Brooks Theorem for Generalized Dart Graphs*

Martin Kochol ${ }^{\dagger}$
MÚ SAV, Štefánikova 49, 81473 Bratislava 1, Slovakia
martin.kochol@mat.savba.sk
Riste Škrekovski ${ }^{\ddagger}$
Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia
skrekovski@gmail.com

Abstract

The well-known Brooks' Theorem says that each graph G of maximum degree $k \geq 3$ is k-colorable unless $G=K_{k+1}$. We generalize this theorem by allowing higher degree vertices with prescribed types of neighborhood.

1 Introduction

A k-coloring of a graph is a mapping from the set of vertices to $\{1, \ldots, k\}$ such that any two adjacent vertices have different colors. The decision problem whether a given graph G has a k-coloring is a classical NP-complete problem for every fixed $k \geq 3$ (see [3, 4]).

By Brooks' Theorem [1], every graph with maximum vertex degree at most $k \geq 3$ and without a component isomorphic to K_{k+1} (a complete graph on $k+1$ vertices) has a k-coloring. Furthermore, as follows from [2, 6, 7, 8, 9], there exists a linear-time algorithm that finds a k-coloring for such a graph.

Kochol, Lozin, and Randerath [6, Theorem 4.3] proved that if \mathcal{D} is a class of graphs in which the neighborhood of each 4-degree vertex induces a graph isomorphic to a disjoint union of an isolated vertex and a path of length 2 , then every graph from \mathcal{D} is either 3 -colorable or has a component isomorphic to K_{4}. Furthermore, there exists

[^0]a linear-time algorithm that finds either a 3 -coloring or a component isomorphic to K_{4} for each graph from \mathcal{D}. This generalizes the Brooks' Theorem for the case $k=3$.

The aim of this paper is to generalize the Brooks' Theorem and the result from [6, Theorem 4.3]. We consider classes of graphs where each vertex of degree at least $k+2$ has a strictly prescribed neighborhood, so called " (k, s)-dart graphs", defined in the following section. Our main result, Theorem 1, is that if G is a (k, s)-dart graph, $k \geq \max \{3, s\}$, and $s \geq 2$, then G is $(k+1)$-colorable if and only if it has no component isomorphic to K_{k+2}. Furthermore, if G is $(k+1)$-colorable, then a $(k+1)$-coloring of G can be constructed in a linear time. We also show that if $s>k \geq 3$, then it is an NP-complete problem to decide whether a (k, s)-dart graph is $(k+1)$-colorable (see Theorem 2).

2 Definitions

In this paper we consider simple graphs, i.e., without multiple edges and loops. If G is a graph, then $V(G)$ and $E(G)$ denote the vertex and the edge sets of G, respectively.

Let G be a graph and x, y two vertices of G. Then $G+x y$ denotes the graph constructed from G by adding an edge $x y$. Since we consider simple graphs, $G+x y=G$ if x, y are adjacent in G. For a vertex v of G, let $d_{G}(v)$ denote the degree of v in G. Let H, G be two graphs such that no subgraph of G is isomorphic with H. Then we say that G is a H-free graph.

A (k, s)-diamond is a join of a clique of size $k \geq 1$ and an independent set of size $s \geq 1$. Notice that these graphs are edge-maximal split graphs. In a (k, s)-diamond D, vertices that belong to the independent set are called pick vertices, and the remaining (i.e. those in the k-clique) are called central vertices. Denote by $C(D)$ and $P(D)$ the sets of central vertices and pick vertices of D, respectively. An example of a (4,3)-diamond D with $C(D)=\left\{c_{1}, \ldots, c_{4}\right\}$ and $P(D)=\left\{p_{1}, p_{2}, p_{3}\right\}$ is in Figure 1.

Figure 1: A (4, 3)-diamond.
Note that a $(k, 1)$-diamond is isomorphic to K_{k+1}; in this case the unique pick vertex does not distinguish from the central vertices. This is irrelevant for us, because in this paper we deal only with (k, i)-diamonds where $i \geq 2$.

Definition $1 A$ graph G is a (k, s)-dart if each vertex of G of degree $\geq k+2$ is a central vertex of some (k, i)-diamond D as an induced subgraph of G with $2 \leq i \leq s$, for which
(a) $d_{D}(x) \geq d_{G}(x)-1$ for each $x \in V(D)$;
(b) no two vertices of $C(D)$ have a common neighbor in $G-D$.

The following remarks related to Definition 1 are straightforward:
(1) Inequality $i \geq 2$ can be removed in Definition 1, because it follows from the fact that D contains a vertex of degree $\geq k+2$.
(2) Every graph of maximum degree $\leq k+1$ is a $(k, 1)$-dart graph since in Definition 1 , we only prescribe the structure on the neighborhood of vertices of higher degree.
(3) Every $\left(k, s_{1}\right)$-dart graph is a $\left(k, s_{2}\right)$-dart if $s_{1} \leq s_{2}$.

Notice that (2,2)-diamonds and (2,2)-dart graphs are called diamonds and dart graphs, respectively, in [6]. By a generalized dart graph and generalized diamond we mean any (k, s)-dart graphs and any (k, s)-diamond, $k, s \geq 2$, respectively. In this paper we usually omit the word generalized, if it is clear from the context which term we have in mind.

In a (k, s)-dart graph G, every vertex of degree at least $k+2$ belongs to an induced (k, i)-diamond with $2 \leq i \leq s$. Denote by $\mathcal{D}(G)$ the set of all induced maximal (k, i) diamonds of G with $i \geq 2$.

We say that a vertex of a (k, s)-dart graph G is central, if it is a central vertex of a (k, i)-diamond of $\mathcal{D}(G), i \leq s$. Similarly define a pick vertex of G. Denote the sets of central vertices and pick vertices by $C(G)$ and $P(G)$, respectively.

Let G be a (k, s)-dart graph and $D \in \mathcal{D}(G)$. Then, each central vertex $x \in C(D)$ is adjacent to at most one vertex v^{\prime} from $G-D$. In this case, v^{\prime} is called an isolated neighbor of v. The set of all isolated neighbors of the central vertices of D is denoted by $I(D)$. Notice that the possibility that $I(D)=\emptyset$ is not excluded.

We remark that the following observations for a (k, s)-dart graph G hold:
(4) A central vertex v of a (k, s)-dart graph G is not necessarily of degree at least $k+2$. This happens only if v is a central vertex of a $(k, 2)$-diamond $D \in \mathcal{D}(G)$ and it has no neighbor in $G-D$. Then, v is of degree $k+1$. The possibility that all central vertices of D are of degree $k+1$ is not excluded.
(5) If K_{k+2} is a subgraph of a (k, s)-dart graph G, then it must be a component of G. Thus a copy of K_{k+2} in G is disjoint from diamonds of $\mathcal{D}(G)$.
(6) No two pick vertices of the same diamond from $\mathcal{D}(G)$ are adjacent.

3 Properties of dart graphs

The next lemma assures that diamonds in a dart graph are vertex disjoint.
Lemma 1 Let G be a (k, s)-dart graph with $k \geq 3$. Then
(a) $V\left(D_{1}\right) \cap V\left(D_{2}\right)=\emptyset$, for every two distinct diamonds $D_{1}, D_{2} \in \mathcal{D}(G)$.
(b) $C(G) \cap P(G)=\emptyset$; in particular each pick vertex is of degree k or $k+1$.

Proof. We prove (a). Suppose that v is a vertex of two distinct diamonds $D_{1}, D_{2} \in$ $\mathcal{D}(G)$.

Assume that $v \in C\left(D_{1}\right) \cap C\left(D_{2}\right)$. If $C\left(D_{1}\right)=C\left(D_{2}\right)$, then by Definition 1(b) we obtain that $P\left(D_{1}\right)=P\left(D_{2}\right)$, whence $D_{1}=D_{2}$. Thus $C\left(D_{1}\right) \neq C\left(D_{2}\right)$.

Suppose first $\left|C\left(D_{1}\right) \cap C\left(D_{2}\right)\right|=1$, i.e., $C\left(D_{1}\right) \cap C\left(D_{2}\right)=\{v\}$. Then by Definition 1, either $k-2$ or $k-1$ vertices of $C\left(D_{2}\right)$ (resp. $C\left(D_{1}\right)$) are pick vertices of D_{1} (resp. D_{2}). But then for $k \geq 4$, we obtain also two adjacent pick vertices of D_{1} (resp. D_{2}), a contradiction to (6). So we may assume that $k=3, C\left(D_{1}\right)=\left\{u_{1}, w_{1}, v\right\}, C\left(D_{2}\right)=$ $\left\{u_{2}, w_{2}, v\right\}$, and $u_{1}\left(\right.$ resp. $\left.u_{2}\right)$ are pick vertices of D_{2} (resp. D_{1}). By (6), w_{1} (resp. w_{2}) is not a pick vertex of $D_{2}\left(\right.$ resp. $\left.D_{1}\right)$. Then $w_{1} \in I\left(D_{2}\right)$ (resp. $w_{2} \in I\left(D_{1}\right)$) is a common neighbor of $v, u_{2} \in C\left(D_{2}\right)$ (resp. $v, u_{1} \in C\left(D_{1}\right)$), a contradiction with Definition 1(b).

Suppose now $\left|C\left(D_{1}\right) \cap C\left(D_{2}\right)\right| \geq 2$. Then each vertex $u \in C\left(D_{1}\right) \backslash C\left(D_{2}\right)$ is a neighbor of at least two vertices from $C\left(D_{2}\right)$, whence by Definition $1(\mathrm{~b}), u \in P\left(D_{2}\right)$ and thus $C\left(D_{1}\right) \backslash C\left(D_{2}\right) \subseteq P\left(D_{2}\right)$. Similarly $C\left(D_{2}\right) \backslash C\left(D_{1}\right) \subseteq P\left(D_{1}\right)$. Thus the subgraph of G induced by $C\left(D_{1}\right) \cup C\left(D_{2}\right)$ is a clique, whence $\left|C\left(D_{1}\right) \cup C\left(D_{2}\right)\right|=k+1$, and so $\left|C\left(D_{1}\right) \cap C\left(D_{2}\right)\right|=k-1$. By assumption, D_{1} is a $\left(k, s_{1}\right)$-diamond, $s \geq s_{1} \geq 2$. Thus there exists $x_{1} \in P\left(D_{1}\right) \backslash C\left(D_{2}\right)$. By (6), we infer that $x_{1} \in I\left(D_{2}\right)$, but then it is a common neighbor of at least two vertices from $C\left(D_{2}\right)$, a contradiction with Definition 1(b).

By the above two paragraphs, we can assume that $C\left(D_{1}\right) \cap C\left(D_{2}\right)=\emptyset$. If $v \in$ $V\left(D_{1}\right) \cap P\left(D_{2}\right)$, then $d_{D_{2}}(v)+1<d_{G}(v)$, a contradiction with Definition 1(a). Similarly if $v \in V\left(D_{2}\right) \cap P\left(D_{1}\right)$. This proves (a). Claim (b) is an easy consequence of (a).

In the next few lemmas, we study properties of a graph G^{\prime} obtained from G by applying some local modifications.

Lemma 2 Let G be a K_{k+2}-free (k, s)-dart graph with $k \geq 3$ and let $D \in \mathcal{D}(G)$. Suppose that a_{1}, a_{2} are two central vertices of D and let x_{1}, x_{2} be their isolated neighbors, respectively. Then the graph $G^{\prime}=G-x_{1} a_{1}-x_{2} a_{2}+x_{1} x_{2}$ is a K_{k+2}-free graph unless there exists $D^{\prime} \in \mathcal{D}(G)$ such that x_{1}, x_{2} are pick vertices of D^{\prime}.

Proof. Suppose that G^{\prime} contains a copy H of K_{k+2}. Then, x_{1}, x_{2} are vertices of H, thus cannot be adjacent in G and there is a set S of k common neighbors of x_{1} and x_{2} in G, which induce a clique. Notice that $|S|=k$ and $d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right) \geq k+1$.

Suppose that $d_{G}\left(x_{1}\right) \geq k+2$. Then, x_{1} is a central vertex of some diamond $D^{\prime} \in$ $\mathcal{D}(G)$, whence by Definition $1(\mathrm{~b}), S \subseteq V\left(D^{\prime}\right)$ and clearly, $\left|S \cap C\left(D^{\prime}\right)\right| \geq k-1 \geq 2$. Then x_{2} has at least 2 neighbors in $C\left(D^{\prime}\right)$, whence x_{2} belongs to D^{\prime}, and so it is adjacent to x_{1} in G, a contradiction.

Thus, by previous paragraph, we may assume that $d\left(x_{1}\right)=k+1$, and analogously $d\left(x_{2}\right)=k+1$. Then x_{1}, x_{2} and S belong to a diamond $D^{\prime} \in \mathcal{D}(G)$ in which $x_{1}, x_{2} \in$ $P\left(D^{\prime}\right)$ and $S=C\left(D^{\prime}\right)$.

Lemma 3 Let G be a (k, s)-dart graph and let $D \in \mathcal{D}(G)$. Supose that a_{1}, a_{2} are two central vertices of D and let x_{1}, x_{2} be their isolated neighbors, respectively. Then the graph $G^{\prime}=G-x_{1} a_{1}-a_{2} x_{2}+x_{1} x_{2}$ is a (k, s)-dart graph unless one of the following conditions occurs:
(7) there exists $D^{\prime} \in \mathcal{D}(G)$ such that x_{1}, x_{2} are pick vertices of D^{\prime};
(8) there exists $D^{\prime} \in \mathcal{D}(G)$ and $i \in\{1,2\}$ such that $x_{i} \in C\left(D^{\prime}\right)$ and x_{3-i} is an isolated neighbor of a central vertex from D^{\prime}, which is distinct from x_{i}.

Proof. Suppose that G^{\prime} is not a (k, s)-dart graph. Each vertex preserve its degree from G except a_{1}, a_{2}, which belong to D. Notice that D is a diamond in G^{\prime} as well. If there is some $D^{\prime} \in \mathcal{D}(G)$ that is not induced diamond of G^{\prime}, then x_{1} and x_{2} must be pick vertices of D^{\prime}, which gives case (7).

Thus each diamond $D^{\prime} \in \mathcal{D}(G)$ is an induced diamond of G^{\prime}. Clearly D^{\prime} satisfies Definition $1(\mathrm{a})$ in G^{\prime}. If D^{\prime} does not satisfy Definition $1(\mathrm{~b})$ in G^{\prime}, then there are two central vertices u and v of D^{\prime} with a common neighbor w outside D^{\prime}. Notice that $x_{1} x_{2}$ is one of the edges $u w$ or $v w$. Then without loss of generality, we may assume that x_{1} is a central vertex in D^{\prime} and x_{2} is an isolated neighbor of a central vertex of D^{\prime} distinct from x_{1}, which gives case (8).

Notice that in the exceptional case (7) of the above lemma, G^{\prime} may still be a dart graph, when x_{1}, x_{2} are pick vertices of a $(k, 2)$-diamond D^{\prime} with no isolated vertices. Then, D^{\prime} becomes a copy of K_{k+2} in G^{\prime}.

4 An extension of Brooks theorem

For a diamond $D \in \mathcal{D}(G)$, a vertex of $I(D)$ could be a central or pick vertex of another diamond of $\mathcal{D}(G)$. Denote by $I_{c}(D)$ and $I_{p}(D)$ the subset of all such vertices of $I(D)$, respectively. By Lemma $1(\mathrm{~b})$, sets $I_{c}(D)$ and $I_{p}(D)$ are disjoint. Finally, let $I_{s}(D)$ be the vertices of $I(D)$ that are neither in $I_{c}(D)$, nor in $I_{p}(D)$.

Lemma 4 Suppose that we have a K_{k+2}-free (k, s)-dart graph $G, k \geq \max \{3, s\}, s \geq 2$, together with the set $\mathcal{D}(G) \neq \emptyset$. Then we can find $D \in \mathcal{D}(G)$ and construct a K_{k+2}-free (k, s)-dart graph G^{*} together with $\mathcal{D}\left(G^{*}\right)$ in $O(|E(D)|)$ time such that
(a) $\left|\mathcal{D}\left(G^{*}\right)\right|<|\mathcal{D}(G)|$;
(b) $\left|E\left(G^{*}\right)\right| \leq|E(G)|-|E(D)|$;
(c) From any $(k+1)$-coloring λ of G^{*} one can construct a $(k+1)$-coloring of G in $O(|E(D)|)$ time.

Proof. Consider a (k, i)-diamond $D^{\prime} \in \mathcal{D}(G), 2 \leq i \leq s$, and check three cases:
Case 1. $\left|I\left(D^{\prime}\right)\right|<k$. Thus there exists $v \in C\left(D^{\prime}\right)$ having no isolated neighbor. In this case we take $D:=D^{\prime}$ and $G^{*}:=G-D^{\prime}$. Suppose that u^{\prime} is an arbitrary vertex
of degree $\geq k+2$ in G^{*}. Then, it is also of degree $\geq k+2$ in G, and hence it belongs to a (k, i)-diamond $D^{\prime \prime} \in \mathcal{D}(G)$ with $2 \leq i \leq s$. Diamonds D and $D^{\prime \prime}$ are disjoint, by Lemma 1, and hence $D^{\prime \prime}$ is an induced (k, s)-diamond in G^{*}. Furthermore, Lemma 1 assures that $\mathcal{D}(G)$ consists of D and $\mathcal{D}\left(G^{*}\right)$. Thus G^{*} is a ($\left.k, s\right)$-dart graph. Obviously, G^{*} is a K_{k+2}-free graph and $\left|E\left(G^{*}\right)\right| \leq|E(G)|-|E(D)|$.

Let λ^{*} be a $(k+1)$-coloring of G^{*}. Since every pick vertex of D has at most one neighbor outside D and since $|P(D)| \leq k$, it follows that there exists a color c that we can assign to all pick vertices of D. Denote by u_{1}, \ldots, u_{k-1} the vertices from $C(D) \backslash\{v\}$ and take $u_{k}:=v$. For $i=1, \ldots, k$, take $L(u)=\{1, \ldots, k+1\} \backslash\left\{c, \lambda^{*}\left(x_{i}\right)\right\}$ if u_{i} has an isolated neighbor x_{i}, otherwise take $L(u)=\{1, \ldots, k+1\} \backslash\{c\}$. Thus $k \geq\left|L\left(u_{i}\right)\right| \geq k-1$ for $i<k$ and $\left|L\left(u_{k}\right)\right|=k$ (because $u_{k}=v$ has no isolated neighbor). For $i=1, \ldots, k$ we assign u_{i} a color from $L\left(u_{i}\right)$ and remove this color from all $L\left(u_{j}\right)$ where $j>i$. Clearly, each $L\left(u_{i}\right)$ is nonempty after $i-1$ steps, thus this process gives a coloring λ of G, and can be done in $O(|E(D)|)$ time.
Case 2. $\left|I\left(D^{\prime}\right)\right|=k$ and $I\left(D^{\prime}\right)$ does not consist of pick vertices of one diamond of $\mathcal{D}(G)$. Suppose that each pair $x_{1}, x_{2} \in I\left(D^{\prime}\right)$ satisfies either (7), or (8). This implies immediately that $\left|I_{c}\left(D^{\prime}\right)\right| \leq 1$ and $\left|I_{s}\left(D^{\prime}\right)\right| \leq 1$. Thus $\left|I_{p}\left(D^{\prime}\right)\right| \geq 1$ (because $k \geq$ 3). Each $x_{1} \in I_{s}\left(D^{\prime}\right) \cup I_{c}\left(D^{\prime}\right)$ and $x_{2} \in I_{p}\left(D^{\prime}\right)$ satisfy neither (7), nor (8), whence $I_{s}\left(D^{\prime}\right) \cup I_{c}\left(D^{\prime}\right)=\emptyset$. Thus all vertices of $I\left(D^{\prime}\right)$ must be pick vertices of one diamond of $\mathcal{D}(G)$. This contradicts the assumption of Case 2 .

Thus there exist two distinct vertices $x_{1}, x_{2} \in I\left(D^{\prime}\right)$ satisfying neither (7), nor (8). To find them is an easy process. Take $x_{1} \in I_{s}\left(D^{\prime}\right) \cup I_{c}\left(D^{\prime}\right)$ and $x_{2} \in I_{p}\left(D^{\prime}\right)$ if possible. If $I_{p}\left(D^{\prime}\right)=\emptyset$, then either $\left|I_{s}\left(D^{\prime}\right)\right| \geq 2$, or $\left|I_{c}\left(D^{\prime}\right)\right| \geq 2$, and we can choose x_{1}, x_{2} from one of them. If $I_{s}\left(D^{\prime}\right) \cup I_{c}\left(D^{\prime}\right)=\emptyset, I_{p}\left(D^{\prime}\right)$ has at least two vertices from different diamonds of $\mathcal{D}(G)$, and choose them.

After choosing x_{1}, x_{2}, take the graph $G^{\prime}=G-x_{1} a_{1}-x_{2} a_{2}+x_{1} x_{2}$. By Lemmas 2 and $3, G^{\prime}$ is a K_{k+2}-free (k, s)-dart graph. Moreover, $\left|E\left(G^{\prime}\right)\right|<|E(G)|$ and $\mathcal{D}(G)=\mathcal{D}\left(G^{\prime}\right)$. $D^{\prime} \in \mathcal{D}\left(G^{\prime}\right)$ but the number of isolated vertices of D^{\prime} in G^{\prime} is smaller then k. Thus we can apply the construction from Case 1 for G^{\prime} and D^{\prime}, i.e., we take $D:=D^{\prime}$ and $G^{*}:=G^{\prime}-D^{\prime}$. Analogously as in Case $1, G^{*}$ is a K_{k+2}-free (k, s)-dart graph, $\left|E\left(G^{*}\right)\right| \leq$ $|E(G)|-|E(D)|$ and $\mathcal{D}\left(G^{*}\right)=\mathcal{D}(G) \backslash\{D\}$.

Let λ^{*} be a $(k+1)$-coloring of G^{*}. Applying the process described in Case 1, we get a $(k+1)$-coloring λ^{\prime} of G^{\prime}. Clearly $\lambda^{\prime}\left(a_{1}\right) \neq \lambda^{\prime}\left(a_{2}\right)$ and $\lambda^{\prime}\left(x_{1}\right) \neq \lambda^{\prime}\left(x_{2}\right)$. By Definition 1 , a_{1} and x_{2} are non-adjacent, and similarly a_{2} and x_{1} are non-adjacent. Notice that λ^{\prime} is not a coloring of G if and only if $\lambda^{\prime}\left(a_{1}\right)=\lambda^{\prime}\left(x_{1}\right)$ or $\lambda^{\prime}\left(a_{2}\right)=\lambda^{\prime}\left(x_{2}\right)$. But in that case, we can simply interchange the colors of a_{1} and a_{2}, and obtain a proper $(k+1)$-coloring λ of G. Furthermore, λ^{*} can be transformed to λ in $O(|E(D)|)$ time.
Case 3. $\left|I\left(D^{\prime}\right)\right|=k$ and $I\left(D^{\prime}\right)$ consists of pick vertices of some $D^{\prime \prime} \in \mathcal{D}(G)$. Now $D^{\prime \prime}$ is a (k, k)-diamond, because there exists a perfect matching between $C\left(D^{\prime}\right)$ and $P\left(D^{\prime \prime}\right)$. Thus $s=k$ and $\left|E\left(D^{\prime}\right)\right| \leq\left|E\left(D^{\prime \prime}\right)\right|$ (because D^{\prime} is a (k, i)-diamond where $\left.i \leq k=s\right)$. If Cases 1 or 2 are satisfied for $D^{\prime \prime}$, we set $D=D^{\prime \prime}$ and apply the constructions described in these cases for D and obtain G^{*} with required properties. Otherwise $\left|I\left(D^{\prime \prime}\right)\right|=k$ and $I\left(D^{\prime \prime}\right)$ consists of pick vertices of some $D^{\prime \prime \prime} \in \mathcal{D}(G)$. We consider two subcases:

Case 3.1. $D^{\prime \prime \prime}=D^{\prime}$. Then vertices of D^{\prime} and $D^{\prime \prime}$ induce a component G^{\prime} of G. In this case we take $D:=D^{\prime}$ and $G^{*}:=G-G^{\prime}$. Notice that G^{*} is a (k, s)-dart graph, $\left|E\left(G^{*}\right)\right|+2\left|E\left(D^{\prime}\right)\right|=|E(G)|$ and $\mathcal{D}\left(G^{*}\right)=\mathcal{D}(G) \backslash\left\{D^{\prime}, D^{\prime \prime}\right\}$. Moreover, we can construct a $(k+1)$-coloring of G^{\prime} in $O(k)$ time: just color all vertices of $P\left(D^{\prime}\right)$ and $P\left(D^{\prime \prime}\right)$ by the color $k+1$, and assign colors $1, \ldots, k$ to the vertices of $C\left(D^{\prime}\right)$ and $C\left(D^{\prime \prime}\right)$.
Case 3.2. $D^{\prime \prime \prime} \neq D^{\prime}$. In this case we take $D:=D^{\prime \prime}$ and set G^{*} to be the graph we obtain by removing the vertices of $D^{\prime \prime}$ and inserting a perfect matching between $C\left(D^{\prime}\right)$ and $P\left(D^{\prime \prime \prime}\right)$. Then G^{*} is a (k, s)-dart graph, $\left|E\left(G^{*}\right)\right|+|E(D)|=|E(G)|$ and $\mathcal{D}\left(G^{*}\right)=\mathcal{D}(G) \backslash\{D\}$. Let λ^{*} be a $(k+1)$-coloring of G^{*}. Then λ^{*} assigns the same color c to all vertices of $P\left(D^{\prime \prime \prime}\right)$. Assign c also to all vertices of $P\left(D^{\prime \prime}\right)$ and to each of the vertices of $C\left(D^{\prime \prime}\right)$ an unique color from $\{1, \ldots, k+1\} \backslash\{c\}$. This gives a required coloring of G.

Clearly, we can check in $O(k)$ time whether $I\left(D^{\prime}\right)$ has cardinality k or satisfies the conditions required in Cases $1,2,3.1$, and 3.2. Thus all reductions from G to G^{*} and transformations of $k+1$-colorings of G^{*} to $k+1$-colorings of G can be done in $O(|E(D)|)$ time. This implies the statement.

Notice that G^{*} from Lemma 4 also satisfy $\left|V\left(G^{*}\right)\right| \leq|V(G)|-|V(D)|$.
Now we are ready to prove the main result.
Theorem 1 Let G be a (k, s)-dart graph where $s \geq 2$ and $k \geq \max \{3, s\}$ are arbitrary but fixed integers. Then G is $(k+1)$-colorable if and only if it has no component isomorphic to K_{k+2}. Furthermore, if G is $(k+1)$-colorable, then a $(k+1)$-coloring of G can be constructed in $O(|E(G)|)$ time.

Proof. The necessity of the first part of the theorem is trivial. We prove sufficiency and the second part of the theorem. Let G be a (k, s)-dart graph. We can check in $O(|E(G)|)$ (linear) time whether G is K_{k+2}-free. Analogously, we can find the set $\mathcal{D}(G)$ in linear time. Consequently, by means of Lemma 4 we can create in linear time a $K_{k+2^{-}}$ free graph G^{\prime} without vertices of degree more than $k+1$ such that any $(k+1)$-coloring of G^{\prime} can be transformed into a $(k+1)$-coloring of G in linear time. By [7] (see also $[9,6])$, a $(k+1)$-coloring of G^{\prime} can be found in linear time. \square

Notice that if v is a vertex of a (k, s)-dart graph G of degree at least $k+2$ and $N(v)$ is the set of its incident vertices, then the graph induced by $N(v) \cup\{v\}$ is a (k, i)-diamond ($2 \leq i \leq s$) with a possible pending edge. A similar property have central vertices of G of degree $k+1$. Thus the problem to find $\mathcal{D}(G)$ in G is much easier then to find a maximal clique in a graph (a known NP-hard problem, see [3]). Also it is a trivial problem to determine in time $O(|E(G)|)$ whether a graph G is a (k, s)-dart graph (where k is arbitrary but fixed integer $\leq|V(G)|)$.

5 NP-Completeness

In this section we show that Theorem 1 cannot be extended for (k, s)-dart graphs where $s>k \geq 2$ unless $\mathrm{P}=\mathrm{NP}$.

We need some more notation. Take n vertex disjoint copies of ($k, k+1$)-diamonds $D_{1}, \ldots, D_{n}, k, n \geq 2$. For $i=1, \ldots, n$, denote by $v_{i, 1}, \ldots, v_{i, k}$ and $u_{i, 1}, \ldots, u_{i, k+1}$ the central and pick vertices of D_{i}, respectively. Add $n k$ new edges $v_{i, j} u_{i+1, j}, i=1 \ldots, n$, $j=1, \ldots, k$ (considering the sum $i+1 \bmod n$). Then the resulting graph is called a ($n, k+1$)-bracelet and vertices $u_{1, k+1}, \ldots, u_{n, k+1}$ are called its connectors. An example of a (4,3)-bracelet with connectors $u_{1,3}, \ldots, u_{4,3}$ is in Figure 2.

Figure 2: A (4, 3)-bracelet.

Lemma 5 Let G be a $(n, k+1)$-bracelet, $n, k \geq 2$. Then in any $(k+1)$-coloring of G, all connectors of G have the same color.

Proof. By the above construction, G is composed from n vertex disjoint copies of ($k, k+$ 1)-diamonds D_{1}, \ldots, D_{n}. Consider a $(k+1)$-coloring of G. For every $i \in\{1, \ldots, n\}$, the central vertices of D_{i} form a clique of order k, whence must be colored by k different colors, and thus all pick vertices of D_{i} have the same color. Furthermore, each central vertex of D_{i} is adjacent with a pick vertex of D_{i+1}. Therefore all vertices from $P\left(D_{1}\right) \cup$ $\ldots \cup P\left(D_{n}\right)$ have the same color, thus also the connectors of G.

We study complexity of the following problem.
(k, s)-DART- $(k+1)$-COL
Instance: A (k, s)-dart graph G.
Question: Is $G k+1$-colorable?
Theorem 2 The problem (k, s)-DART-($k+1$)-COL, $k \geq 2$, is
(a) NP-complete for $s>k$,
(b) solvable in linear time for $2 \leq s \leq k$.

Claim (b) holds true by Theorem 1 for $k \geq 3$ and by [6, Theorem 4.3] for $k=2$.
We prove (a). Let G be a graph. Replace each vertex v of G of degree ≥ 2 by a $\left(d_{G}(v), k+1\right)$-bracelet H_{v}. Let H_{v} be an isolated vertex if $d_{G}(v)=1$. Each edge $u v$ of G replace by an edge joining a connector of H_{v} with a connector of H_{u} so that each connector is attached to at most one new edge. Denote the resulting graph by G^{\prime}. Clearly, G^{\prime} is a $(k, k+1)$-dart graph. From Lemma 5 it follows that by any $(k+1)$ coloring G^{\prime}, all connectors of $H_{v}, v \in V(G)$, must be colored by the same color. Hence
G^{\prime} is $(k+1)$-colorable if and only if G is so. Thus the problem whether a $(k, k+1)$-dart graph is $k+1$-colorable can be polynomially reduced to the problem of $(k+1)$-coloring. This problem is NP-complete for every fixed $k \geq 2$ by Garey and Johnson [3, GT4]. This proves claim (a).

Acknowledgement. Authors thank unknown referees for helpful comments.

References

[1] R. L. Brooks, On coloring the nodes of a network, Proc. Cambrigde Phil. Soc. 37 (1941) 194-197.
[2] V. Bryant, A characterisation of some 2-connected graphs and a comment on an algorithmic proof of Brooks' theorem, Discrete Math. 158 (1996) 279-281.
[3] M. R. Garey and D. S. Johnson, Computers and Intractability, W.H. Freeman, San Francisco, 1979.
[4] M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph problems, Theor. Comput. Sci. 1 (1976), 237-267.
[5] R. Diestel, Graph Theory, 3rd ed., Springer, Heidelberg, 2005.
[6] M. Kochol, V. Lozin, and B. Randerath, The 3-colorability problem on graphs with maximum degree four, SIAM J. Comput. 32 (2003) 1128-1139.
[7] L. Lovász, Three short proofs in graph theory, J. Combin. Theory Ser. B 19 (1975) 269-271.
[8] B. Randerath and I. Schiermeyer, A note on Brooks theorem for triangle-free graphs, Australasian J. Combin. 26 (2002), 3-10.
[9] S. Skulrattanakulchai, Δ-list vertex coloring in linear time, in Algorithm Theory - SWAT 2002, M. Penttonen and E. Meineche Schmidt, eds., Lecture Notes in Comput. Sci., Vol. 2368, Springer-Verlag, New York, 2003, 240-248.

[^0]: *These results were presented in IWOCA 2010.
 ${ }^{\dagger}$ Supported in part by grant VEGA 2/0118/10.
 ${ }^{\ddagger}$ Supported in part by ARRS Research Program P1-0297.
 keywords: (k, s)-dart graph, graph algorithms, NP-complete problem, (k, s)-diamond, Brooks' Theorem.

