v would be included in X_{2}, hence we may assume that $u_{1}, u_{2} \in X_{2}$.
Consider the path $x_{i} u_{1} v u_{2} x_{j}$, where $x_{i}=r\left(u_{1}\right)$ and $x_{j}=r\left(u_{2}\right)$. We may assume that $i \leq j$. The cycle $x_{i} \ldots x_{j} u_{2} v u_{1}$ has length at most six, thus it bounds a face F. Note that $i=j$, as each of $R\left(u_{1}\right)$ and $R\left(u_{2}\right)$ shares at least one edge with the path induced by X_{1} and $F \neq R\left(u_{1}\right) \neq$ $R\left(u_{2}\right) \neq F$. Therefore, F is a 4 -face sharing an edge with 4 -face $R\left(u_{1}\right)$ (and also with $R\left(u_{2}\right)$), which is a contradiction. Therefore, $\left|L^{\prime}(v)\right| \geq 2$ for every $v \in V\left(G^{\prime}\right) \backslash V(P)$.
(c) Two vertices $u, v \in V\left(G^{\prime}\right)$ with $\left|L^{\prime}(u)\right|=\left|L^{\prime}(v)\right|=2$ are adjacent. As the vertices with lists of size two form an independent set in G, we may assume that $|L(u)|=3$. Let y_{1} be a neighbor of u in $X_{1} \cup X_{2}$.
Consider first the case that $|L(v)|=2$. If $u \notin V(C)$, then by Lemma 10, $y_{1} \notin V(C)$, and thus $y_{1} \in X_{2}$ and $v u y_{1} r\left(y_{1}\right)$ is a 3 -chord. By Lemma 13,
this 3 -chord splits off a 4 -face F. Note that $F \neq R\left(y_{1}\right)$, as $u \notin X_{2}$. This is impossible, as the 4 -face F would share an edge with $R\left(y_{1}\right)$. Therefore, $u \in V(C)$, and hence $v \neq x_{1}$. If $y_{1} \in X_{2}$, then $u y_{1} r\left(y_{1}\right)$ is a 2 -chord, and by Lemma 10 , it splits off a 4 -face adjacent to $R\left(y_{1}\right)$, which is again a contradiction. Assume now that $y_{1} \in X_{1}$. As C does not have chords, it follows that $y_{1}=x_{m}$ and $u=x_{m+1}$. However, in that case $v=x_{m+2}$ and $\left|L\left(x_{m+2}\right)\right|=2$, which contradicts the choice of X_{1}.

Consider now the case that $|L(v)|=3$. Let y_{2} be a neighbor of v in $X_{1} \cup X_{2}$. As $u, v \notin X_{2}$, at least one of y_{1} and y_{2}, say y_{1}, belongs to X_{2}. Let us consider the possibilities $y_{2} \in X_{1}$ and $y_{2} \in X_{2}$ separately:

- $y_{2} \in X_{1}$: The cycle formed by $r\left(y_{1}\right) y_{1} u v y_{2}$ and a part of the path $x_{1} x_{2} x_{3} x_{4}$ between $r\left(y_{1}\right)$ and y_{2} has length at most six, thus it bounds a face F. Note that $R\left(y_{1}\right)$ shares an edge with F. Let k_{1} and k_{2} be the number of edges that $R\left(y_{1}\right)$ and F, respectively, share with the path induced by $X_{1}, k_{1} \geq \ell\left(R\left(y_{1}\right)\right)-3 \geq 1$ and $k_{2}=\ell(F)-4 \geq 0$. Since $\left|X_{1}\right| \leq 3$, it holds that $k_{1}+k_{2} \leq 2$. If $k_{1}=1$, then $R\left(y_{1}\right)$ is a 4 -face. Since 4 - and 5 -faces cannot be adjacent to $R\left(y_{1}\right)$, we obtain $\ell(F) \geq 6$. It follows that $k_{2} \geq 2$, which is a contradiction. Similarly, if $k_{1}=2$, then F cannot be a 4 -face, hence $\ell(F) \geq 5$ and thus $k_{2} \geq 1$. This is again a contradiction.
- $y_{2} \in X_{2}$: Let F be the cycle bounded by $r\left(y_{1}\right) y_{1} u v y_{2} r\left(y_{2}\right)$ and the part of the path $x_{1} x_{2} x_{3} x_{4}$ between $r\left(y_{1}\right)$ and $r\left(y_{2}\right)$. As $\ell(F) \leq$ $7, F$ bounds a face. Note that $R\left(y_{1}\right) \neq R\left(y_{2}\right)$ and $\ell\left(R\left(y_{1}\right)\right)=$ $\ell\left(R\left(y_{2}\right)\right)=4$, as each of $R\left(y_{1}\right)$ and $R\left(y_{2}\right)$ shares an edge with the path induced by X_{1}. Since F shares edges with both $R\left(y_{1}\right)$ and $R\left(y_{2}\right), \ell(F) \geq 6$. It follows that F shares at least one edge with the path induced by X_{1} as well. However, this is impossible, since $\left|X_{1}\right| \leq 3$.

Therefore, the assumptions of Theorem 3 are satisfied by G^{\prime} and L^{\prime}. We conclude that we can find a proper coloring of G, which contradicts the choice of G as a counterexample to Theorem 3 .

References

[1] P. Erdős, A. L. Rubin, H. Taylor, Choosability in graphs, Combinatorics, graph theory and computing, Proc. West Coast Conf., Arcata/Calif. 1979, 125-157, 1980.
[2] H. Grötzsch, Ein Dreifarbenzatz für dreikreisfreie netze auf der kugel, Math.-Natur. Reihe, 8:109-120, 1959.
[3] J. Kratochvíl, Z. Tuza, Algorithmic complexity of list colorings, Discrete Appl. Math., 50(3):297-302, 1994.
[4] P. C. B. Lam, W. C. Shiu, Z. M. Song, The 3-choosability of plane graphs of girth 4, Discrete Math., 294(3):297-301, 2005.
[5] X. Li, On 3-choosable planar graphs of girth at least 4, to appear in Discrete Math.
[6] B. Lidický, On 3-choosability of plane graphs without 6 -, 7- and 8-cycles, submitted, preprint available as ITI-Series 2008-373.
[7] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B, 62(1):180-181, 1994.
[8] C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B, 64(1):101-107, 1995.
[9] V. G. Vizing, Vertex colorings with given colors (in Russian), Metody Diskret. Analiz, Novosibirsk, 29:3-10, 1976.
[10] M. Voigt, List colourings of planar graphs, Discrete Math., 120(1-3):215219, 1993.
[11] M. Voigt, A not 3-choosable planar graph without 3-cycles, Discrete Math., 146(1-3):325-328, 1995.
[12] H. Zhang, On 3-choosability of plane graphs without 5-, 8- and 9-cycles, J. Lanzhou Univ., Nat. Sci., 41(3):93-97, 2005.
[13] H. Zhang, B. Xu, On 3-choosability of plane graphs without 6-, 7- and 9-cycles, Appl. Math., Ser. B (Engl. Ed.), 19(1):109-115, 2004.
[14] H. Zhang, B. Xu, Z. Sun, Every plane graph with girth at least 4 without 8- and 9-circuits is 3-choosable, Ars Comb., 80:247-257, 2006.
[15] X. Zhu, M. Lianying, C. Wang, On 3-choosability of plane graphs without 3-, 8- and 9-cycles, Australas. J. Comb., 38:249-254, 2007.

[^0]: *Supported by a CZ-SL bilateral project MEB 090805 and BI-CZ/08-09-005.
 ${ }^{\dagger}$ Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, 11800 Prague, Czech Republic. E-mail: rakdver@kam.mff.cuni.cz. Partially supported by Institute for Theoretical Computer Science (ITI), project 1M0021620808 of Ministry of Education of Czech Republic.
 ${ }^{\ddagger}$ Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, 11800 Prague, Czech Republic. E-mail: bernard@kam.mff.cuni.cz.
 ${ }^{\S}$ Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia. Partially supported by Ministry of Science and Technology of Slovenia, Research Program P1-0297.

