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Abstract

A fullerene graph is a planar cubic graph whose all faces are pentagonal and
hexagonal. The structure of cyclic edge-cuts of fullerene graphs of sizes at most
6 is known. In the paper we study cyclic 7-edge connectivity of fullerene graphs,
distinguishing between degenerated and non-degenerated cyclic edge-cuts, regard-
ing the arrangement of the 12 pentagons. We prove that if there exists a non-
degenerated cyclic 7-edge-cut in a fullerene graph, then the graph is a nanotube
unless it is one of the two exceptions presented. We determined that there are 57
configurations of degenerated cyclic 7-edge-cuts, and we listed all of them.

Keywords: fullerene, fullerene graph, cyclic edge-connectivity, cyclic edge-cut

1 Introduction

Mathematicians adopted the notion of fullerenes and defined the fullerene graphs as the
plane cubic 3-connected graphs with only pentagonal and hexagonal faces. Nanotubes
are members of the fullerene structural family. They are cylindrical in shape with the
ends typically capped with a hemisphere of the fullerene structure. Nanotubes with the
ends left open, so called open-ended nanotubes, are also interesting objects, see e.g. [8].

Došlić proved that fullerene graphs are cyclically 4-edge connected [2] and cyclically
5-edge connected [3]. The cyclic edge-connectivity of a fullerene graph cannot exceed
5, since it contains twelve pentagons, thus, there are at least twelve cyclic 5-edge-cuts
– formed by the edges pointing outwards of each pentagonal face. There are also cyclic
6-edge-cuts formed by the edges pointing outwards of each hexagonal face. These cyclic
5- and 6-edge-cuts will be called trivial. Kardoš and Škrekovski [4] characterized 5-
and 6-edge-cuts, and independently the 5-edge-cuts were characterized by Kutnar and
Marušič [6].

An edge-cut of a connected graph G is a set of edges C ⊆ E(G) such that G − C

is disconnected. A graph G is k-edge-connected if G cannot be separated into two
components by removing less than k edges. An edge-cut C of a graph G is cyclic if
each component of G− C contains a cycle. A graph G is cyclically k-edge-connected if
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G cannot be separated into two components, each containing a cycle, by removing less
than k edges.

A cyclic edge-cut C of a fullerene graph G is non-degenerated, if both components
of G − C contain precisely six pentagons. Otherwise, C is degenerated. Obviously, the
trivial cyclic edge-cuts are degenerated.

There is a family of fullerene graphs, which have many non-degenerated cyclic edge-
cuts – the nanotubes. A fullerene graph is a nanotube, if it can be divided into a
cylindrical part containing only hexagons, and two caps, each containing six pentagons
and maybe some hexagons. Moreover, at least one of the pentagons should have an
edge incident to the outer face of a cap. The cylindrical part should have the following
structure: It contains a ring of hexagons h1, h2, . . . , hp such that after unfolding it back
into the hexagonal grid, there are two unit vectors a1 and a2 forming a 60◦ angle such
that each hi−hi−1 is either a1 or a2 for i = 1, . . . , p, where h0 = hp. (Here the hexagons
are identified with their centers.) In this case, the cylindrical part is an open-ended
nanotube of type (p1, p2), where pj denotes the number of occurences of aj, j = 1, 2.
The pair (p1, p2) of coefficients in the equation r = p1a1 +p2a2 fully determines the type
of the nanotube. It is easy to see that the vectors a1 and a2 can always be chosen in
such a way that p1 ≥ p2, which we assume in the sequel. See Fig. 1 for an illustration.
We say that p1 + p2 is the width of the nanotube.

a1

a2

p1a1 + p2a2

h1
h2

h3 h4

C

e1
e2

e3

Figure 1: An example of a nanotube of type (6, 2).

The nanotubes of types (n, 0) are called zigzag, those of types (n, n) are called arm-
chair (both types have mirror symmetry), the others are chiral (without mirror sym-
metry). In the light of this definition, also the buckyball C60 can be viewed as the first
in the series of nanotubes of type (5, 5) with a single layer of hexagons in the cylindrical
part, see Fig. 2.

The nanotubes that are interesting in material science usually have the length-to-
diameter ratio very large. But in many other fullerenes the nanotube-like structure
can be found. We say that two non-degenerated cyclic edge-cuts are parallel if both
of them induce the two partitions containing the same six pentagons in each, and the
corresponding rings of hexagons do not share a face. Such a ring of hexagons is called a
layer, and the maximal number of parallel layers is the lenght of a nanotube. Thus the
cylindrical part of a nanotube is comprised of several face-disjoint layers.

It is easy to see that the ring of hexagons induces a non-degenerated cyclic edge-cut
in a nanotube. In [4] it was proven that nanotubes are the only graphs having non-
degenerated cyclic 5 and 6-edge-cuts, however, there exist fullerene graphs that are not
nanotubes and have non-degenerated cyclic k-edge-cut, for some k ≥ 7. In the paper
we consider non-degenerated cyclic 7-edge-cuts and prove that there exist precisely two
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Figure 2: The buckyball is the smallest nanotube of type (5, 5).

fullerenes with non-degenerated cyclic 7-edge-cut, which are not nanotubes.
An important notion in this paper is a cut-vector. Let G be a fullerene graph and

C a k-edge cut in G, and let H be one of the two components of the graph G − C.
Let e1 = v1w1, e2 = v2w2, . . . , ek = vkwk be the edges of C enumerated as they appear
cyclically around H. We assume that vi’s are in H. Let αi be the length of the facial
subwalk from vi to vi+1 minus 1 (notice that vk+1 = v1). Observe that αi = −1 if
vi = vi+1.

We name the sequence [α1, α2, . . . , αk] a cut-vector v(C) (regarding H). It is easy to
see that the coordinates αi in fullerenes could only have values −1, 0, 1, 2 or 3, since
each face of G is of size 5 or 6. For instance, the cut-vector of the configuration 6D02
from Fig. 4 is [−1, 1, 0, 0, 0, 1].

Observe that each cyclic edge-cut has two cut-vectors associated with each of the
components of G − C. Let [α1, α2, . . . , αk] and [β1, β2, . . . , βk] be the two cut-vectors
corresponding to a cyclic edge-cut C. If C is non-degenerated, only hexagons are incident
with the edges of a cut, hence, αi +βi = 2 for i = 1, 2, . . . , k. Therefore, the second cut-
vector is determined by the first one. Moreover, also the sum of cut-vector’s coordinates
has a nice property, which is given in the following lemma:

Lemma 1 Let C be a non-degenerated k-cut in a fullerene graph G, and let α = [α1, α2,

. . . , αk] be one of its two cut-vectors. Then, α1 + α2 + · · ·+ αk = k.

To prove the lemma above, we use an extension of a result from [4, Lemma 1]:

Lemma 2 Let C be an edge-cut in a fullerene graph G and H a component of G−C. Let
n1 and n2 be the numbers of vertices of degree one and two, f5 the number of pentagons,
and l the size of the outer face of H. Then, 6− f5 = 4n1 + 2n2 − l.

Proof. Let m be the number of edges, n3 the number of 3-vertices, and f6 the number
of hexagons of H. Then

n1 + 2n2 + 3n3 = 2m = 5f5 + 6f6 + l.

Using Euler’s formula, we also have that

n1 + n2 + n3 + f5 + f6 + 1−m− 2 = 0.
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Putting these two equations together we infer

6(n1 + n2 + n3 + f5 + f6 + 1−m− 2) = 0

(2n1 + 4n2 + 6n3 − 4m) + (5f5 + 6f6 + l − 2m) + 4n1 + 2n2 + f5 − l − 6 = 0

4n1 + 2n2 − f5 − l − 6 = 0 ,

and finally
4n1 + 2n2 − l = 6− f5.

�

Proof of Lemma 1. Let H be the component of G− C that corresponds to α. Then
H has n1 1-vertices and n2 2-vertices such that 2n1 + n2 = k. It also has six 5-faces.
The length of its outer face is

l = k +
k∑

i=1

αi = 2n1 + n2 +
k∑

i=1

αi.

On the other hand, by Lemma 2 we have

l = 4n1 + 2n2,

and hence
k∑

i=1

αi = 2n1 + n2 = k,

which proves the lemma. �

The type of a cut-vector α is the vector obtained from α after omitting the coordinates
with value 1. For an example, the type of the cut-vector [2, 1, 1, 0, 1, 2, 0] is [2, 0, 2, 0].
If no two consecutive coordinates of the cut-vector’s type have the same value, we say
that the cut is nanotubical. The notion nanotubical derives from the fact, that the two
same consecutive coordinates imply that there are all three direction vectors contained
in the cut, and we know that the fullerene is a nanotube if and only if there exists a
cut containing at most two direction vectors. Moreover, if the cut is nanotubical, each
subsequence of the form 2, 1, . . . , 1, 0 of the cut-vector containing k 1’s corresponds to
k + 1 times the unit vector a1, and each subsequence of the form 0, 1, . . . , 1, 2 of the
cut-vector containing ℓ 1’s corresponds to ℓ + 1 times the unit vector a2. Therefore, we
can use the following characterization:

Proposition 1 A fullerene graph is a nanotube if and only if it has a nanotubical cut.
Moreover, if the nanotube is of type (p1, p2), then the cut has size p1 + p2.

Below we pose some known results regarding the non-trivial cyclic 5- and 6-edge-cuts.
Denote by Gk the fullerene graph comprised of two caps formed by six pentagons, and
k layers of hexagons, see Fig. 3.

Theorem 1 A fullerene graph has non-trivial cyclic 5-edge-cut if and only if it is iso-
morphic to the graph Gk for some integer k ≥ 1.
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Figure 3: The graphs Gk are the only fullerene graphs with non-trivial cyclic 5-edge-cuts.

As an immediate corollary we obtain that all non-trivial cyclic 5-edge-cuts in fullerene
graphs are non-degenerated. Unlike cyclic 5-edge-cuts, there exist degenerated cyclic 6-
edge-cuts, which are not trivial.

Theorem 2 There exist precisely seven non-isomorphic graphs that can be obtained as
components of degenerated cyclic 6-edge-cuts with less than six pentagons (see Fig. 4).
Moreover, the graphs with i pentagons are unique for i = 0, 1, 2, 3, 4. There are exactly
two graphs with 5 pentagons on the other hand.

6D01 6D02 6D03 6D04

6D05 6D06 6D07

Figure 4: Degenerated cyclic 6-edge-cuts.

Non-degenerated cyclic 6-edge-cuts are, similarly as cyclic 5-edge-cuts, nanotubical.
In [4] the following characterization is given:

Theorem 3 A fullerene graph has non-degenerated cyclic 6-edge-cut if and only if it is
a nanotube of type (p1, p2), where

(a) p1 + p2 = 6; or

(b) p1 = 5, p2 = 0, with at least 2 layers of hexagons.
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2 Degenerated cyclic 7-edge-cuts

In this section we list the degenerated cyclic 7-edge-cuts. There are 57 non-isomorphic
graphs that can be obtained as components of degenerate cyclic 7-edge-cuts with less
then 6 pentagons. To obtain the configurations we used the reverses of operations O1,
O2 and O3 presented in [4]. Each of the three operations Oi, i ∈ {1, 2, 3}, modifies the
cyclic k-edge-cut C into another cyclic edge-cut Ci. Below a brief description of the
operations is given (see also Fig. 5).

(O1) If a component H contains a vertex of degree one, then using (O1) one can modify
the k-edge-cut C into a (k − 1)-edge-cut C1.

(O2) If a component H contains two adjacent vertices of degree two, then using (O2)
one can modify the k-edge-cut C into a k-edge-cut C2.

(O3) If the vertices of the outer face of H are consecutively of degree 2 and 3, then using
(O3) one can modify the k-edge-cut C into a k-edge-cut C3.

H
C HC

H

C

↓ (O1) ↓ (O2) ↓ (O3)

H1

C1 H2C2

H3

C3

Figure 5: The operations O1, O2 and O3.

Using the three operations, all cyclic edge-cuts in a fullerene could be constructed, see
[4, Theorem 1]. Note that the operation O3 can be applied only if there are six pentagons
in the configuration H, therefore when reconstructing degenerated cyclic edge-cuts from
the trivial ones, it is never used. In Fig. 6, an example of constructing a degenerate
cyclic 7-edge-cut is presented, and in Fig. 7 we listed the degenerated cyclic 7-edge-cuts.

(O1)
←−

(O2)
←−

(O2)
←−

↑ (O2)

(O2)
−→

(O2)
−→

(O2)
−→

Figure 6: An example of construction.

In Table 1 for each configuration depicted in Fig. 7 we list the number of pentagonal
and hexagonal faces (denoted by f5 and f6), the number of vertices (denoted by v), the
cut-vector, and the configurations that arise when applying operations O1, O2 and the
inverse O−1

2 .
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D01 D02 D03 D04 D05 D06 D07 D08 D09 D10

D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

D21 D22 D23 D24 D25 D26 D27 D28

D29 D30 D31 D32 D33 D34 D35 D36

D37 D38 D39 D40 D41 D42 D43

D44 D45 D46 D47 D48 D49 D50

D51 D52 D53 D54 D55 D56 D57

Figure 7: Degenerated cyclic 7-edge-cuts.
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cut f5 f6 v cut-vector O1 O2 O−1

2

D01 0 1 7 [−1, 1, 0, 0, 0, 0, 1] 6D01 – D05
D02 1 0 7 [−1, 0, 1, 0, 0, 0, 2] 6D02 – D05, D06
D03 1 0 7 [−1, 1, 0, 0, 1,−1, 2] 6D02 – D05, D06
D04 1 0 7 [−1, 1, 0, 1,−1, 1, 1] 6D02 – D06, D07

D05 1 1 9 [0, 0, 0, 1, 0, 0, 1] – D01, D02, D03 D08
D06 2 0 9 [−1, 1, 0, 1, 0, 0, 2] 6D03 D02, D03, D04 D08, D09, D10
D07 2 0 9 [−1, 1, 1, 0, 0, 1, 1] 6D03 D04 D09, D10

D08 2 1 11 [0, 0, 1, 0, 1, 0, 1] – D05, D06 D11, D12
D09 3 0 11 [0, 0, 1, 1, 0, 0, 2] – D06, D07 D11, D13
D10 3 0 11 [−1, 1, 1, 0, 1, 0, 2] 6D04 D06, D07 D12, D13, D14, D15

D11 3 1 13 [0, 1, 0, 1, 0, 1, 1] – D08, D09 D16, D17
D12 3 1 13 [0, 0, 1, 1, 0, 1, 1] – D08, D10 D17, D18
D13 4 0 13 [0, 0, 2, 0, 1, 0, 2] – D09, D10 D17, D19
D14 4 0 13 [−1, 2, 0, 1, 1, 0, 2] 6D05 D10 D18, D20
D15 4 0 13 [−1, 1, 1, 1, 0, 1, 2] 6D05 D10 D18, D19, D20, D21, D22

D16 4 1 15 [0, 1, 1, 0, 1, 1, 1] – D11 D23, D24, D25
D17 4 1 15 [0, 1, 0, 1, 1, 0, 2] – D11, D12, D13 D24, D25, D26, D27
D18 4 1 15 [0, 0, 1, 1, 1, 0, 2] – D12, D14, D15 D27, D28, D29, D30
D19 5 0 15 [0, 0, 2, 1, 0, 1, 2] – D13, D15 D27
D20 5 0 15 [−1, 2, 0, 2, 0, 1, 2] 6D06 D14, D15 D29, D30, D31
D21 5 0 15 [−1, 1, 2, 0, 1, 1, 2] 6D06 D15 D30, D32
D22 5 0 15 [−1, 1, 1, 1, 1, 0, 3] 6D06 D15 –

D23 5 1 17 [0, 1, 1, 1, 1, 0, 2] – D16 D34
D24 5 1 17 [0, 1, 1, 1, 0, 1, 2] – D16, D17 D35
D25 5 1 17 [0, 1, 1, 0, 2, 0, 2] – D16, D17 D36
D26 4 2 17 [0, 1, 1, 0, 1, 1, 1] – D17 D35, D36, D37
D27 5 1 17 [0, 1, 0, 2, 0, 1, 2] – D17, D18, D19 D37, D38
D28 4 2 17 [0, 1, 0, 1, 1, 1, 1] – D18 D38, D39, D40
D29 5 1 17 [0, 0, 2, 0, 2, 0, 2] – D18, D20 D40, D41
D30 5 1 17 [0, 0, 1, 2, 0, 1, 2] – D18, D20, D21 D40, D42
D31 5 1 17 [−1, 2, 1, 0, 1, 1, 2] 6D07 D20 D41, D42
D32 5 1 17 [−1, 2, 0, 1, 1, 1, 2] 6D07 D21 D42, D43
D33 5 1 17 [−1, 1, 1, 1, 1, 1, 2] 6D07 – D43

D34 5 2 19 [0, 1, 1, 1, 1, 1, 1] – D23 –
D35 5 2 19 [0, 1, 1, 1, 1, 0, 2] – D24, D26 D44
D36 5 2 19 [0, 1, 1, 1, 0, 1, 2] – D25, D26 D45
D37 5 2 19 [0, 1, 1, 0, 2, 0, 2] – D26, D27 D46
D38 5 2 19 [0, 1, 1, 0, 1, 1, 2] – D27, D28 D46
D39 5 2 19 [0, 1, 1, 1, 1, 1, 1] – D28 –
D40 5 2 19 [0, 1, 0, 1, 2, 0, 2] – D28, D29, D30 D47, D48
D41 5 2 19 [0, 0, 2, 1, 0, 1, 2] – D29, D31 D48
D42 5 2 19 [0, 0, 2, 0, 1, 1, 2] – D30, D31, D32 D48, D49
D43 5 2 19 [0, 0, 1, 1, 1, 1, 2] – D32, D33 D49
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cut f5 f6 v vector O1 O2 O−1

2

D44 5 3 21 [0, 1, 1, 1, 1, 1, 1] – D35 –
D45 5 3 21 [0, 1, 1, 1, 1, 0, 2] – D36 D50
D46 5 3 21 [0, 1, 1, 1, 0, 1, 2] – D37, D38 D51
D47 5 3 21 [0, 1, 1, 0, 1, 2, 1] – D40 D52
D48 5 3 21 [0, 1, 0, 2, 0, 1, 2] – D40, D41, D42 D52, D53
D49 5 3 21 [0, 1, 0, 1, 1, 1, 2] – D42, D43 D53

D50 5 4 23 [0, 1, 1, 1, 1, 1, 1] – D45 –
D51 5 4 23 [0, 1, 1, 1, 1, 0, 2] – D46 D54
D52 5 4 23 [0, 1, 1, 0, 2, 0, 2] – D47, D48 D55
D53 5 4 23 [0, 1, 1, 0, 1, 1, 2] – D48, D49 D55

D54 5 5 25 [0, 1, 1, 1, 1, 1, 1] – D51 –
D55 5 5 25 [0, 1, 1, 1, 0, 1, 2] – D52, D53 D56

D56 5 6 27 [0, 1, 1, 1, 1, 0, 2] – D55 D57

D57 5 7 29 [0, 1, 1, 1, 1, 1, 1] – D56 –

Table 1: Degenerated cyclic 7-edge cuts.

3 Non-degenerated cyclic 7-edge-cuts

In this section, we consider the non-degenerated cyclic 7-edge-cuts. We prove that all
non-degenerated cyclic 7-edge-cuts are contained in fullerene graphs which are nano-
tubes, with only two exceptions. There exist precisely two fullerene graphs, which have
non-degenerated cyclic 7-edge-cuts and that are not nanotubical. We also characterize
the types of nanotubes in which non-degenerate cyclic 7-edge-cuts exist.

Note that nanotubes with p1 + p2 < 5 do not exist due to cyclic 5-edge-connectivity
of fullerenes. Regarding nanotubes with p1 + p2 = 5, it was already proven in [4] that
only nanotubes of type (5, 0) exist, moreover, the caps are unique, see Theorem 1.

On the other hand, there are more possible nanotube types for p1 + p2 = 6. If
we look for minimal caps, for type (6, 0) there exist five different caps, while for types
(5, 1), (4, 2), and (3, 3) the minimal caps are unique, see Fig. 8. These are the caps which
cannot be made smaller without introducing denegerated cuts. This is the shortest list

(6, 0) (6, 0) (6, 0) (6, 0) (6, 0)

(5, 1) (4, 2) (3, 3)

Figure 8: The (minimal) caps of (p1, p2)-nanotubes, where p1 + p2 = 6.
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of caps such that every other cap in a nanotube with p1 +p2 = 6 contains (precisely) one
of them as a subgraph. If you want to preserve the size of the cut, the caps for the type
(6, 0) can be extended only using O−1

3 , meaning adding whole layers of hexagons, since
there are no 2’s in the corresponing cut-vectors. Therefore, there are no other cups for
this type of nanotubes. The three caps of the types where p2 > 0 can be extended only
using O−1

2 , meaning adding one hexagon in a step, since there is always at least one 2
in the corresponing cut-vector. Applying O−1

2 in the described way does not modify the
type (p1, p2) of nanotubical cap. This way, we can find five more caps for nanotubes of
type (5, 1) and seven more caps for nanotubes of types (4, 2) and (3, 3). See Fig. 9 for
an illustration. Thus, there are altogether 5 + 6 + 8 + 8 = 27 caps.

O2

−→
O2

−→
O2

−→
(5, 1)

O2

−→
O2

−→
O2

−→
(4, 2)

O2

−→
O2

−→
O2

−→
(3, 3)

Figure 9: All other caps of the nanotubes with p1 + p2 = 6 and p2 > 0 are derived from
the minimal ones using O−1

2 .

Theorem 4 A fullerene graph G has a non-degenerated cyclic 7-edge-cut if and only if
it is a nanotube of type (p1, p2) such that

(a) p1 + p2 = 7; or

(b) p1 + p2 ≤ 6, and G is not isomorphic to one of the four graphs depicted in
Fig. 10;

unless G is isomorphic to one of the two graphs depicted in Fig. 11.

Proof. It is easy to see that both graphs shown in Fig. 11 contain non-degenerate cyclic
7-edge-cuts.

Suppose now G is a nanotubical fullerene of type (p1, p2). We do not need to consider
nanotubes with p1 + p2 ≥ 8 here, since in the second part of the proof we conclude that
if a fullerene graph contains a non-degenerated cyclic 7-edge-cut and it is nanotubic,
then its width is at most 7.

In nanotubes with p1 + p2 = 7, simply the edges in the cylindrical part can be used
to obtain a cyclic 7-edge-cut.

Let p1 + p2 = 6. We consider nanotubes of types (5, 1), (4, 2), (3, 3), and (6, 0)
separately. The nanotubes of type (5, 1) have uniquely defined caps, which contain a
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(5, 0) (6, 0) (4, 2) (3, 3)

Figure 10: The only four nanotubical fullerenes with p1 + p2 ≤ 6 not having a non-
degenerate cyclic 7-edge-cut.

Figure 11: The only two non-nanotubical fullerenes with a non-degenerate cyclic 7-edge-
cut.

Figure 12: The cap of a nanotube of type (5, 1) with a non-degenerate cyclic 7-edge-cut.

hexagon, so all such nanotubes have a configuration shown in Fig. 12, where a non-
degenerated cyclic 7-edge-cut can be found.

On the other hand, the unique minimal caps of nanotubes of types (4, 2) and (3, 3)
do not contain any hexagonal faces. So there exist nanotubes of such types that do not
have non-degenerate cyclic 7-edge-cut. In fact for each type only the smallest nanotube
is such, while all others have it. In Fig. 13, the smallest two nanotubes of each type are
presented.

It remains to consider the nanotubes of type (6, 0). There are five possible caps
for this type, see Fig. 8. Only the first cap does not contain a hexagonal face incident
with edges of the cut, so the nanotubes with both such caps need at least two layers of
hexagons to obtain a non-degenerate cyclic 7-edge-cut. In all other configurations there
are at least two edges in the cap that are not adjacent to a pentagonal face (the edges
of cap’s hexagon), and can be elements of the cut.

If p1 + p2 = 5 then p1 = 5 and p2 = 0. Recall that there is a unique cap for such
a nanotube. Now, consider the cylindrical part of the nanotube with only one layer of
hexagons. The only edges not adjacent to pentagons are the edges between hexagonal
faces. There are only five such edges, thus a cyclic 7-edge-cut could not be obtained.
On the other hand, having two or more layers, the edges between layers could be used
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Figure 13: The two smallest nanotubes of types (4, 2) (on the top), and (3, 3) (at the
bottom).

to obtain the cut of size 7.
Now, we will prove the other direction. Let G be a fullerene graph and C a non-

degenerated cyclic 7-edge-cut in G. Let H be one of the components of graph G − C.
If C is nanotubical, then by the definition G is a nanotube with p1 + p2 = 7.

fSuppose that C is a non-nanotubical non-degenerated 7-edge cut. Consider the
cut-vector of C. If there is a −1, it corresponds to a vertex of degree 1 in one of the
components; anytime the cut-vector looks like [. . . , a,−1, b, . . . ], if we remove the ver-
tex from the component, we get a non-degenerate cyclic 6-edge cut with the cut-vector
[. . . , a − 1, b − 1, . . . ], see Fig. 14 for an illustration. By Theorem 3, it is contained in
a nanotube, moreover, if we insert the removed vertex back, we get a non-degenerated
7-edge-cut in the nanotube. If the cut-vector contains any 3 as a coordinate, the com-
plement must contain −1, since the cut is non-degenerated. So we apply the previous
argument on the other component.

=⇒

Figure 14: If the cut-vector of a k-cut contains −1, we can change it into a (k− 1)-cut.

Therefore, we deal only with cut-vectors whose coordinates are 0’s, 1’s and 2’s. Then,
due to the definition, we have at least two consecutive 0’s or 2’s. So, the type of the
cut-vector is one of the following three: [2, 2, 2, 0, 0, 0], [2, 2, 0, 2, 0, 0] or [2, 2, 0, 0]. Table
2 lists all possible cut-vectors (up to symmetry) which could arise from these types.

[2, 2, 2, 0, 0, 0] [2, 2, 0, 2, 0, 0] [2, 2, 0, 0]
[2, 2, 2, 1, 0, 0, 0] [2, 1, 2, 0, 2, 0, 0] [2, 2, 1, 1, 1, 0, 0], [2, 2, 1, 1, 0, 0, 1]
[2, 1, 2, 2, 0, 0, 0] [2, 2, 1, 0, 2, 0, 0] [2, 1, 2, 1, 1, 0, 0], [2, 1, 2, 1, 0, 0, 1]

[2, 2, 0, 1, 2, 0, 0] [2, 1, 1, 2, 1, 0, 0], [2, 1, 2, 1, 0, 1, 0]
[2, 2, 0, 2, 0, 0, 1] [2, 1, 1, 1, 2, 0, 0], [2, 1, 1, 2, 0, 1, 0]

Table 2: All possible cut-vectors that arise from non-nanotubical cut types.

Now, we will consider each of the cut-vectors separately and prove that any cut with
such a cut-vector is either:
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• a part of a nanotube with p1 + p2 ≤ 7; or

• a part of the graphs depicted in Fig. 11; or

• a part of a configuration which is non-realizable.

This analysis will establish the theorem. Notice that the cuts are depicted with the
dotted lines in figures that follow.

[2,2,2,1,0,0,0]: Consider the configuration shown in Fig. 15. Notice that the face A

cannot be pentagonal. Thus it is of length 6, and we obtain a non-degenerated
5-edge-cut with a cut-vector [2, 2, 0, 0, 1]. But by Theorem 1 it follows that such
a configuration is non-realizable, since the only cut-vector of non-degenerated 5-
edge-cut is [1, 1, 1, 1, 1].

A

[2, 2, 2, 1, 0, 0, 0]-cut

=⇒

[2, 2, 0, 0, 1]-cut

Figure 15: The component associated with the cut-vector [2, 2, 2, 1, 0, 0, 0].

[2,1,2,2,0,0,0]: Consider the configuration shown in Fig. 16. Similarly as in the case
above, A must be of length 6. We obtain a non-degenerated 5-edge-cut with a
cut-vector [2, 1, 0, 1, 1] and Theorem 1 implies that such a configuration is non-
realizable.

A

[2, 1, 2, 2, 0, 0, 0]-cut

=⇒

[2, 1, 0, 1, 1]-cut

Figure 16: The component associated with the cut-vector [2, 1, 2, 2, 0, 0, 0].

[2,1,2,0,2,0,0]: Consider the size of the face A from Fig. 17. If A is pentagonal, we
obtain a degenerated 6-edge-cut with the cut-vector [2, 0, 1, 0, 1, 1]. Such a con-
figuration is non-realizable by Theorem 2, since the cut-vectors of degenerated 6-
edge-cuts with a component containing five pentagons are only [2, 0, 1, 1, 1, 0] and
[0, 1, 1, 1, 1, 1]. On the other hand, if A is hexagonal, we obtain a non-degenerated
6-edge-cut with the cut-vector [2, 0, 1, 1, 1, 1], which is nanotubical; by Theorem 3
it occures in a nanotube with p1 + p2 ≤ 6. It is easy to see that it is contained in
a nanotube of type (5, 1).
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A

[2, 1, 2, 0, 2, 0, 0]-cut

=⇒

[2, 0, 1, 0, 1, 1]-cut

or

[2, 0, 1, 1, 1, 1]-cut

Figure 17: The component associated with the cut-vector [2, 1, 2, 0, 2, 0, 0].

[2,2,1,0,2,0,0]: In this case the size of the face A from Fig. 18, is considered. If it
is of size five, the configuration is non-realizable, since a degenerated 6-edge-cut
with the cut-vector [2, 1, 0, 1, 0, 1] is obtained. There is no such a degenerated
cut according to Theorem 2. If A is hexagonal, we obtain a cut with the cut-
vector [2, 1, 0, 1, 1, 1], which is nanotubical; it is contained in a nanotube of type
(4, 2). Since the original cut is non-degenerate, the six hexagons cut by the new
6-edge-cut are not surrounded by pentagons only. Therefore, the graph is not the
exceptional one shown in Fig. 10.

A

[2, 2, 1, 0, 2, 0, 0]-cut

=⇒

[2, 1, 0, 1, 0, 1]-cut

or

[2, 1, 0, 1, 1, 1]-cut

Figure 18: The component associated with the cut-vector [2, 2, 1, 0, 2, 0, 0].

[2,2,0,1,2,0,0]: Similarly as in the two cases above the size of the face A from Fig. 19
is taken in consideration. For A being pentagonal we once again obtain a non-
realizable configuration, due to a cut with the cut-vector [2, 0, 1, 1, 0, 1]. For A

hexagonal a nanotubical cut with the cut-vector [2, 0, 1, 1, 1, 1] is obtained; it is
contained in a nanotube of type (5, 1).

A

[2, 2, 0, 1, 2, 0, 0]-cut

=⇒

[2, 0, 1, 1, 0, 1]-cut

or

[2, 0, 1, 1, 1, 1]-cut

Figure 19: The component associated with the cut-vector [2, 2, 0, 1, 2, 0, 0].

[2,2,0,2,0,0,1]: Analogously, if the face A from Fig. 20, is pentagonal, we once again ob-
tain a non-realizable cut-vector [2, 2, 0, 1, 0, 0]. If A is hexagonal, a non-degenerate
cyclic 6-edge-cut with the cut-vector [2, 2, 0, 1, 1, 0] is obtained. This cut is not nan-
otubical, however, by Theorem 3 it is contained in a nanotube with p1 + p2 ≤ 6.
It is easy to see that it occurs in nanotubes of type (5, 0) with at least two layers
of hexagons.
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A

[2, 2, 0, 2, 0, 0, 1]-cut

=⇒

[2, 2, 0, 1, 0, 0]-cut

or

[2, 2, 0, 1, 1, 0]-cut

Figure 20: The component associated with the cut-vector [2, 2, 0, 2, 0, 0, 1].

[2,2,1,1,1,0,0]: If the face A from Fig. 21, is pentagonal, we obtain a degenerated
cyclic 6-edge-cut with a cut-vector [2, 1, 1, 0, 0, 1] which is non-realizable. If A

is hexagonal, we obtain a nanotubical cut with a cut-vector [2, 1, 1, 0, 1, 1]. It is
contained in a nanotube of type (3, 3). Since the original cut is non-degenerate,
the six hexagons cut by the new 6-edge-cut are not surrounded by pentagons only.
Therefore, the graph is not the exceptional one shown in Fig. 10.

A

[2, 2, 1, 1, 1, 0, 0]-cut

=⇒

[2, 1, 1, 0, 0, 1]-cut

or

[2, 1, 1, 0, 1, 1]-cut

Figure 21: The component associated with the cut-vector [2, 2, 1, 1, 1, 0, 0].

[2,2,1,1,0,0,1]: Consider the face A from Fig. 22. If A is pentagonal, we obtain a
degenerated 6-edge-cut with the cut-vector [2, 2, 1, 0, 0, 0], which is non-realizable.
If A is hexagonal, we obtain a non-degenerated 6-edge-cut, which by Theorem 3
can only occur in nanotubes. However, it can be easily checked that it is non-
realizable, too, since it leads to a nanotube of type (4, 1), which does not exist.

A

[2, 2, 1, 1, 0, 0, 1]-cut

=⇒

[2, 2, 1, 0, 0, 0]-cut

or

[2, 2, 1, 0, 1, 0]-cut

Figure 22: The component associated with the cut-vector [2, 2, 1, 1, 0, 0, 1].

[2,1,2,1,1,0,0]: Consider the face A from Fig. 23. If it is pentagonal, we obtain a cut
with the cut-vector [2, 1, 0, 0, 1, 1], which is non-realizable by Theorem 2. If the
face A is hexagonal, we obtain a cut with a nanotubical cut-vector [2, 1, 0, 1, 1, 1];
it occurs in nanotubes of type (4, 2).

[2,1,2,1,0,0,1]: Consider the face A from Fig. 24. If A is pentagonal, we obtain a
degenerated 6-edge-cut with the cut-vector [2, 1, 2, 0, 0, 0], which is non-realizable.
If A is hexagonal, we obtain a non-degenerated 6-edge-cut with the cut-vector
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A

[2, 1, 2, 1, 1, 0, 0]-cut

=⇒

[2, 1, 0, 0, 1, 1]-cut

or

[2, 1, 0, 1, 1, 1]-cut

Figure 23: The components associated with the cut-vector [2, 1, 2, 1, 1, 0, 0].

[2, 1, 2, 0, 1, 0], which must be contained in a nanotube. However, it can only
appear in a nanotube of type (5, 0) with at least two layers of hexagons.

A

[2, 1, 2, 1, 0, 0, 1]-cut

=⇒

[2, 1, 2, 0, 0, 0]-cut

or

[2, 1, 2, 0, 1, 0]-cut

Figure 24: The component associated with the cut-vector [2, 1, 2, 1, 0, 0, 1].

[2,1,1,2,1,0,0]: Consider the face A from Fig. 25. If it is pentagonal, we obtain a cut
with the cut-vector [2, 0, 0, 1, 1, 1], which is non-realizable by Theorem 2. If the
face A is hexagonal, we obtain a cut with the cut-vector [2, 0, 1, 1, 1, 1] appearing
only in nanotubes of type (5, 1).

A

[2, 1, 1, 2, 1, 0, 0]-cut

=⇒

[2, 0, 0, 1, 1, 1]-cut

or

[2, 0, 1, 1, 1, 1]-cut

Figure 25: The components associated with the cut-vector [2, 1, 1, 2, 1, 0, 0].

[2,1,2,1,0,1,0]: Consider the face A from Fig. 26. If A is pentagonal, we obtain a
degenerated 7-edge-cut with a component of five pentagons and some hexagons,
with the cut-vector [2, 1, 2, 0, 1, 0, 0], which is non-realizable, since no degenerated
7-edge-cut in Table 1 has such a cut-vector. If A is hexagonal, we obtain a non-
degenerated 7-edge-cut with the cut-vector [2, 1, 2, 0, 2, 0, 0], which has already
been considered and leads to nanotubes of type (5, 1).

[2,1,1,1,2,0,0]: Here we consider two subcases, starting with the case that A is hexag-
onal. In this case we obtain a 6-edge-cut with the cut-vector [1, 1, 1, 1, 1, 1] (see
Fig. 27), which occurs on nanotubes of type (6, 0). Since the original cut is non-
degenerate, the six hexagons cut by the new 6-edge-cut are not surrounded only
by pentagons on both sides. Therefore, the graph G is not in Fig. 10.

In the latter case A is pentagonal. We obtain a degenerated 6-edge-cut with the
cut-vector [0, 1, 1, 1, 1, 1]. By Theorem 2, we know that there exists precisely one
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A

[2, 1, 2, 1, 0, 1, 0]-cut

=⇒

[2, 1, 2, 0, 1, 0, 0]-cut

or

[2, 1, 2, 0, 2, 0, 0]-cut

Figure 26: The component associated with the cut-vector [2, 1, 2, 1, 0, 1, 0].

A

[2, 1, 1, 1, 2, 0, 0]-cut

=⇒

[1, 1, 1, 1, 1, 1]-cut

or

[0, 1, 1, 1, 1, 1]-cut

Figure 27: The component associated with the cut-vector [2, 1, 1, 1, 2, 0, 0].

configuration with such a cut. It is composed of five pentagons and one hexagon,
which is by the component with 0 value in the cut. We obtain the left configuration
from Fig. 28. Obviously, it is realizable and it does not have to be nanotubical, so
we have to consider the other part of the graph, the complement of the original
cut-vector – [0, 1, 1, 1, 0, 2, 2].

Consider the faces A, B, C and D in Fig. 28. We distinguish cases regarding
their sizes. Notice that in all cases we obtain a cut whose cut-vector has two
consecutive coordinates with value 1. When all four faces are hexagonal, we obtain
a nanotubical 6-edge-cut with the cut-vector [1, 1, 1, 1, 1, 1]. When at least one of
them is pentagonal, a degenerated cut is obtained. By Theorem 2 and the fact
that there are two consecutive 1’s in the cut-vector of the cut passing the faces A,
B, C, D, and the two topmost hexagons drawn in the same figure it follows that
either one or two faces are pentagonal. When only one of the faces is pentagonal,
we consider two subcases, due to the symmetry, either A is pentagonal or B is
pentagonal.

A BC D

[0, 1, 1, 1, 0, 2, 2]-cut exceptional fullerene [4, 3]-nanotube

Figure 28: The components associated with the cut-vector [0, 1, 1, 1, 0, 2, 2]: the general
situation and the cases when only A or B is pentagonal.

If the face A is pentagonal, we obtain a 6-cut with the cut-vector [0, 1, 1, 1, 1, 1],
which is uniquely realizable by configuration 6D07 of Fig. 4. We obtain the middle
graph drawn in Fig. 28, which is isomorphic to the left graph of Fig. 11. It has no
nanotubical cut, so this fullerene is not a nanotube.
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Similarly, if the face B is pentagonal, we again obtain a 6-cut with the cut-vector
[0, 1, 1, 1, 1, 1], which is uniquely realizable. We get the right graph drawn in
Fig. 28, where its nanotubical cut is presented. It is a nanotube of type (4, 3).

exceptional fullerene

Figure 29: The graph obtained from the cut-vector [0, 1, 1, 1, 0, 2, 2] in the case two of
the faces A, B, C, D are pentagonal.

In the latter case precisely two of the faces A, B, C and D are pentagonal. We
obtain a degenerated cut with four 5-faces in the interior. The only such config-
uration has the cut-vector [1, 1, 0, 1, 1, 0]. Notice that between the 0 components
are two 1’s. That infers the pentagonal faces are A and D, since there must be
exactly two hexagons between the pentagons. This configuration is also realizable.
We obtain the graph depicted in Fig. 29, which is isomorphic to the right graph
of Fig. 11. It is not a nanotube, as it has no nanotubical cut.

[2,1,1,2,0,1,0]: Consider the faces A and B of Fig. 30. If both of them are hexagonal,
we obtain a nanotubical cut with the cut-vector [1, 1, 1, 1, 1, 1]. If at least one
of them is pentagonal, we obtain a degenerated cut with the cut-vector having
three consecutive 1’s. The only degenerated cut with the cut-vector having three
consecutive 1’s has five pentagons in the interior, so exactly one of the faces A

and B is pentagonal. In that case, we can always find a cut with the cut-vector
[2, 1, 1, 1, 2, 0, 0], see Fig. 30. Therefore, we deal only with configurations consid-
ered in the previous case.

A B

[2, 1, 1, 2, 0, 1, 0]-cut [2, 1, 1, 1, 2, 0, 0]-cut [2, 1, 1, 1, 2, 0, 0]-cut

Figure 30: The components associated with the cut-vector [2, 1, 1, 2, 0, 1, 0].

This proves the theorem. �
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[2] T. Došlić, On some structural properties of fullerene graphs, J. Math. Chem. 31
(2002) 187.
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otubes, J. Math. Chem. 38 (2005) 233.

[8] F. Zhang and L. Wang, k-resonance of open-ended carbon nanotubes, J. Math.
Chem. 35 (2004) 87.

19


