Brooks Theorem for Generalized Dart Graphs^{*}

Martin Kochol[†]

MÚ SAV, Štefánikova 49, 814 73 Bratislava 1, Slovakia martin.kochol@mat.savba.sk

Riste Škrekovski[‡]

Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia skrekovski@gmail.com

Abstract

The well-known Brooks' Theorem says that each graph G of maximum degree $k \geq 3$ is k-colorable unless $G = K_{k+1}$. We generalize this theorem by allowing higher degree vertices with prescribed types of neighborhood.

1 Introduction

A k-coloring of a graph is a mapping from the set of vertices to $\{1, \ldots, k\}$ such that any two adjacent vertices have different colors. The decision problem whether a given graph G has a k-coloring is a classical NP-complete problem for every fixed $k \ge 3$ (see [3, 4]).

By Brooks' Theorem [1], every graph with maximum vertex degree at most $k \geq 3$ and without a component isomorphic to K_{k+1} (a complete graph on k + 1 vertices) has a k-coloring. Furthermore, as follows from [2, 6, 7, 8, 9], there exists a linear-time algorithm that finds a k-coloring for such a graph.

Kochol, Lozin, and Randerath [6, Theorem 4.3] proved that if \mathcal{D} is a class of graphs in which the neighborhood of each 4-degree vertex induces a graph isomorphic to a disjoint union of an isolated vertex and a path of length 2, then every graph from \mathcal{D} is either 3-colorable or has a component isomorphic to K_4 . Furthermore, there exists

^{*}These results were presented in IWOCA 2010.

[†]Supported in part by grant VEGA 2/0118/10.

[‡]Supported in part by ARRS Research Program P1-0297.

keywords: (k, s)-dart graph, graph algorithms, NP-complete problem, (k, s)-diamond, Brooks' Theorem.

a linear-time algorithm that finds either a 3-coloring or a component isomorphic to K_4 for each graph from \mathcal{D} . This generalizes the Brooks' Theorem for the case k = 3.

The aim of this paper is to generalize the Brooks' Theorem and the result from [6, Theorem 4.3]. We consider classes of graphs where each vertex of degree at least k + 2 has a strictly prescribed neighborhood, so called "(k, s)-dart graphs", defined in the following section. Our main result, Theorem 1, is that if G is a (k, s)-dart graph, $k \ge \max\{3, s\}$, and $s \ge 2$, then G is (k + 1)-colorable if and only if it has no component isomorphic to K_{k+2} . Furthermore, if G is (k + 1)-colorable, then a (k + 1)-coloring of G can be constructed in a linear time. We also show that if $s > k \ge 3$, then it is an NP-complete problem to decide whether a (k, s)-dart graph is (k + 1)-colorable (see Theorem 2).

2 Definitions

In this paper we consider simple graphs, i.e., without multiple edges and loops. If G is a graph, then V(G) and E(G) denote the vertex and the edge sets of G, respectively.

Let G be a graph and x, y two vertices of G. Then G + xy denotes the graph constructed from G by adding an edge xy. Since we consider simple graphs, G + xy = Gif x, y are adjacent in G. For a vertex v of G, let $d_G(v)$ denote the degree of v in G. Let H, G be two graphs such that no subgraph of G is isomorphic with H. Then we say that G is a H-free graph.

A (k, s)-diamond is a join of a clique of size $k \ge 1$ and an independent set of size $s \ge 1$. Notice that these graphs are edge-maximal split graphs. In a (k, s)-diamond D, vertices that belong to the independent set are called *pick* vertices, and the remaining (i.e. those in the k-clique) are called *central* vertices. Denote by C(D) and P(D) the sets of central vertices and pick vertices of D, respectively. An example of a (4, 3)-diamond D with $C(D) = \{c_1, \ldots, c_4\}$ and $P(D) = \{p_1, p_2, p_3\}$ is in Figure 1.

Figure 1: A (4, 3)-diamond.

Note that a (k, 1)-diamond is isomorphic to K_{k+1} ; in this case the unique pick vertex does not distinguish from the central vertices. This is irrelevant for us, because in this paper we deal only with (k, i)-diamonds where $i \geq 2$.

Definition 1 A graph G is a (k, s)-dart if each vertex of G of degree $\geq k+2$ is a central vertex of some (k, i)-diamond D as an induced subgraph of G with $2 \leq i \leq s$, for which

- (a) $d_D(x) \ge d_G(x) 1$ for each $x \in V(D)$;
- (b) no two vertices of C(D) have a common neighbor in G D.

The following remarks related to Definition 1 are straightforward:

- (1) Inequality $i \ge 2$ can be removed in Definition 1, because it follows from the fact that D contains a vertex of degree $\ge k + 2$.
- (2) Every graph of maximum degree $\leq k+1$ is a (k, 1)-dart graph since in Definition 1, we only prescribe the structure on the neighborhood of vertices of higher degree.
- (3) Every (k, s_1) -dart graph is a (k, s_2) -dart if $s_1 \leq s_2$.

Notice that (2, 2)-diamonds and (2, 2)-dart graphs are called diamonds and dart graphs, respectively, in [6]. By a generalized dart graph and generalized diamond we mean any (k, s)-dart graphs and any (k, s)-diamond, $k, s \ge 2$, respectively. In this paper we usually omit the word generalized, if it is clear from the context which term we have in mind.

In a (k, s)-dart graph G, every vertex of degree at least k + 2 belongs to an induced (k, i)-diamond with $2 \leq i \leq s$. Denote by $\mathcal{D}(G)$ the set of all induced maximal (k, i)-diamonds of G with $i \geq 2$.

We say that a vertex of a (k, s)-dart graph G is *central*, if it is a central vertex of a (k, i)-diamond of $\mathcal{D}(G)$, $i \leq s$. Similarly define a *pick* vertex of G. Denote the sets of central vertices and pick vertices by C(G) and P(G), respectively.

Let G be a (k, s)-dart graph and $D \in \mathcal{D}(G)$. Then, each central vertex $x \in C(D)$ is adjacent to at most one vertex v' from G - D. In this case, v' is called an *isolated* neighbor of v. The set of all isolated neighbors of the central vertices of D is denoted by I(D). Notice that the possibility that $I(D) = \emptyset$ is not excluded.

We remark that the following observations for a (k, s)-dart graph G hold:

- (4) A central vertex v of a (k, s)-dart graph G is not necessarily of degree at least k + 2. This happens only if v is a central vertex of a (k, 2)-diamond $D \in \mathcal{D}(G)$ and it has no neighbor in G D. Then, v is of degree k + 1. The possibility that all central vertices of D are of degree k + 1 is not excluded.
- (5) If K_{k+2} is a subgraph of a (k, s)-dart graph G, then it must be a component of G. Thus a copy of K_{k+2} in G is disjoint from diamonds of $\mathcal{D}(G)$.
- (6) No two pick vertices of the same diamond from $\mathcal{D}(G)$ are adjacent.

3 Properties of dart graphs

The next lemma assures that diamonds in a dart graph are vertex disjoint.

Lemma 1 Let G be a (k, s)-dart graph with $k \geq 3$. Then

- (a) $V(D_1) \cap V(D_2) = \emptyset$, for every two distinct diamonds $D_1, D_2 \in \mathcal{D}(G)$.
- (b) $C(G) \cap P(G) = \emptyset$; in particular each pick vertex is of degree k or k + 1.

Proof. We prove (a). Suppose that v is a vertex of two distinct diamonds $D_1, D_2 \in \mathcal{D}(G)$.

Assume that $v \in C(D_1) \cap C(D_2)$. If $C(D_1) = C(D_2)$, then by Definition 1(b) we obtain that $P(D_1) = P(D_2)$, whence $D_1 = D_2$. Thus $C(D_1) \neq C(D_2)$.

Suppose first $|C(D_1) \cap C(D_2)| = 1$, i.e., $C(D_1) \cap C(D_2) = \{v\}$. Then by Definition 1, either k-2 or k-1 vertices of $C(D_2)$ (resp. $C(D_1)$) are pick vertices of D_1 (resp. D_2). But then for $k \ge 4$, we obtain also two adjacent pick vertices of D_1 (resp. D_2), a contradiction to (6). So we may assume that k = 3, $C(D_1) = \{u_1, w_1, v\}$, $C(D_2) =$ $\{u_2, w_2, v\}$, and u_1 (resp. u_2) are pick vertices of D_2 (resp. D_1). By (6), w_1 (resp. w_2) is not a pick vertex of D_2 (resp. D_1). Then $w_1 \in I(D_2)$ (resp. $w_2 \in I(D_1)$) is a common neighbor of $v, u_2 \in C(D_2)$ (resp. $v, u_1 \in C(D_1)$), a contradiction with Definition 1(b).

Suppose now $|C(D_1) \cap C(D_2)| \geq 2$. Then each vertex $u \in C(D_1) \setminus C(D_2)$ is a neighbor of at least two vertices from $C(D_2)$, whence by Definition 1(b), $u \in P(D_2)$ and thus $C(D_1) \setminus C(D_2) \subseteq P(D_2)$. Similarly $C(D_2) \setminus C(D_1) \subseteq P(D_1)$. Thus the subgraph of G induced by $C(D_1) \cup C(D_2)$ is a clique, whence $|C(D_1) \cup C(D_2)| = k + 1$, and so $|C(D_1) \cap C(D_2)| = k - 1$. By assumption, D_1 is a (k, s_1) -diamond, $s \geq s_1 \geq 2$. Thus there exists $x_1 \in P(D_1) \setminus C(D_2)$. By (6), we infer that $x_1 \in I(D_2)$, but then it is a common neighbor of at least two vertices from $C(D_2)$, a contradiction with Definition 1(b).

By the above two paragraphs, we can assume that $C(D_1) \cap C(D_2) = \emptyset$. If $v \in V(D_1) \cap P(D_2)$, then $d_{D_2}(v) + 1 < d_G(v)$, a contradiction with Definition 1(a). Similarly if $v \in V(D_2) \cap P(D_1)$. This proves (a). Claim (b) is an easy consequence of (a). \Box

In the next few lemmas, we study properties of a graph G' obtained from G by applying some local modifications.

Lemma 2 Let G be a K_{k+2} -free (k, s)-dart graph with $k \ge 3$ and let $D \in \mathcal{D}(G)$. Suppose that a_1, a_2 are two central vertices of D and let x_1, x_2 be their isolated neighbors, respectively. Then the graph $G' = G - x_1a_1 - x_2a_2 + x_1x_2$ is a K_{k+2} -free graph unless there exists $D' \in \mathcal{D}(G)$ such that x_1, x_2 are pick vertices of D'.

Proof. Suppose that G' contains a copy H of K_{k+2} . Then, x_1, x_2 are vertices of H, thus cannot be adjacent in G and there is a set S of k common neighbors of x_1 and x_2 in G, which induce a clique. Notice that |S| = k and $d_G(x_1), d_G(x_2) \ge k + 1$.

Suppose that $d_G(x_1) \ge k+2$. Then, x_1 is a central vertex of some diamond $D' \in \mathcal{D}(G)$, whence by Definition 1(b), $S \subseteq V(D')$ and clearly, $|S \cap C(D')| \ge k-1 \ge 2$. Then x_2 has at least 2 neighbors in C(D'), whence x_2 belongs to D', and so it is adjacent to x_1 in G, a contradiction.

Thus, by previous paragraph, we may assume that $d(x_1) = k + 1$, and analogously $d(x_2) = k + 1$. Then x_1, x_2 and S belong to a diamond $D' \in \mathcal{D}(G)$ in which $x_1, x_2 \in P(D')$ and S = C(D'). \Box

Lemma 3 Let G be a (k, s)-dart graph and let $D \in \mathcal{D}(G)$. Supose that a_1, a_2 are two central vertices of D and let x_1, x_2 be their isolated neighbors, respectively. Then the graph $G' = G - x_1a_1 - a_2x_2 + x_1x_2$ is a (k, s)-dart graph unless one of the following conditions occurs:

- (7) there exists $D' \in \mathcal{D}(G)$ such that x_1, x_2 are pick vertices of D';
- (8) there exists $D' \in \mathcal{D}(G)$ and $i \in \{1, 2\}$ such that $x_i \in C(D')$ and x_{3-i} is an isolated neighbor of a central vertex from D', which is distinct from x_i .

Proof. Suppose that G' is not a (k, s)-dart graph. Each vertex preserve its degree from G except a_1, a_2 , which belong to D. Notice that D is a diamond in G' as well. If there is some $D' \in \mathcal{D}(G)$ that is not induced diamond of G', then x_1 and x_2 must be pick vertices of D', which gives case (7).

Thus each diamond $D' \in \mathcal{D}(G)$ is an induced diamond of G'. Clearly D' satisfies Definition 1(a) in G'. If D' does not satisfy Definition 1(b) in G', then there are two central vertices u and v of D' with a common neighbor w outside D'. Notice that x_1x_2 is one of the edges uw or vw. Then without loss of generality, we may assume that x_1 is a central vertex in D' and x_2 is an isolated neighbor of a central vertex of D' distinct from x_1 , which gives case (8). \Box

Notice that in the exceptional case (7) of the above lemma, G' may still be a dart graph, when x_1 , x_2 are pick vertices of a (k, 2)-diamond D' with no isolated vertices. Then, D' becomes a copy of K_{k+2} in G'.

4 An extension of Brooks theorem

For a diamond $D \in \mathcal{D}(G)$, a vertex of I(D) could be a central or pick vertex of another diamond of $\mathcal{D}(G)$. Denote by $I_c(D)$ and $I_p(D)$ the subset of all such vertices of I(D), respectively. By Lemma 1(b), sets $I_c(D)$ and $I_p(D)$ are disjoint. Finally, let $I_s(D)$ be the vertices of I(D) that are neither in $I_c(D)$, nor in $I_p(D)$.

Lemma 4 Suppose that we have a K_{k+2} -free (k, s)-dart graph $G, k \ge \max\{3, s\}, s \ge 2$, together with the set $\mathcal{D}(G) \neq \emptyset$. Then we can find $D \in \mathcal{D}(G)$ and construct a K_{k+2} -free (k, s)-dart graph G^* together with $\mathcal{D}(G^*)$ in O(|E(D)|) time such that

- (a) $|\mathcal{D}(G^*)| < |\mathcal{D}(G)|;$
- (b) $|E(G^*)| \le |E(G)| |E(D)|;$
- (c) From any (k + 1)-coloring λ of G^* one can construct a (k + 1)-coloring of G in O(|E(D)|) time.

Proof. Consider a (k, i)-diamond $D' \in \mathcal{D}(G), 2 \leq i \leq s$, and check three cases:

Case 1. |I(D')| < k. Thus there exists $v \in C(D')$ having no isolated neighbor. In this case we take D := D' and $G^* := G - D'$. Suppose that u' is an arbitrary vertex

of degree $\geq k + 2$ in G^* . Then, it is also of degree $\geq k + 2$ in G, and hence it belongs to a (k, i)-diamond $D'' \in \mathcal{D}(G)$ with $2 \leq i \leq s$. Diamonds D and D'' are disjoint, by Lemma 1, and hence D'' is an induced (k, s)-diamond in G^* . Furthermore, Lemma 1 assures that $\mathcal{D}(G)$ consists of D and $\mathcal{D}(G^*)$. Thus G^* is a (k, s)-dart graph. Obviously, G^* is a K_{k+2} -free graph and $|E(G^*)| \leq |E(G)| - |E(D)|$.

Let λ^* be a (k + 1)-coloring of G^* . Since every pick vertex of D has at most one neighbor outside D and since $|P(D)| \leq k$, it follows that there exists a color c that we can assign to all pick vertices of D. Denote by u_1, \ldots, u_{k-1} the vertices from $C(D) \setminus \{v\}$ and take $u_k := v$. For $i = 1, \ldots, k$, take $L(u) = \{1, \ldots, k+1\} \setminus \{c, \lambda^*(x_i)\}$ if u_i has an isolated neighbor x_i , otherwise take $L(u) = \{1, \ldots, k+1\} \setminus \{c\}$. Thus $k \geq |L(u_i)| \geq k-1$ for i < k and $|L(u_k)| = k$ (because $u_k = v$ has no isolated neighbor). For $i = 1, \ldots, k$ we assign u_i a color from $L(u_i)$ and remove this color from all $L(u_j)$ where j > i. Clearly, each $L(u_i)$ is nonempty after i - 1 steps, thus this process gives a coloring λ of G, and can be done in O(|E(D)|) time.

Case 2. |I(D')| = k and I(D') does not consist of pick vertices of one diamond of $\mathcal{D}(G)$. Suppose that each pair $x_1, x_2 \in I(D')$ satisfies either (7), or (8). This implies immediately that $|I_c(D')| \leq 1$ and $|I_s(D')| \leq 1$. Thus $|I_p(D')| \geq 1$ (because $k \geq 3$). Each $x_1 \in I_s(D') \cup I_c(D')$ and $x_2 \in I_p(D')$ satisfy neither (7), nor (8), whence $I_s(D') \cup I_c(D') = \emptyset$. Thus all vertices of I(D') must be pick vertices of one diamond of $\mathcal{D}(G)$. This contradicts the assumption of Case 2.

Thus there exist two distinct vertices $x_1, x_2 \in I(D')$ satisfying neither (7), nor (8). To find them is an easy process. Take $x_1 \in I_s(D') \cup I_c(D')$ and $x_2 \in I_p(D')$ if possible. If $I_p(D') = \emptyset$, then either $|I_s(D')| \ge 2$, or $|I_c(D')| \ge 2$, and we can choose x_1, x_2 from one of them. If $I_s(D') \cup I_c(D') = \emptyset$, $I_p(D')$ has at least two vertices from different diamonds of $\mathcal{D}(G)$, and choose them.

After choosing x_1, x_2 , take the graph $G' = G - x_1a_1 - x_2a_2 + x_1x_2$. By Lemmas 2 and 3, G' is a K_{k+2} -free (k, s)-dart graph. Moreover, |E(G')| < |E(G)| and $\mathcal{D}(G) = \mathcal{D}(G')$. $D' \in \mathcal{D}(G')$ but the number of isolated vertices of D' in G' is smaller then k. Thus we can apply the construction from Case 1 for G' and D', i.e., we take D := D' and $G^* := G' - D'$. Analogously as in Case 1, G^* is a K_{k+2} -free (k, s)-dart graph, $|E(G^*)| \leq$ |E(G)| - |E(D)| and $\mathcal{D}(G^*) = \mathcal{D}(G) \setminus \{D\}$.

Let λ^* be a (k + 1)-coloring of G^* . Applying the process described in Case 1, we get a (k + 1)-coloring λ' of G'. Clearly $\lambda'(a_1) \neq \lambda'(a_2)$ and $\lambda'(x_1) \neq \lambda'(x_2)$. By Definition 1, a_1 and x_2 are non-adjacent, and similarly a_2 and x_1 are non-adjacent. Notice that λ' is not a coloring of G if and only if $\lambda'(a_1) = \lambda'(x_1)$ or $\lambda'(a_2) = \lambda'(x_2)$. But in that case, we can simply interchange the colors of a_1 and a_2 , and obtain a proper (k + 1)-coloring λ of G. Furthermore, λ^* can be transformed to λ in O(|E(D)|) time.

Case 3. |I(D')| = k and I(D') consists of pick vertices of some $D'' \in \mathcal{D}(G)$. Now D''is a (k, k)-diamond, because there exists a perfect matching between C(D') and P(D''). Thus s = k and $|E(D')| \leq |E(D'')|$ (because D' is a (k, i)-diamond where $i \leq k = s$). If Cases 1 or 2 are satisfied for D'', we set D = D'' and apply the constructions described in these cases for D and obtain G^* with required properties. Otherwise |I(D'')| = k and I(D'') consists of pick vertices of some $D''' \in \mathcal{D}(G)$. We consider two subcases: **Case 3.1.** D''' = D'. Then vertices of D' and D'' induce a component G' of G. In this case we take D := D' and $G^* := G - G'$. Notice that G^* is a (k, s)-dart graph, $|E(G^*)|+2|E(D')| = |E(G)|$ and $\mathcal{D}(G^*) = \mathcal{D}(G) \setminus \{D', D''\}$. Moreover, we can construct a (k+1)-coloring of G' in O(k) time: just color all vertices of P(D') and P(D'') by the color k+1, and assign colors $1, \ldots, k$ to the vertices of C(D') and C(D'').

Case 3.2. $D''' \neq D'$. In this case we take D := D'' and set G^* to be the graph we obtain by removing the vertices of D'' and inserting a perfect matching between C(D') and P(D'''). Then G^* is a (k, s)-dart graph, $|E(G^*)| + |E(D)| = |E(G)|$ and $\mathcal{D}(G^*) = \mathcal{D}(G) \setminus \{D\}$. Let λ^* be a (k + 1)-coloring of G^* . Then λ^* assigns the same color c to all vertices of P(D''). Assign c also to all vertices of P(D'') and to each of the vertices of C(D'') an unique color from $\{1, \ldots, k + 1\} \setminus \{c\}$. This gives a required coloring of G.

Clearly, we can check in O(k) time whether I(D') has cardinality k or satisfies the conditions required in Cases 1, 2, 3.1, and 3.2. Thus all reductions from G to G^* and transformations of k+1-colorings of G^* to k+1-colorings of G can be done in O(|E(D)|) time. This implies the statement. \Box

Notice that G^* from Lemma 4 also satisfy $|V(G^*)| \le |V(G)| - |V(D)|$. Now we are ready to prove the main result.

Theorem 1 Let G be a (k, s)-dart graph where $s \ge 2$ and $k \ge \max\{3, s\}$ are arbitrary but fixed integers. Then G is (k + 1)-colorable if and only if it has no component isomorphic to K_{k+2} . Furthermore, if G is (k + 1)-colorable, then a (k + 1)-coloring of G can be constructed in O(|E(G)|) time.

Proof. The necessity of the first part of the theorem is trivial. We prove sufficiency and the second part of the theorem. Let G be a (k, s)-dart graph. We can check in O(|E(G)|) (linear) time whether G is K_{k+2} -free. Analogously, we can find the set $\mathcal{D}(G)$ in linear time. Consequently, by means of Lemma 4 we can create in linear time a K_{k+2} free graph G' without vertices of degree more than k + 1 such that any (k + 1)-coloring of G' can be transformed into a (k + 1)-coloring of G in linear time. By [7] (see also [9, 6]), a (k + 1)-coloring of G' can be found in linear time. \Box

Notice that if v is a vertex of a (k, s)-dart graph G of degree at least k+2 and N(v) is the set of its incident vertices, then the graph induced by $N(v) \cup \{v\}$ is a (k, i)-diamond $(2 \le i \le s)$ with a possible pending edge. A similar property have central vertices of G of degree k + 1. Thus the problem to find $\mathcal{D}(G)$ in G is much easier then to find a maximal clique in a graph (a known NP-hard problem, see [3]). Also it is a trivial problem to determine in time O(|E(G)|) whether a graph G is a (k, s)-dart graph (where k is arbitrary but fixed integer $\le |V(G)|$).

5 NP-Completeness

In this section we show that Theorem 1 cannot be extended for (k, s)-dart graphs where $s > k \ge 2$ unless P = NP.

We need some more notation. Take *n* vertex disjoint copies of (k, k + 1)-diamonds $D_1, \ldots, D_n, k, n \ge 2$. For $i = 1, \ldots, n$, denote by $v_{i,1}, \ldots, v_{i,k}$ and $u_{i,1}, \ldots, u_{i,k+1}$ the central and pick vertices of D_i , respectively. Add nk new edges $v_{i,j}u_{i+1,j}$, $i = 1, \ldots, n$, $j = 1, \ldots, k$ (considering the sum $i + 1 \mod n$). Then the resulting graph is called a (n, k + 1)-bracelet and vertices $u_{1,k+1}, \ldots, u_{n,k+1}$ are called its *connectors*. An example of a (4, 3)-bracelet with connectors $u_{1,3}, \ldots, u_{4,3}$ is in Figure 2.

Figure 2: A (4, 3)-bracelet.

Lemma 5 Let G be a (n, k + 1)-bracelet, $n, k \ge 2$. Then in any (k + 1)-coloring of G, all connectors of G have the same color.

Proof. By the above construction, G is composed from n vertex disjoint copies of (k, k+1)-diamonds D_1, \ldots, D_n . Consider a (k+1)-coloring of G. For every $i \in \{1, \ldots, n\}$, the central vertices of D_i form a clique of order k, whence must be colored by k different colors, and thus all pick vertices of D_i have the same color. Furthermore, each central vertex of D_i is adjacent with a pick vertex of D_{i+1} . Therefore all vertices from $P(D_1) \cup \ldots \cup P(D_n)$ have the same color, thus also the connectors of G. \Box

We study complexity of the following problem.

(k, s)-**DART-**(k + 1)-**COL** Instance: A (k, s)-dart graph G. Question: Is G k + 1-colorable?

Theorem 2 The problem (k, s)-DART-(k + 1)-COL, $k \ge 2$, is

- (a) NP-complete for s > k,
- (b) solvable in linear time for $2 \le s \le k$.

Claim (b) holds true by Theorem 1 for $k \ge 3$ and by [6, Theorem 4.3] for k = 2. We prove (a). Let G be a graph. Replace each vertex v of G of degree ≥ 2 by a $(d_G(v), k + 1)$ -bracelet H_v . Let H_v be an isolated vertex if $d_G(v) = 1$. Each edge uv of G replace by an edge joining a connector of H_v with a connector of H_u so that each connector is attached to at most one new edge. Denote the resulting graph by G'. Clearly, G' is a (k, k + 1)-dart graph. From Lemma 5 it follows that by any (k + 1)coloring G', all connectors of H_v , $v \in V(G)$, must be colored by the same color. Hence G' is (k+1)-colorable if and only if G is so. Thus the problem whether a (k, k+1)-dart graph is k+1-colorable can be polynomially reduced to the problem of (k+1)-coloring. This problem is NP-complete for every fixed $k \ge 2$ by Garey and Johnson [3, GT4]. This proves claim (a). \Box

Acknowledgement. Authors thank unknown referees for helpful comments.

References

- R. L. Brooks, On coloring the nodes of a network, Proc. Cambridde Phil. Soc. 37 (1941) 194–197.
- [2] V. Bryant, A characterisation of some 2-connected graphs and a comment on an algorithmic proof of Brooks' theorem, Discrete Math. 158 (1996) 279–281.
- [3] M. R. Garey and D. S. Johnson, *Computers and Intractability*, W.H. Freeman, San Francisco, 1979.
- [4] M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph problems, Theor. Comput. Sci. 1 (1976), 237–267.
- [5] R. Diestel, *Graph Theory*, 3rd ed., Springer, Heidelberg, 2005.
- [6] M. Kochol, V. Lozin, and B. Randerath, The 3-colorability problem on graphs with maximum degree four, SIAM J. Comput. 32 (2003) 1128–1139.
- [7] L. Lovász, Three short proofs in graph theory, J. Combin. Theory Ser. B 19 (1975) 269–271.
- [8] B. Randerath and I. Schiermeyer, A note on Brooks theorem for triangle-free graphs, Australasian J. Combin. 26 (2002), 3–10.
- [9] S. Skulrattanakulchai, Δ-list vertex coloring in linear time, in Algorithm Theory – SWAT 2002, M. Penttonen and E. Meineche Schmidt, eds., Lecture Notes in Comput. Sci., Vol. 2368, Springer-Verlag, New York, 2003, 240–248.