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Abstract

The well-known Brooks’ Theorem says that each graph G of maximum degree
k ≥ 3 is k-colorable unless G = Kk+1. We generalize this theorem by allowing
higher degree vertices with prescribed types of neighborhood.

1 Introduction

A k-coloring of a graph is a mapping from the set of vertices to {1, . . . , k} such that any
two adjacent vertices have different colors. The decision problem whether a given graph
G has a k-coloring is a classical NP-complete problem for every fixed k ≥ 3 (see [3, 4]).

By Brooks’ Theorem [1], every graph with maximum vertex degree at most k ≥ 3
and without a component isomorphic to Kk+1 (a complete graph on k + 1 vertices)
has a k-coloring. Furthermore, as follows from [2, 6, 7, 8, 9], there exists a linear-time
algorithm that finds a k-coloring for such a graph.

Kochol, Lozin, and Randerath [6, Theorem 4.3] proved that if D is a class of graphs
in which the neighborhood of each 4-degree vertex induces a graph isomorphic to a
disjoint union of an isolated vertex and a path of length 2, then every graph from D
is either 3-colorable or has a component isomorphic to K4. Furthermore, there exists
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a linear-time algorithm that finds either a 3-coloring or a component isomorphic to K4

for each graph from D. This generalizes the Brooks’ Theorem for the case k = 3.
The aim of this paper is to generalize the Brooks’ Theorem and the result from

[6, Theorem 4.3]. We consider classes of graphs where each vertex of degree at least
k + 2 has a strictly prescribed neighborhood, so called “(k, s)-dart graphs”, defined in
the following section. Our main result, Theorem 1, is that if G is a (k, s)-dart graph,
k ≥ max{3, s}, and s ≥ 2, then G is (k +1)-colorable if and only if it has no component
isomorphic to Kk+2. Furthermore, if G is (k + 1)-colorable, then a (k + 1)-coloring of
G can be constructed in a linear time. We also show that if s > k ≥ 3, then it is
an NP-complete problem to decide whether a (k, s)-dart graph is (k + 1)-colorable (see
Theorem 2).

2 Definitions

In this paper we consider simple graphs, i.e., without multiple edges and loops. If G is
a graph, then V (G) and E(G) denote the vertex and the edge sets of G, respectively.

Let G be a graph and x, y two vertices of G. Then G + xy denotes the graph
constructed from G by adding an edge xy. Since we consider simple graphs, G+xy = G
if x, y are adjacent in G. For a vertex v of G, let dG(v) denote the degree of v in G.
Let H,G be two graphs such that no subgraph of G is isomorphic with H. Then we say
that G is a H-free graph.

A (k, s)-diamond is a join of a clique of size k ≥ 1 and an independent set of size
s ≥ 1. Notice that these graphs are edge-maximal split graphs. In a (k, s)-diamond D,
vertices that belong to the independent set are called pick vertices, and the remaining
(i.e. those in the k-clique) are called central vertices. Denote by C(D) and P (D) the sets
of central vertices and pick vertices of D, respectively. An example of a (4, 3)-diamond
D with C(D) = {c1, . . . , c4} and P (D) = {p1, p2, p3} is in Figure 1.

c3 c4

p1 p2

c2c1

p3

Figure 1: A (4, 3)-diamond.

Note that a (k, 1)-diamond is isomorphic to Kk+1; in this case the unique pick vertex
does not distinguish from the central vertices. This is irrelevant for us, because in this
paper we deal only with (k, i)-diamonds where i ≥ 2.

Definition 1 A graph G is a (k, s)-dart if each vertex of G of degree ≥ k+2 is a central
vertex of some (k, i)-diamond D as an induced subgraph of G with 2 ≤ i ≤ s, for which
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(a) dD(x) ≥ dG(x)− 1 for each x ∈ V (D);

(b) no two vertices of C(D) have a common neighbor in G−D.

The following remarks related to Definition 1 are straightforward:

(1) Inequality i ≥ 2 can be removed in Definition 1, because it follows from the fact
that D contains a vertex of degree ≥ k + 2.

(2) Every graph of maximum degree ≤ k+1 is a (k, 1)-dart graph since in Definition 1,
we only prescribe the structure on the neighborhood of vertices of higher degree.

(3) Every (k, s1)-dart graph is a (k, s2)-dart if s1 ≤ s2.

Notice that (2, 2)-diamonds and (2, 2)-dart graphs are called diamonds and dart
graphs, respectively, in [6]. By a generalized dart graph and generalized diamond we
mean any (k, s)-dart graphs and any (k, s)-diamond, k, s ≥ 2, respectively. In this
paper we usually omit the word generalized, if it is clear from the context which term
we have in mind.

In a (k, s)-dart graph G, every vertex of degree at least k + 2 belongs to an induced
(k, i)-diamond with 2 ≤ i ≤ s. Denote by D(G) the set of all induced maximal (k, i)-
diamonds of G with i ≥ 2.

We say that a vertex of a (k, s)-dart graph G is central, if it is a central vertex of a
(k, i)-diamond of D(G), i ≤ s. Similarly define a pick vertex of G. Denote the sets of
central vertices and pick vertices by C(G) and P (G), respectively.

Let G be a (k, s)-dart graph and D ∈ D(G). Then, each central vertex x ∈ C(D)
is adjacent to at most one vertex v′ from G − D. In this case, v′ is called an isolated
neighbor of v. The set of all isolated neighbors of the central vertices of D is denoted
by I(D). Notice that the possibility that I(D) = ∅ is not excluded.

We remark that the following observations for a (k, s)-dart graph G hold:

(4) A central vertex v of a (k, s)-dart graph G is not necessarily of degree at least
k + 2. This happens only if v is a central vertex of a (k, 2)-diamond D ∈ D(G)
and it has no neighbor in G−D. Then, v is of degree k + 1. The possibility that
all central vertices of D are of degree k + 1 is not excluded.

(5) If Kk+2 is a subgraph of a (k, s)-dart graph G, then it must be a component of G.
Thus a copy of Kk+2 in G is disjoint from diamonds of D(G).

(6) No two pick vertices of the same diamond from D(G) are adjacent.

3 Properties of dart graphs

The next lemma assures that diamonds in a dart graph are vertex disjoint.

Lemma 1 Let G be a (k, s)-dart graph with k ≥ 3. Then
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(a) V (D1) ∩ V (D2) = ∅, for every two distinct diamonds D1, D2 ∈ D(G).

(b) C(G) ∩ P (G) = ∅; in particular each pick vertex is of degree k or k + 1.

Proof. We prove (a). Suppose that v is a vertex of two distinct diamonds D1, D2 ∈
D(G).

Assume that v ∈ C(D1) ∩ C(D2). If C(D1) = C(D2), then by Definition 1(b) we
obtain that P (D1) = P (D2), whence D1 = D2. Thus C(D1) 6= C(D2).

Suppose first |C(D1)∩C(D2)| = 1, i.e., C(D1)∩C(D2) = {v}. Then by Definition 1,
either k− 2 or k− 1 vertices of C(D2) (resp. C(D1)) are pick vertices of D1 (resp. D2).
But then for k ≥ 4, we obtain also two adjacent pick vertices of D1 (resp. D2), a
contradiction to (6). So we may assume that k = 3, C(D1) = {u1, w1, v}, C(D2) =
{u2, w2, v}, and u1 (resp. u2) are pick vertices of D2 (resp. D1). By (6), w1 (resp. w2) is
not a pick vertex of D2 (resp. D1). Then w1 ∈ I(D2) (resp. w2 ∈ I(D1)) is a common
neighbor of v, u2 ∈ C(D2) (resp. v, u1 ∈ C(D1)), a contradiction with Definition 1(b).

Suppose now |C(D1) ∩ C(D2)| ≥ 2. Then each vertex u ∈ C(D1) \ C(D2) is a
neighbor of at least two vertices from C(D2), whence by Definition 1(b), u ∈ P (D2) and
thus C(D1) \ C(D2) ⊆ P (D2). Similarly C(D2) \ C(D1) ⊆ P (D1). Thus the subgraph
of G induced by C(D1) ∪ C(D2) is a clique, whence |C(D1) ∪ C(D2)| = k + 1, and so
|C(D1)∩C(D2)| = k−1. By assumption, D1 is a (k, s1)-diamond, s ≥ s1 ≥ 2. Thus there
exists x1 ∈ P (D1) \ C(D2). By (6), we infer that x1 ∈ I(D2), but then it is a common
neighbor of at least two vertices from C(D2), a contradiction with Definition 1(b).

By the above two paragraphs, we can assume that C(D1) ∩ C(D2) = ∅. If v ∈
V (D1)∩P (D2), then dD2(v)+1 < dG(v), a contradiction with Definition 1(a). Similarly
if v ∈ V (D2) ∩ P (D1). This proves (a). Claim (b) is an easy consequence of (a). ¤

In the next few lemmas, we study properties of a graph G′ obtained from G by
applying some local modifications.

Lemma 2 Let G be a Kk+2-free (k, s)-dart graph with k ≥ 3 and let D ∈ D(G). Sup-
pose that a1, a2 are two central vertices of D and let x1, x2 be their isolated neighbors,
respectively. Then the graph G′ = G − x1a1 − x2a2 + x1x2 is a Kk+2-free graph unless
there exists D′ ∈ D(G) such that x1, x2 are pick vertices of D′.

Proof. Suppose that G′ contains a copy H of Kk+2. Then, x1, x2 are vertices of H,
thus cannot be adjacent in G and there is a set S of k common neighbors of x1 and x2

in G, which induce a clique. Notice that |S| = k and dG(x1), dG(x2) ≥ k + 1.
Suppose that dG(x1) ≥ k + 2. Then, x1 is a central vertex of some diamond D′ ∈

D(G), whence by Definition 1(b), S ⊆ V (D′) and clearly, |S∩C(D′)| ≥ k−1 ≥ 2. Then
x2 has at least 2 neighbors in C(D′), whence x2 belongs to D′, and so it is adjacent to
x1 in G, a contradiction.

Thus, by previous paragraph, we may assume that d(x1) = k + 1, and analogously
d(x2) = k + 1. Then x1, x2 and S belong to a diamond D′ ∈ D(G) in which x1, x2 ∈
P (D′) and S = C(D′). ¤
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Lemma 3 Let G be a (k, s)-dart graph and let D ∈ D(G). Supose that a1, a2 are two
central vertices of D and let x1, x2 be their isolated neighbors, respectively. Then the
graph G′ = G − x1a1 − a2x2 + x1x2 is a (k, s)-dart graph unless one of the following
conditions occurs:

(7) there exists D′ ∈ D(G) such that x1, x2 are pick vertices of D′;

(8) there exists D′ ∈ D(G) and i ∈ {1, 2} such that xi ∈ C(D′) and x3−i is an isolated
neighbor of a central vertex from D′, which is distinct from xi.

Proof. Suppose that G′ is not a (k, s)-dart graph. Each vertex preserve its degree from
G except a1, a2, which belong to D. Notice that D is a diamond in G′ as well. If there
is some D′ ∈ D(G) that is not induced diamond of G′, then x1 and x2 must be pick
vertices of D′, which gives case (7).

Thus each diamond D′ ∈ D(G) is an induced diamond of G′. Clearly D′ satisfies
Definition 1(a) in G′. If D′ does not satisfy Definition 1(b) in G′, then there are two
central vertices u and v of D′ with a common neighbor w outside D′. Notice that x1x2

is one of the edges uw or vw. Then without loss of generality, we may assume that x1

is a central vertex in D′ and x2 is an isolated neighbor of a central vertex of D′ distinct
from x1, which gives case (8). ¤

Notice that in the exceptional case (7) of the above lemma, G′ may still be a dart
graph, when x1, x2 are pick vertices of a (k, 2)-diamond D′ with no isolated vertices.
Then, D′ becomes a copy of Kk+2 in G′.

4 An extension of Brooks theorem

For a diamond D ∈ D(G), a vertex of I(D) could be a central or pick vertex of another
diamond of D(G). Denote by Ic(D) and Ip(D) the subset of all such vertices of I(D),
respectively. By Lemma 1(b), sets Ic(D) and Ip(D) are disjoint. Finally, let Is(D) be
the vertices of I(D) that are neither in Ic(D), nor in Ip(D).

Lemma 4 Suppose that we have a Kk+2-free (k, s)-dart graph G, k ≥ max{3, s}, s ≥ 2,
together with the set D(G) 6= ∅. Then we can find D ∈ D(G) and construct a Kk+2-free
(k, s)-dart graph G∗ together with D(G∗) in O(|E(D)|) time such that

(a) |D(G∗)| < |D(G)|;
(b) |E(G∗)| ≤ |E(G)| − |E(D)|;
(c) From any (k + 1)-coloring λ of G∗ one can construct a (k + 1)-coloring of G in

O(|E(D)|) time.

Proof. Consider a (k, i)-diamond D′ ∈ D(G), 2 ≤ i ≤ s, and check three cases:

Case 1. |I(D′)| < k. Thus there exists v ∈ C(D′) having no isolated neighbor. In
this case we take D := D′ and G∗ := G − D′. Suppose that u′ is an arbitrary vertex
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of degree ≥ k + 2 in G∗. Then, it is also of degree ≥ k + 2 in G, and hence it belongs
to a (k, i)-diamond D′′ ∈ D(G) with 2 ≤ i ≤ s. Diamonds D and D′′ are disjoint, by
Lemma 1, and hence D′′ is an induced (k, s)-diamond in G∗. Furthermore, Lemma 1
assures that D(G) consists of D and D(G∗). Thus G∗ is a (k, s)-dart graph. Obviously,
G∗ is a Kk+2-free graph and |E(G∗)| ≤ |E(G)| − |E(D)|.

Let λ∗ be a (k + 1)-coloring of G∗. Since every pick vertex of D has at most one
neighbor outside D and since |P (D)| ≤ k, it follows that there exists a color c that we
can assign to all pick vertices of D. Denote by u1, . . . , uk−1 the vertices from C(D)\{v}
and take uk := v. For i = 1, . . . , k, take L(u) = {1, . . . , k + 1} \ {c, λ∗(xi)} if ui has an
isolated neighbor xi, otherwise take L(u) = {1, . . . , k+1}\{c}. Thus k ≥ |L(ui)| ≥ k−1
for i < k and |L(uk)| = k (because uk = v has no isolated neighbor). For i = 1, . . . , k we
assign ui a color from L(ui) and remove this color from all L(uj) where j > i. Clearly,
each L(ui) is nonempty after i− 1 steps, thus this process gives a coloring λ of G, and
can be done in O(|E(D)|) time.

Case 2. |I(D′)| = k and I(D′) does not consist of pick vertices of one diamond of
D(G). Suppose that each pair x1, x2 ∈ I(D′) satisfies either (7), or (8). This implies
immediately that |Ic(D

′)| ≤ 1 and |Is(D
′)| ≤ 1. Thus |Ip(D

′)| ≥ 1 (because k ≥
3). Each x1 ∈ Is(D

′) ∪ Ic(D
′) and x2 ∈ Ip(D

′) satisfy neither (7), nor (8), whence
Is(D

′) ∪ Ic(D
′) = ∅. Thus all vertices of I(D′) must be pick vertices of one diamond of

D(G). This contradicts the assumption of Case 2.
Thus there exist two distinct vertices x1, x2 ∈ I(D′) satisfying neither (7), nor (8).

To find them is an easy process. Take x1 ∈ Is(D
′)∪Ic(D

′) and x2 ∈ Ip(D
′) if possible. If

Ip(D
′) = ∅, then either |Is(D

′)| ≥ 2, or |Ic(D
′)| ≥ 2, and we can choose x1, x2 from one

of them. If Is(D
′)∪ Ic(D

′) = ∅, Ip(D
′) has at least two vertices from different diamonds

of D(G), and choose them.
After choosing x1, x2, take the graph G′ = G−x1a1−x2a2 +x1x2. By Lemmas 2 and

3, G′ is a Kk+2-free (k, s)-dart graph. Moreover, |E(G′)| < |E(G)| and D(G) = D(G′).
D′ ∈ D(G′) but the number of isolated vertices of D′ in G′ is smaller then k. Thus
we can apply the construction from Case 1 for G′ and D′, i.e., we take D := D′ and
G∗ := G′−D′. Analogously as in Case 1, G∗ is a Kk+2-free (k, s)-dart graph, |E(G∗)| ≤
|E(G)| − |E(D)| and D(G∗) = D(G) \ {D}.

Let λ∗ be a (k + 1)-coloring of G∗. Applying the process described in Case 1, we get
a (k +1)-coloring λ′ of G′. Clearly λ′(a1) 6= λ′(a2) and λ′(x1) 6= λ′(x2). By Definition 1,
a1 and x2 are non-adjacent, and similarly a2 and x1 are non-adjacent. Notice that λ′ is
not a coloring of G if and only if λ′(a1) = λ′(x1) or λ′(a2) = λ′(x2). But in that case,
we can simply interchange the colors of a1 and a2, and obtain a proper (k + 1)-coloring
λ of G. Furthermore, λ∗ can be transformed to λ in O(|E(D)|) time.

Case 3. |I(D′)| = k and I(D′) consists of pick vertices of some D′′ ∈ D(G). Now D′′

is a (k, k)-diamond, because there exists a perfect matching between C(D′) and P (D′′).
Thus s = k and |E(D′)| ≤ |E(D′′)| (because D′ is a (k, i)-diamond where i ≤ k = s). If
Cases 1 or 2 are satisfied for D′′, we set D = D′′ and apply the constructions described
in these cases for D and obtain G∗ with required properties. Otherwise |I(D′′)| = k and
I(D′′) consists of pick vertices of some D′′′ ∈ D(G). We consider two subcases:
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Case 3.1. D′′′ = D′. Then vertices of D′ and D′′ induce a component G′ of G. In
this case we take D := D′ and G∗ := G − G′. Notice that G∗ is a (k, s)-dart graph,
|E(G∗)|+2|E(D′)| = |E(G)| and D(G∗) = D(G)\{D′, D′′}. Moreover, we can construct
a (k + 1)-coloring of G′ in O(k) time: just color all vertices of P (D′) and P (D′′) by the
color k + 1, and assign colors 1, . . . , k to the vertices of C(D′) and C(D′′).

Case 3.2. D′′′ 6= D′. In this case we take D := D′′ and set G∗ to be the graph
we obtain by removing the vertices of D′′ and inserting a perfect matching between
C(D′) and P (D′′′). Then G∗ is a (k, s)-dart graph, |E(G∗)| + |E(D)| = |E(G)| and
D(G∗) = D(G) \ {D}. Let λ∗ be a (k + 1)-coloring of G∗. Then λ∗ assigns the same
color c to all vertices of P (D′′′). Assign c also to all vertices of P (D′′) and to each of
the vertices of C(D′′) an unique color from {1, . . . , k + 1} \ {c}. This gives a required
coloring of G.

Clearly, we can check in O(k) time whether I(D′) has cardinality k or satisfies the
conditions required in Cases 1, 2, 3.1, and 3.2. Thus all reductions from G to G∗ and
transformations of k+1-colorings of G∗ to k+1-colorings of G can be done in O(|E(D)|)
time. This implies the statement. ¤

Notice that G∗ from Lemma 4 also satisfy |V (G∗)| ≤ |V (G)| − |V (D)|.
Now we are ready to prove the main result.

Theorem 1 Let G be a (k, s)-dart graph where s ≥ 2 and k ≥ max{3, s} are arbitrary
but fixed integers. Then G is (k + 1)-colorable if and only if it has no component
isomorphic to Kk+2. Furthermore, if G is (k + 1)-colorable, then a (k + 1)-coloring
of G can be constructed in O(|E(G)|) time.

Proof. The necessity of the first part of the theorem is trivial. We prove sufficiency
and the second part of the theorem. Let G be a (k, s)-dart graph. We can check in
O(|E(G)|) (linear) time whether G is Kk+2-free. Analogously, we can find the set D(G)
in linear time. Consequently, by means of Lemma 4 we can create in linear time a Kk+2-
free graph G′ without vertices of degree more than k + 1 such that any (k + 1)-coloring
of G′ can be transformed into a (k + 1)-coloring of G in linear time. By [7] (see also
[9, 6]), a (k + 1)-coloring of G′ can be found in linear time. ¤

Notice that if v is a vertex of a (k, s)-dart graph G of degree at least k+2 and N(v) is
the set of its incident vertices, then the graph induced by N(v)∪{v} is a (k, i)-diamond
(2 ≤ i ≤ s) with a possible pending edge. A similar property have central vertices of
G of degree k + 1. Thus the problem to find D(G) in G is much easier then to find
a maximal clique in a graph (a known NP-hard problem, see [3]). Also it is a trivial
problem to determine in time O(|E(G)|) whether a graph G is a (k, s)-dart graph (where
k is arbitrary but fixed integer ≤ |V (G)|).

5 NP-Completeness

In this section we show that Theorem 1 cannot be extended for (k, s)-dart graphs where
s > k ≥ 2 unless P = NP.
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We need some more notation. Take n vertex disjoint copies of (k, k + 1)-diamonds
D1, . . . , Dn, k, n ≥ 2. For i = 1, . . . , n, denote by vi,1, . . . , vi,k and ui,1, . . . , ui,k+1 the
central and pick vertices of Di, respectively. Add nk new edges vi,jui+1,j, i = 1 . . . , n,
j = 1, . . . , k (considering the sum i + 1 mod n). Then the resulting graph is called a
(n, k + 1)-bracelet and vertices u1,k+1, . . . , un,k+1 are called its connectors. An example
of a (4, 3)-bracelet with connectors u1,3, . . . , u4,3 is in Figure 2.

u1,3 u2,3 u3,3 u4,3

Figure 2: A (4, 3)-bracelet.

Lemma 5 Let G be a (n, k + 1)-bracelet, n, k ≥ 2. Then in any (k + 1)-coloring of G,
all connectors of G have the same color.

Proof. By the above construction, G is composed from n vertex disjoint copies of (k, k+
1)-diamonds D1, . . . , Dn. Consider a (k +1)-coloring of G. For every i ∈ {1, . . . , n}, the
central vertices of Di form a clique of order k, whence must be colored by k different
colors, and thus all pick vertices of Di have the same color. Furthermore, each central
vertex of Di is adjacent with a pick vertex of Di+1. Therefore all vertices from P (D1)∪
. . . ∪ P (Dn) have the same color, thus also the connectors of G. ¤

We study complexity of the following problem.

(k, s)-DART-(k + 1)-COL
Instance: A (k, s)-dart graph G.
Question: Is G k + 1-colorable?

Theorem 2 The problem (k, s)-DART-(k + 1)-COL, k ≥ 2, is

(a) NP-complete for s > k,

(b) solvable in linear time for 2 ≤ s ≤ k.

Claim (b) holds true by Theorem 1 for k ≥ 3 and by [6, Theorem 4.3] for k = 2.
We prove (a). Let G be a graph. Replace each vertex v of G of degree ≥ 2 by

a (dG(v), k + 1)-bracelet Hv. Let Hv be an isolated vertex if dG(v) = 1. Each edge
uv of G replace by an edge joining a connector of Hv with a connector of Hu so that
each connector is attached to at most one new edge. Denote the resulting graph by G′.
Clearly, G′ is a (k, k + 1)-dart graph. From Lemma 5 it follows that by any (k + 1)-
coloring G′, all connectors of Hv, v ∈ V (G), must be colored by the same color. Hence
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G′ is (k +1)-colorable if and only if G is so. Thus the problem whether a (k, k +1)-dart
graph is k +1-colorable can be polynomially reduced to the problem of (k +1)-coloring.
This problem is NP-complete for every fixed k ≥ 2 by Garey and Johnson [3, GT4].
This proves claim (a). ¤
Acknowledgement. Authors thank unknown referees for helpful comments.

References

[1] R. L. Brooks, On coloring the nodes of a network, Proc. Cambrigde Phil. Soc. 37
(1941) 194–197.

[2] V. Bryant, A characterisation of some 2-connected graphs and a comment on an
algorithmic proof of Brooks’ theorem, Discrete Math. 158 (1996) 279–281.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability, W.H. Freeman, San
Francisco, 1979.

[4] M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph
problems, Theor. Comput. Sci. 1 (1976), 237–267.

[5] R. Diestel, Graph Theory, 3rd ed., Springer, Heidelberg, 2005.

[6] M. Kochol, V. Lozin, and B. Randerath, The 3-colorability problem on graphs with
maximum degree four, SIAM J. Comput. 32 (2003) 1128–1139.

[7] L. Lovász, Three short proofs in graph theory, J. Combin. Theory Ser. B 19 (1975)
269–271.

[8] B. Randerath and I. Schiermeyer, A note on Brooks theorem for triangle-free graphs,
Australasian J. Combin. 26 (2002), 3–10.

[9] S. Skulrattanakulchai, ∆-list vertex coloring in linear time, in Algorithm Theory
– SWAT 2002, M. Penttonen and E. Meineche Schmidt, eds., Lecture Notes in
Comput. Sci., Vol. 2368, Springer-Verlag, New York, 2003, 240–248.

9


