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Dávid Hudák Frantǐsek Kardoš
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Abstract

An acyclic edge coloring of a graph is a proper edge coloring without bichromatic
cycles. In 1978, it was conjectured that ∆(G) + 2 colors suffice for an acyclic edge
coloring of every graph G [6]. The conjecture has been verified for several classes of
graphs, however, the best known upper bound for as special class as planar graphs are,
is ∆ + 12 [2]. In this paper, we study simple planar graphs which need only ∆(G) colors
for an acyclic edge coloring. We show that a planar graph with girth g and maximum
degree ∆ admits such acyclic edge coloring if g ≥ 12, or g ≥ 8 and ∆ ≥ 4, or g ≥ 7 and
∆ ≥ 5, or g ≥ 6 and ∆ ≥ 6, or g ≥ 5 and ∆ ≥ 10. Our results improve some previously
known bounds.

Keywords: Acyclic edge coloring, Planar graph, Discharging method

1 Introduction

An acyclic edge coloring of a graph G is a proper edge coloring with an additional
condition that any pair of colors induces a linear forest (an acyclic graph with maximum
degree two); in other words, there are no bichromatic cycles in G. The least number
χ′

a(G) of colors for which G admits an acyclic edge coloring is called acyclic chromatic

index. Since graphs with parallel edges do not admit acyclic edge colorings, in this paper
we consider only simple graphs.

The acyclic coloring was first introduced for vertices of graphs by Grünbaum [8] and
has been later extended to edges. Since acyclic edge coloring is also proper, we have the
inequality χ(G)′ ≤ χ′

a(G) for every graph G. It is well known that the chromatic index
of graphs is at least ∆(G) and at most ∆(G) + 1, what was proved by Vizing [13]. For
an acyclic chromatic index a similar bound is believed to be true.
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in part by bilateral project SK-SI-0007-08 between Slovakia and Slovenia, by VVGS grant No. 617-B (I-10-
032-00) (D. Hudák), and by Slovak Research and Development Agency under contract No. APVV-0007-07
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Conjecture 1 ([6, 1]). For every graph G it holds that

∆(G) ≤ χ′

a ≤ ∆(G) + 2 .

An analysis of cycles in graphs is a hard task, thus it is not surprising that the best
known upper bound for an acyclic chromatic index is 16∆(G), which has been proved
by Molloy and Reed [10]. However, Conjecture 1 has been verified for several classes
of graphs. The first result is due to Burnstein [5], who proved that every graph with
maximum degree 4 has an acyclic vertex coloring with 5 colors. Since the maximum
degree of a line graph L(G) of a subcubic graph G is at most 4, and since an acyclic edge
coloring of a graph G is in fact an acyclic vertex coloring of L(G), it follows that for
every subcubic graph G, we have χ′

a(G) ≤ 5 = ∆+2. Note that χ′

a(G) ≤ 3 if ∆(G) = 2.
Furthermore, in [1] Conjecture 1 has been proved for almost all d-regular graphs and

for all d-regular graphs with girth at least c∆(G) log ∆(G), where c is a constant. Re-
cently, Basavaraju and Chandran [3] proved that the conjecture also holds for complete
bipartite graphs Kp,p, where p is an odd prime.

Since 2008, the acyclic edge coloring of planar graphs has received a lot of attention.
Fiedorowicz, Ha luszczak, and Narayanan [7] proved that χ′

a(G) ≤ 2∆(G) + 29 for every
planar graph G, and if the girth of G is at least 4, the bound reduces to ∆ + 6. In the
same year, Sun and Wu [12] verified Conjecture 1 for planar graphs without k-cycles,
where k ∈ {4, 5, 6, 7, 8}, and planar graphs without 4- and 5-cycles in which no two
3-cycles share a vertex. In 2009, Hou et al. [9] improved the bound for planar graphs
to max{2∆(G) − 2, ∆ + 22}. They also studied planar graphs with specified girth and
maximum degree. They showed the following theorem.

Theorem 1 ([9]). Let G be a planar graph with maximum degree ∆ and girth g. Then

1. χ′

a(G) ≤ ∆ + 2 if g ≥ 5;

2. χ′

a(G) ≤ ∆ + 1 if g ≥ 7;

3. χ′

a(G) = ∆ if g ≥ 16 and ∆ ≥ 3.

Moreover, they proved that ∆ + 1 color suffice for an acyclic edge coloring of a
series-parallel graph G.

Cohen, Havet, and Müller [11] proved another bound for acyclic chromatic index of
planar graphs. They showed that χ′

a(G) ≤ ∆(G) + 25. They also posed the following
conjecture.

Conjecture 2 ([11]). There exists an integer ∆ for which every planar graph G with

maximum degree ∆(G) ≥ ∆ admits an acyclic edge coloring with ∆(G) colors.

This is an analogue to the conjecture of Vizing [13] which says that all planar graphs
with maximum degree at least 6 are ∆-edge colorable.

The upper bound for acyclic chromatic index of planar graphs has been recently
improved by Basavaraju and Chandran [3]. They proved that χ′

a(G) ≤ ∆ + 12 for every
planar graph G.

Furthermore, the bounds for planar graphs with specified girth were improved by
Yu, Hou, Liu, Liu, and Xu [14]. They proved the two theorems below.

Theorem 2 ([14]). Let G be a planar graph with girth g and maximum degree ∆. Then

χ′

a(G) ≤ ∆ + 1 if at least one of the conditions below holds:

1. g ≥ 6, or
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2. g ≥ 5 and ∆ ≥ 11.

Theorem 3 ([14]). Let G be a planar graph with girth g and maximum degree ∆. Then

χ′

a(G) = ∆ if at least one of the conditions below holds:

1. ∆ ≥ 4 and g ≥ 12, or

2. ∆ ≥ 5 and g ≥ 10, or

3. ∆ ≥ 6 and g ≥ 8, or

4. ∆ ≥ 12 and g ≥ 7.

Finally, in 2010 Borowiecki and Fiedorowicz [4] verified Conjecture 1 for planar
graphs with girth at least 5. They also showed that χ′

a(G) ≤ ∆(G) + 1 for every planar
graph G with girth at least 6, which improves the previous result of Hou et al. [9].

In this paper we studied the acyclic edge colorings of planar graphs with ∆(G) colors
and improved several previous results. Our results are the following.

Theorem 4. Let G be a planar graph with girth g and maximum degree ∆. Then

χ′

a(G) = ∆ if one of the following conditions holds:

1. ∆ ≥ 3 and g ≥ 12, or

2. ∆ ≥ 4 and g ≥ 8, or

3. ∆ ≥ 5 and g ≥ 7, or

4. ∆ ≥ 6 and g ≥ 6, or

5. ∆ ≥ 10 and g ≥ 5.

In Table 1 we present the best known bounds for planar graphs. Our results are
marked with an asterisk.

∆(G)
3 4 5 6 . . . 10 11 12

3 ∆ + 12
4 ∆ + 6
5 ∆ + 2 ∆∗ ∆ + 1
6 ∆ + 1 ∆∗

g(G) 7 ∆∗ ∆
8 ∆∗ ∆

10 ∆
12 ∆∗ ∆
16 ∆

Table 1: Overview of known and new results.

In the paper we use the standard notation. The degree of a vertex v (the size of a
face f) is denoted by d(v) (resp. d(f)). A vertex with degree k (at least k, at most k)
is called a k-vertex (a ≥ k-vertex, a ≤ k-vertex, respectively). The neighbor u of degree
k of a vertex v is called a k-neighbor of v.

Given an edge coloring ϕ of G, we say that the color a is free at the vertex v if there
is no edge incident to v colored with color a. On the other hand, a color a is used at v
if there is some edge incident with v which is colored by a. A path induced by colors a
and b is called an {a, b}-path.
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2 Proof of Theorem 4.

We prove each claim of Theorem 4 separately. In all proofs we assume that there exists
a minimal counterexample G to the claim and show that it cannot exist by studying
its properties. First, we show that certain configurations cannot occur in the minimal
counterexample. Then we assign charge to the vertices and faces of G. Using Euler’s
formula we compute that the total charge is negative. However, by redistributing the
charge among vertices and faces, we show that it is nonnegative, reaching a contradic-
tion. Hence, the minimal counterexample G does not exist. This approach is the well
known discharging method which remains the only technique for proving the Four Color
Theorem.

2.1 Reducible configurations

First, we prove some general properties of the minimal counterexample G. Throughout
this section, we assume that the girth of G is at least 5 and the maximum degree of G
is ∆ ≥ 3.

Claim 1. Minimum degree of G is at least 2.

Proof. Let v be a vertex of degree 1 in G. Then the graph G′ = G − v is not a
counterexample, thus it has an acyclic edge coloring using at most ∆ colors. This
coloring can obviously be extended to a desired coloring of G, what is a contradiction
with the assumption of G being a counterexample.

From now on we may assume that there are no 1-vertices in G.

Claim 2. Let v be a vertex of degree k in G, let d1, d2,. . . ,dk be the degrees of the

neighbors of v. Then
k∑

i=1

di ≥ ∆ + k.

Proof. Let v be a k-vertex in G with neighbors v1, v2,. . . , vk of degrees d1, d2,. . . , dk

such that d1 + d2 + · · · + dk ≤ ∆ + k − 1.
Let ϕ be an acyclic edge coloring of G − v using at most ∆ colors. There are di − 1

colors used at vi, i = 1, 2, . . . , k. Since

(d1 − 1) + (d2 − 1) + · · · + (dk − 1) ≤ ∆ − 1,

there is a color, say c1, which is not used at any vi, i = 1, 2, . . . , k. We color the edge
vv1 with this color. For the edge vvi (2 ≤ i ≤ k) we use any color ci which does not
appear on edges vv1, vv2,. . . ,vvi−1 and which is not used at vi, vi+1,. . . ,vk. There are
at most

i − 1 + (di − 1) + · · · + (dk − 1) ≤

k∑

j=1

(dj − 1) ≤ ∆ − 1

forbidden colors, hence, such color ci exists. It is clear that we obtained a proper
coloring of G using at most ∆ colors. To conclude the proof it suffices to prove that no
bichromatic cycle could have arisen. Let vvi and vvj be a part of a cycle colored with
colors ci and cj , 1 ≤ i < j ≤ k. Then the color ci must be used at vj , a contradiction
with the choice of ci.
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As a special case of Claim 2 we get the following statement:

Claim 3. There is no 2-vertex v in G incident with vertices v1 and v2 such that d(v1)+
d(v2) ≤ ∆ + 1.

Consider the graph H induced by 2-vertices of G. Let vertices isolated in H be white,
let the other 2-vertices be black. The previous claim immediately implies:

Claim 4. There is no path of at least 3 black vertices in G. Moreover, each black

2-vertex is adjacent to a ∆-vertex.

It means that H consists of (isolated) white vertices and (isolated) pairs of black
vertices. More detailed analysis yields:

Claim 5. Every vertex in G has at most one black 2-neighbor.

Proof. Suppose a vertex v has two black 2-neighbors v1 and v2 in G. Let ui be the
neighbor of vi distinct from v; let ei = vvi, fi = viui, i = 1, 2. Let f ′

i be the edge
incident with ui distinct from fi, i = 1, 2. See Figure 1 for illustration.

v v1v2 u1u2

f ′
1f ′

2 f1e1e2f2

11212 −→ v v1v2 u1u2

f ′
1f ′

2 f1e1e2f2

132132

Figure 1: Reducing a vertex v with two black 2-neighbors.

Let ϕ be an acyclic edge coloring of G′ = G − f1 using at most ∆ colors. We may
assume that ϕ(e1) = 1 and ϕ(e2) = 2. If ϕ(f ′

1) 6= 1, we can extend ϕ to an acyclic edge
coloring of G easily. Hence, we may assume ϕ(f ′

1) = 1.
We may set ϕ(f1) = 2, unless there is a {1, 2}-path in G′ from v1 to u1. If this is

the case, we have ϕ(f2) = 1 and ϕ(f ′

2) = 2. Now we recolor the edges in the following
way: we set ϕ(f1) = 3, ϕ(e1) = 2, ϕ(e2) = 1, ϕ(f2) = 3. It can be easily checked that
no bichromatic cycle has been created.

2.1.1 Neighborhood of ∆-vertices

We say that vertices u and v are subadjacent, if there is a 2-vertex adjacent to both u
and v.

Claim 6. Let v be a ∆-vertex subadjacent to a vertex u in G. Then the number of

2-neighbors of v is at most d(u).

Proof. If d(u) = ∆ there is nothing to prove, so we may assume that d(u) = k < ∆.
Suppose the number of 2-neighbors of v is at least k + 1. Let v1, v2,. . . , vk+1 be 2-
neighbors of v; let ui be the neighbor of vi different from v, let ei = vvi and fi = viui,
i = 1, 2, . . . , k + 1. Assume u = u1. See Figure 2 for illustration.

Let ϕ be an acyclic edge coloring of G′ = G − f1 using at most ∆ colors. Let
1, 2, . . . , k − 1 be the colors used at u. If ϕ(e1) /∈ {1, 2, . . . , k − 1}, we color f1 with any
color free at u distinct from ϕ(e1). This is always possible, since u has only k−1 < ∆−1
colored edges. It is clear that we obtain an acyclic edge coloring of G using at most ∆
colors. Hence, we may assume that ϕ(e1) = 1.
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v uv1

v2vk

vk+1
e1 f1

e2

f2

ek

fk

ek+1fk+1

1

k

1

k + 11

1

k − 1
−→

v uv1

v2vk

vk+1
e1 f1

e2

f2

ek

fk

ek+1fk+1

1 k

k + 1

1

k1

1

k − 1

Figure 2: Reducing a ∆-vertex v subadjacent to a k-vertex u and having at least k + 1
2-neighbors.

Consider now the colors of e2, . . . , ek+1. At most k−1 of them are from {2, . . . , k − 1},
hence, there are (at least) two edges colored with colors free at u. Without loss of gen-
erality we may assume that ϕ(ek) = k and ϕ(ek+1) = k + 1.

If ϕ(fk) 6= 1, then we set ϕ(f1) = k and no bichromatic cycle arises. Similarly if
ϕ(fk+1) 6= 1, then we set ϕ(f1) = k + 1. Hence we may assume ϕ(fk) = ϕ(fk+1) = 1.
Moreover, we may assume that in the subgraph G′

1k of G′ induced by the edges of colors
1 and k the vertices v1 and u are the endvertices of the same {1, k}-path, another such
path starts in vk. In this case we set ϕ(ek) = k + 1 and ϕ(ek+1) = k. Clearly, we obtain
an acyclic edge coloring of G′. Now, in G′

1k the {1, k}-path from u ends in vk, hence,
we can set ϕ(f1) = k without introducing a bichromatic cycle.

2.1.2 Neighborhood of other vertices

Claim 7. Let u and v be a pair of subadjacent vertices. If d(v) < ∆, then the number

of 2-vertices adjacent to v is at most d(v) + d(u) − ∆ − 1.

Proof. Let d(v) = d and d(u) = k. Suppose that v has at least d(v)+d(u)−∆ = d+k−∆
neighbors of degree 2. It means v has at most ∆ − k neighbors of degree greater than
2. Let v1, v2,. . . , vℓ be 2-neighbors of v, where ℓ = d + k − ∆; let ui be the neighbor of
vi different from v, let ei = vvi and fi = viui for i = 1, 2, . . . , ℓ. Assume u = u1. See
Figure 3 for illustration.

v uv1

v2
vℓ−1

vℓ

e1 f1

e2

f2

eℓ−1

fℓ−1

eℓfℓ

1

k

1

1

k − 1
−→

v uv1

v2
vℓ−1

vℓ

e1 f1

e2

f2

eℓ−1

fℓ−1

eℓfℓ

1 k

c

1

1

k − 1

Figure 3: Reducing a d-vertex v subadjacent to a k-vertex u and having at least d + k − ∆
2-neighbors.

Let ϕ be an acyclic edge coloring of G′ = G − f1 using at most ∆ colors. Let
1, 2, . . . , k− 1 be the colors used at u. If ϕ(e1) /∈ {1, 2, . . . , k − 1}, then we find a color c
which is free at v (this is always possible since d(v) < ∆) and we set ϕ(f1) = ϕ(e1) and
ϕ(e1) = c. It is easy to see that we obtain an acyclic edge coloring of G.

Hence, without loss of generality we may assume that ϕ(e1) = 1. The colors k, k +
1, . . . , ∆ are free at u. If at least one of them is also free at v, we use this color on f1
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to extend ϕ to an acyclic edge coloring of G. Therefore, we may assume all the colors
k, k +1, . . . , ∆ are used at v. Since v has at most ∆−k neighbors of degree greater than
2, one of the edges e2, . . . , eℓ is colored with one of the colors k, k + 1 . . . , ∆. Without
loss of generality assume that ϕ(e2) = k.

Consider the color of f2. If ϕ(f2) 6= 1, then we set ϕ(f1) = k and we are done. If
ϕ(f2) = 1, then we find a color c which is free at v (recall that d(v) < ∆), and set
ϕ(e2) = c and ϕ(f1) = k. It is clear that no bichromatic cycle was created.

As a corollary we get the following property of G:

Claim 8. There is no vertex v in G with d(v) < ∆ adjacent only to 2-vertices.

2.2 Planar graphs with girth 5

Let us reformulate the first statement of Theorem 4.

Lemma 5. Let ∆ ≥ 10. Every planar graph with girth at least 5 and maximum degree

at most ∆ admits an acyclic edge coloring with ∆ colors.

Let G be a minimal counterexample to Lemma 5 with respect to the number of
edges.

2.2.1 Discharging rules

Let the initial charge be set as follows:

• w(v) = 3d(v) − 10 for each vertex v of G;

• w(f) = 2d(f) − 10 for each face f of G.

Using Euler’s formula and handshaking lemma we can derive that the sum of the
charge in whole graph is negative:

∑

v∈V

w(v) +
∑

f∈F

w(f) = 3 ·
∑

v∈V

d(v) − 10 · |V | + 2 ·
∑

f∈F

d(f) − 10 · |F | =

= 3 · 2 · |E| − 10 · |V | + 2 · 2 · |E| − 10 · |F | = 10 · (|E| − |V | − |F |) = −20.

It is clear that all the faces have nonnegative charge since g ≥ 5. Vertices of degree
at least 4 have positive charge, 3-vertices have charge −1 and 2-vertices have charge −4.

We move the negative charge from 2-vertices and 3-vertices according to the following
rules:

(R1) Let v be a 2-vertex with neighbors v1 and v2. Let d = d(v1) ≤ d(v2).

(R1a) If d ≤ 3, then v sends no charge to v1 and −4 of charge to v2.

(R1b) If d = 4, then v sends −1

2
of charge to v1 and −7

2
of charge to v2.

(R1c) If 5 ≤ d < 9, then v sends −3d−11

d−1
of charge to v1 and −d+7

d−1
of charge to v2.

(R1d) If d ≥ 9, then v sends −2 of charge both to v1 and v2.

(R2) Let v be a 3-vertex with neighbors v1, v2, and v3. Let d(v1) ≤ d(v2) ≤ d(v3). Then
v sends −1 of charge to v3.
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Notice that for 5 ≤ d < 9 we have 3d−11

d−1
< 2 < d+7

d−1
and that for d = 9 rules (R1c) and

(R1d) coincide. Observe that by Claim 3 in (R1a) we have d(v2) ≥ ∆−1 ≥ 9 > 3 ≥ d(v1)
and in (R1b) we have d(v2) ≥ ∆ − 2 ≥ 8 > 4 = d(v2). In (R1c), if d(v1) = d(v2), we
choose v1 arbitrarily.

To make the proof complete we need to show that after the discharging rules are
applied, the charge of all vertices is nonnegative. Observe that all 2-vertices send all
their negative charge to their neighbors, moreover, only vertices of degree at least 4
receive some negative charge from 2-vertices.

Similarly, all 3-vertices send all their negative charge to some of their neighbors. By
Claim 2 for each 3-vertex v with neighbors v1, v2, and v3 such that d(v1) ≤ d(v2) ≤ d(v3)
we have d1 + d2 + d3 ≥ ∆ + 3 ≥ 13. Therefore, d(v3) ≥ 5 and only vertices of degree at
least 5 receive some negative charge from 3-vertices.

Let v be a 4-vertex. Its initial charge is 2. By (R1b) it only receives −1

2
of charge

from each 2-neighbor, hence, its charge is at least 2 − 4 · 1

2
≥ 0.

2.2.2 Vertices of degree ∆

Let v be a ∆-vertex. Its initial charge is 3∆− 10. It receives at most −1 of charge from
each 3-neighbor, thus if it has no 2-neighbor its charge is at least 3∆ − 10 − ∆, which
is clearly positive. Assume v has some 2-neighbors. It means it is subadjacent to some
vertices; let k be the minimum degree of a vertex subadjacent to v. Then by Claim 6
the number of 2-neighbors of v is at most k.

Let k ≤ 3. Then v has at most three 2-neighbors which send at most −4 of charge
to v by (R1a)–(R1d). The charge of v is at least 3∆ − 10 − 3 · 4 − (∆ − 3) = 2∆ − 19
which is positive since ∆ ≥ 10.

Let k = 4. Then v has at most four 2-neighbors which send at most −7

2
of charge

to v by (R1b)–(R1d). The charge of v is at least 3∆ − 10 − 4 · 7

2
− (∆ − 4) = 2∆ − 20

which is nonnegative since ∆ ≥ 10.
Let 5 ≤ k ≤ 9. Then each 2-neighbor of v sends at most −k+7

k−1
of charge to v by

(R1c) or (R1d). The number of 2-neighbors of v is at most k, thus the charge of v is at
least

3∆ − 10 − k ·
k + 7

k − 1
− (∆ − k) = 2∆ − 10 −

8k

k − 1
= 2∆ − 18 −

8

k − 1
.

This is nonnegative since k − 1 ≥ 4 and ∆ ≥ 10.
Let k ≥ 10. Then each 2-neighbor of v sends −2 of charge to v. Then the charge of

v is at least
3∆ − 10 − k · 2 − (∆ − k) = 2∆ − 10 − k.

This is nonnegative since ∆ ≥ 10 and k ≤ ∆.

2.2.3 Other vertices of degree at least 5

Let v be a d-vertex, 5 ≤ d < ∆. Its initial charge is 3d − 10. It receives at most −1 of
charge from each 3-neighbor, thus if it has no 2-neighbor its charge is at least 3d−10−d,
which is clearly nonnegative for d ≥ 5. Assume v has some 2-neighbors. It means it
is subadjacent to some vertices; let k be the minimum degree of a vertex subadjacent
to v. By Claim 4 we have k ≥ 3. By Claim 3 for each subadjacent vertex ui we have
d(ui) ≥ ∆ + 2− d. Therefore, k ≥ ∆ + 2− d, thus, d ≥ ∆ + 2− k. Recall that by Claim
7 the number of 2-neighbors of v is at most d + k − ∆ − 1 = k − 1 − (∆ − d) ≤ k − 2.
Now, consider several cases regarding k:
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If k = 3, then d ≥ ∆ − 1 ≥ 9, moreover, v has one 2-neighbor. The charge of v is at
least 3d − 10 − 4 − (d − 1) = 2d − 13 which is positive for d ≥ 9.

If k = 4, then d ≥ ∆ − 2 ≥ 8, moreover, v has at most two 2-neighbors. The charge
of v is at least 3d − 10 − 2 · 7

2
− (d − 2) = 2d − 15 which is positive for d ≥ 8.

If 5 ≤ k ≤ 8 and k ≤ d, then each 2-neighbor of v sends at most −k+7

k−1
of charge to

v by (R1c) or (R1d). So the charge of v is at least

3d − 10 − (d + k − ∆ − 1) ·
k + 7

k − 1
− (∆ + 1 − k) =

2(kd − 9k − 5d + 4∆ + 9)

k − 1
≥

≥
2(kd − 9k − 5d + 49)

k − 1
=

2[(k − 5)(d − 9) + 4]

k − 1
.

This is nonnegative since k − 5 ≥ 0 and d − 9 ≥ −4.
If 9 ≤ k and k ≤ d, then each 2-neighbor of v sends −2 of charge to v by (R1d).

Then the charge of v is at least

3d − 10 − (d + k − ∆ − 1) · 2 − (∆ + 1 − k) = d − 9 + ∆ − k.

This is nonnegative since d ≥ 9 and k ≤ ∆.
If 5 ≤ k and d < k, then each 2-neighbor of v sends −3d−11

d−1
of charge to v by (R1c).

By Claim 8 the number of 2-neighbors of v is at most d− 1. The charge of v is at least

3d − 10 − (d − 1) ·
3d − 11

d − 1
− 1 = 0.

Since all the vertices of G have nonnegative charge, we obtain a contradiction which
completes the proof.

2.3 Planar graphs with girth 6

Lemma 6. Let ∆ ≥ 6. Every planar graph with girth at least 6 and maximum degree

at most ∆ admits an acyclic edge coloring with ∆ colors.

Suppose G is a minimal counterexample to Lemma 6.

2.3.1 Discharging rules

Let the initial charge be set as follows:

• w(v) = 2d(v) − 6 for each vertex v of G;

• w(f) = d(f) − 6 for each face f of G.

By Euler’s formula we have that the sum of charges of vertices and faces is −12.
It is clear that since g ≥ 6 all the faces have nonnegative charge. Vertices of degree

at least 4 have positive charge, 3-vertices have no charge and 2-vertices have charge −2.
We redistribute the charge among vertices by the following rules:

(R3) Let v be a 2-vertex with neighbors v1 and v2 such that d(v1) ≤ d(v2).

(R3a) If d(v1) ≤ 3, then v sends −2 of charge to v2.

(R3b) If d(v1) = 4 and d(v2) = 4, then v sends −1 of charge to both v1 and v2.

(R3c) If d(v1) = 4 and d(v2) ≥ 5, then v sends −2

3
of charge to v1 and −4

3
of charge

to v2.

(R3d) If d(v1) ≥ 5, then v sends −1 of charge to both v1 and v2.
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It is easy to see that 2-vertices send all their negative charge to their neighbors. Since
∆ ≥ 6, by Claim 3 for each 2-vertex with neighbors with degrees d1 and d2 we have
d1 + d2 ≥ ∆ + 2 ≥ 8, therefore, only vertices of degree at least 4 can receive negative
charge. Hence, 3-vertices neither send nor receive any charge, so they retain chargeless.

2.3.2 4-vertices

Let v be a 4-vertex in G. Its initial charge is 2. If it has no 2-neighbors, its charge does
not change. By Claim 3 it cannot be subadjacent to a 3-vertex. If it is subadjacent to a
4-vertex, by Claim 7 the number of 2-neighbors of v is at most 4+4−∆−1 = 7−∆ ≤ 1,
hence, it has only one 2-neighbor from which it receives −1 of charge by (R3b). Its final
charge is (at least) 2 − 1 = 1.

If it is only subadjacent to vertices of degree at least five, it can have at most three
2-neighbors by Claim 8. By (R3c) it receives −2

3
of charge from each 2-neighbor, hence,

its charge is at least 2 − 3 · 2

3
= 0.

2.3.3 5-vertices

Let v be a 5-vertex in G. Its initial charge is 4. If it has no 2-neighbors, its charge
does not change. By Claim 4 it cannot have a black 2-neighbor. Hence, it can only
be subadjacent to ≥3-vertices. If it is subadjacent to a 3-vertex or a 4-vertex, then by
Claim 7 it can have at most two 2-neighbors, hence its charge is at least 4 − 2 · 2 ≥ 0.

If it is not subadjacent to any 3- or 4-vertex, then by Claim 8 it can have at most
four 2-neighbors, which send −1 of charge each by (R3d); the charge of v is at least
4 − 4 · 1 ≥ 0.

2.3.4 Other vertices

Let v be a d-vertex, where d ≥ 6. Its initial charge is 2d − 6 ≥ 6. If it has no 2-
neighbors, it does not receive any negative charge. Suppose v has some 2-neighbors; let
k be a minimum degree of a vertex subadjacent to v.

If k ≤ 3, then by Claims 6 and 7 the vertex v has at most three 2-neighbors, and
each has sent at most −2 of charge. Hence, the charge of v is nonnegative.

If k = 4, then v has at most four 2-neighbors, and each has sent at most −4

3
of

charge. Hence, the charge of v is at least 6 − 4 · 4

3
= 2

3
> 0.

If k ≥ 5, then v receives at most −1 of charge from each neighbor, hence its charge
is at least 2d − 6 − d = d − 6 ≥ 0.

All the vertices of G have nonnegative charge, a contradiction which establishes the
lemma.

2.4 Planar graphs with girth 7

Lemma 7. Let ∆ ≥ 5. Every planar graph with girth at least 7 and maximum degree

at most ∆ admits an acyclic edge coloring with ∆ colors.

If ∆ ≥ 6, then the statement follows from Lemma 6. Therefore, we may assume that
∆ = 5 and ∆(G) ≤ 5. Suppose G is a minimal counterexample to Lemma 7.
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2.4.1 Discharging rules

Let the initial charge be set as follows:

• w(v) = 5d(v) − 14 for each vertex v of G;

• w(f) = 2d(f) − 14 for each face f of G.

By Euler’s formula we have that the sum of charges of vertices and faces is −28.
It is clear that since g ≥ 7 all the faces have nonnegative charge. Vertices of degree

5 have charge 11, vertices of degree 4 have charge 6, vertices of degree 3 have charge 1,
and vertices of degree 2 have charge −4.

We redistribute the charge among vertices by the following rules:

(R4) Let v be a 2-vertex with neighbors v1 and v2 such that d(v1) ≤ d(v2).

(R4a) If d(v1) = 2, then v sends 0 of charge to v1 and −4 of charge to v2.

(R4b) If d(v1) = 3, then v sends −1

3
of charge to v1 and −11

3
of charge to v2.

(R4c) If d(v1) ≥ 4, then v sends −2 of charge both to v1 and v2.

Since ∆ = 5, by Claim 3 for each 2-vertex with neighbors with degrees d1 and d2 we
have d1 + d2 ≥ ∆ + 2 = 7. It is easy to see that 2-vertices send all their negative charge
to their neighbors of degree at least 3.

2.4.2 3-vertices

Let v be a 3-vertex in G. Its initial charge is 1. By (R4b) it receives −1

3
of charge from

each its 2-neighbor, hence its charge is at least 1 − 3 · 1

3
= 0.

2.4.3 4-vertices

Let v be a 4-vertex in G. Its initial charge is 6. If it has no 2-neighbors, its charge does
not change. By Claim 3 it cannot be subadjacent to a 2-vertex. If it is subadjacent to a
3-vertex, by Claim 7 the number of 2-neighbors of v is at most 3 + 4−∆− 1 = 1, hence,
it has only one 2-neighbor from which it receives −11

3
of charge by (R4b). Its charge is

clearly nonnegative.
If v is not subadjacent to any ≤ 3-vertex, then by Claim 8 it can have at most

three 2-neighbors, from which it receives −2 of charge by (R4c). Its charge is (at least)
6 − 3 · 2 = 0.

2.4.4 5-vertices

Let v be a 5-vertex in G. Its initial charge is 11. If it has no 2-neighbors, its charge
does not change.

If v is subadjacent to a 2-vertex, then by Claim 6 it has at most two 2-neighbors,
which send at most −4 of charge each. The charge of v is at least 11 − 2 · 4 = 3 > 0.

If v is not subadjacent to any 2-vertex and v is subadjacent to a 3-vertex, by Claim
6 it has at most three 2-neighbors, which send at most −11

3
of charge each. The charge

of v is at least 11 − 3 · 11

3
= 0.

If v is not subadjacent to any ≤ 3-vertex, then all its 2-neighbors send −2 of charge
by (R4c); the charge of v is at least 11 − 5 · 2 = 1 ≥ 0.

All the vertices of G have nonnegative charge, a contradiction which establishes the
lemma.
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2.5 Planar graphs with girth 8

Lemma 8. Let ∆ ≥ 4. Every planar graph with girth at least 8 and maximum degree

at most ∆ admits an acyclic edge coloring with ∆ colors.

If ∆ ≥ 5, then the statement follows from Lemma 7. Therefore, we may assume that
∆ = 4 and ∆(G) ≤ 4. Suppose G is a minimal counterexample to Lemma 8.

Before setting discharging rules, we prove several additional properties of G.

2.5.1 More reducible configurations

Let a 3-vertex with two 2-neighbors be blue. We focus on the neighborhood of blue
vertices.

Claim 9. Each blue 3-vertex is subadjacent to two 4-vertices.

Proof. Let v be a blue 3-vertex with 2-neighbors v1 and v2; let ui be the neighbor of vi

distinct from v, i = 1, 2. If d(ui) ≤ 3, then by Claim 7 there are at most

d(v) + d(ui) − ∆ − 1 ≤ 3 + 3 − 4 − 1 = 1

2-vertices adjacent to v in G, however, both v1 and v2 are 2-vertices, a contradiction.

Claim 10. Each blue 3-vertex is adjacent to a 4-vertex.

Proof. Let v be a blue 3-vertex with neighbors v1, v2, v3. Let d(v1) = 2, d(v2) = 2,
d(v3) = 3; let ei = vvi, i = 1, 2, 3. Let fi be the edge incident with vi different from
ei, i = 1, 2. Let f3, f4 be edges incident with v3 different from e3. Let G′ be the graph
obtained from G by deletion of the edges e1, e2, and e3. Let ϕ be an acyclic edge coloring
of G′ using at most 4 colors. Consider the colors of f1, f2, f3, and f4. We distinguish all
possible cases up to symmetry and permutation of colors. See Figure 4 for illustration.

Let ϕ(f1) = ϕ(f2) = 1. If 1 /∈ {ϕ(f3), ϕ(f4)}, then we set ϕ(e1) = ϕ(f3) and
ϕ(e2) = ϕ(f4); for the edge e3 we use the fourth color. If 1 = ϕ(f3), then we set
ϕ(e1) = ϕ(f4); for the edges e2 and e3 we use the othe two colors.

Now, we may assume that ϕ(f1) = 1 and ϕ(f2) = 2. Let the four edges f1, f2, f3,
and f4 be colored by four colors, say ϕ(f3) = 3, ϕ(f4) = 4. Then we set ϕ(e1) = 2,
ϕ(e2) = 3, and ϕ(e3) = 1.

Let the four edges f1, f2, f3, and f4 be colored by three colors, say ϕ(f3) = 1,
ϕ(f4) = 3. Then we set ϕ(e1) = 2, ϕ(e2) = 3, and ϕ(e3) = 4.

Let the four edges f1, f2, f3, and f4 be colored by two colors, say ϕ(f3) = 1,
ϕ(f4) = 2. Then we set ϕ(e1) = 2, ϕ(e2) = 3, and ϕ(e3) = 4.

v

v1

v2

v3

1

1

2

3

2

3 4
v

v1

v2

v3

1

1

1

2

2

3 4
v

v1

v2

v3

1

2

3

4

2

3 1
v

v1

v2

v3

1

2

1

3

2

3 4
v

v1

v2

v3

1

2

1

2

2

3 4

Figure 4: Reducing a 3-vertex with neighbors of degrees 2, 2, 3, respectively.

It is easy to see that ϕ is now an acyclic edge coloring of G using at most 4 colors,
a contradiction.
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Claim 11. Let v be a 4-vertex subadjacent to two 3-vertices. Then the number of 2-

neighbors of v is two.

Proof. Let v be a 4-vertex subadjacent to u1, u2, u3 such that d(u1) = d(u2) = 3. Let
vi be the common neighbor of v and ui, i = 1, 2, 3. Let v4 be the other neighbor of v.
Let ei = vvi, i = 1, 2, 3, 4, fi = viui, i = 1, 2, 3. See Figure 5 for illustration.

Let ϕ be an acyclic edge coloring of G′ = G − f1 using at most 4 colors. Assume
ϕ(e1) = 1.

There are two colors free at u1. If 1 is free at u1, then we use the other free color for
f1 to extend ϕ to an acyclic edge coloring of G. Hence, we may assume that 1 is used
at u1. Let 3 and 4 be the colors free at u1.

We can use the color 3 (or 4) for f1 unless we introduce a bichromatic cycle. There-
fore, we may assume that in G′, there is a {1, 3}-path from v1 to u1 and also a {1, 4}-path
from v1 from u1.

Consider the color of e2. Suppose first that ϕ(e2) = 3. Since there is a {1, 3}-path
from v1 to u1, we have ϕ(f2) = 1 and we know that 3 is used at u2. Hence, there is
a color c ∈ {2, 4} free at u2. In this case we set ϕ(e1) = 3, ϕ(f1) = 4, ϕ(e2) = 1, and
ϕ(f2) = c, see Figure 5(a). It is easy to see that no bichromatic cycle arises. We can
use the same argument if ϕ(e2) = 4. Hence, we may assume that ϕ(e2) = 2; without
loss of generality let ϕ(e3) = 3 and ϕ(e4) = 4. Then ϕ(f3) = 1.

Consider the color of f2. Suppose first that ϕ(f2) 6= 1. In this case, we set ϕ(f1) = 3,
ϕ(e1) = 2, and ϕ(e2) = 1. It is easy to see that no bichromatic cycle is created, since
the {2, 3}-path containing v1 ends at v3, the {1, 2}-path and {1, 3}-path containing v2

ends at v1, and {1, 4}-path containing v2 ends at u1, see Figure 5(b).
Finally, suppose that ϕ(f2) = 1. Then there is a color, say c 6= 1, free at u2. In this

case, we set ϕ(f1) = 3, ϕ(e1) = 2, ϕ(e2) = 1, and ϕ(f2) = c, see Figure 5(c). Again, no
bichromatic cycle arises.

2.5.2 Discharging rules

Let the initial charge be set as follows:

• w(v) = 3d(v) − 8 for each vertex v of G;

• w(f) = d(f) − 8 for each face f of G.

By Euler’s formula we have that the sum of charges of vertices and faces is −16.
It is clear that since g ≥ 8 all the faces have nonnegative charge. Vertices of degree

4 have charge 4, vertices of degree 3 have charge 1, and vertices of degree 2 have charge
−2.

We redistribute the charge among vertices by the following rules:

(R5a) Each white 2-vertex divides its charge (−2) equally among its two neighbors.

(R5b) Each black 2-vertex sends all its charge (−2) to the neighbor which is not a 2-
vertex.

After this phase all 2-vertices have charge 0. However, some other vertices can have
become negative.

Consider a 3-vertex v in G. Its initial charge is 1. By Claim 3 it cannot have a black
2-neighbor. By Claim 8 it can have at most two (white) 2-neighbors. If v has at most
one 2-neighbor, then it receives at most −1 of charge, so its charge is at least 0. Thus,
only 3-vertices with precisely two 2-neighbors – blue 3-vertices – have negative charge.

13

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
12

3,
 A

u
gu

st
 0

4,
 2

01
0



(a) u1 v1 v v2 u2

v4

v3

u3

f1 e1 e2 f2

e4

e3

f3

13

1 3 1
1

2 2

3

−→ u1 v1 v v2 u2

v4

v3

u3

f1 e1 e2 f2

e4

e3

f3

13

4 3 1 4
1

2 2

3

(b) u1 v1 v v2 u2

v4

v3

u3

f1 e1 e2 f2

e4

e3

f3

14

13

1 2
4

3

1

1

2

−→ u1 v1 v v2 u2

v4

v3

u3

f1 e1 e2 f2

e4

e3

f3

14

13

3 2 1
4

3

1

1

2

(c) u1 v1 v v2 u2

v4

v3

u3

f1 e1 e2 f2

e4

e3

f3

14

13

1 2 1
4

3

1

1

2 a

b

−→ u1 v1 v v2 u2

v4

v3

u3

f1 e1 e2 f2

e4

e3

f3

14

13

3 2 1 c
4

3

1

1

2 a

b

Figure 5: Reducing a 4-vertex v subadjacent to two 3-vertices u1, u2 and another vertex u3.

Let v be a blue 3-vertex. It is subadjacent to two vertices u1 and u2 via 2-vertices
v1 and v2. By Claim 9 both u1 and u2 are 4-vertices. Moreover, by Claim 10 the third
neighbor v3 of v is also a 4-vertex. The charge of v is now 1 + 2 · (−1) = −1.

(R6) Each blue 3-vertex v with two 2-neighbors v1 and v2 sends −1

2
of charge to the

face incident both with v1 and v2; it sends −1

4
of charge to the other two incident

faces.

After this phase all 2- and 3-vertices have nonnegative charge. Some negative charge
was sent to 4-vertices and faces.

Consider a 4-vertex v in G. Its initial charge is 4. If v has a black 2-neighbor, then
by Claim 6 it has at most two 2-neighbors. Moreover, by Claim 5 at most one of them
is black, thus, in this case it receives at most −3 units of charge, so its charge is at
least 1. If v has only white 2-neighbors, its charge is at least 4 − 4 · 1 ≥ 0. However,
if has at most three white 2-neighbors, its charge is at least 1. Let 4-vertices with four
2-neighbors be called red. Observe that by Claim 6 a red 4-vertex cannot be subadjacent
to a ≤ 3-vertex, hence, each red 4-vertex is subadjacent to four 4-vertices.

(R7) Each 4-vertex v divides all its charge equally to the four faces it is incident with.

Now all vertices have nonnegative charge. Some of the negative charge can have
been moved from blue 3-vertices to faces. On the other hand, observe that each face
receives at least 1

4
of charge from each incident 4-vertex which is not red.

2.5.3 Big faces

Let f be a face of size k. Its initial charge is k − 8; it receives −1

4
or −1

2
of charge from

each blue 3-vertex it is incident with. Let v1, . . . , vk be the vertices incident with f in
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a cyclic order. Let v1 be a blue 3-vertex which sends −1

4
of charge to f . According to

(R6), we may assume d(vk) = 4 and d(v2) = 2, and d(u1) = 2, where u1 is the neighbor
of v1 not incident with f . By Claim 9 we have d(v3) = 4. It means there is a facial path
of length 3 beginning and ending in a 4-vertex, containing the blue 3-vertex v1.

Let v1 be a blue 3-vertex which sends −1

2
of charge to f . According to (R6), we may

assume d(vk) = d(v2) = 2. Again, by Claim 9 we have d(vk−1) = d(v3) = 4. It means
there is a facial path of length 4 beginning and ending in a 4-vertex, containing the blue
vertex v1.

Altogether, there can be at most k
3

blue vertices incident with f . The charge of f is

at least k − 8 − k
3
· 1

2
= 5k

6
− 8 ≥ 5k

6
− 50

6
, which is nonnegative for k ≥ 10.

2.5.4 9-faces

Let f be a 9-face. Its initial charge is 9 − 8 = 1. If it is incident with at most two blue
3-vertices, its charge is at least 1−2 · 1

2
= 0. Therefore we may assume it is incident with

three blue 3-vertices. This can only happen if all the three blue 3-vertices are contained
in paths of length 3. Hence, they send 3 · (−1

4
) of charge to f , and so the final charge of

f is clearly nonnegative.

2.5.5 8-faces

Let f be an 8-face. Its initial charge is 0. If it is incident with no blue 3-vertices, it does
not receive negative charge.

Let f have received −1

4
of charge from a blue 3-vertex v1; let v8 be a 4-vertex, v2 be

a white 2-vertex and let v3 be a 4-vertex. Since the 4-vertex v8 is adjacent to a 3-vertex
v1, it is not red; by (R7) it sends at least 1

4
of charge to f . The charge of f is at least

−1

4
+ 1

4
= 0.

Let f have received −1

2
of charge from a blue 3-vertex v1; let v8 and v2 be white

2-vertices and let v7 and v3 be 4-vertices. Since v3 and v7 are subadjacent to a 3-vertex
v1, they are not red; by (R7) the vertices v3 and v7 send at least 1

4
of charge to f . The

charge of f is at least −1

2
+ 2 · 1

4
= 0.

Let f have received −1

4
of charge from two blue 3-vertices. There are five possibilities

for their position up to symmetry, see Figure 6, the first five images. In all thee cases
there are at least two 4-vertices which are not red (recall that a red 4-vertex cannot be
adjacent or subadjacent to a ≤ 3-vertex); hence they send at least 1

4
of charge to f each.

It means the charge of f is nonnegative.

Figure 6: Possible positions of blue vertices incident with an 8-face. Empty circles represent
white 2-vertices, full circles represent 4-vertices, light grey circles represent blue 3-vertices,
dark grey circles represent unspecified vertices.

Let f have received −1

2
of charge from a blue 3-vertex v1 and −1

4
of charge from

another blue 3-vertex. There are two possibilities for its position up to symmetry, see
Figure 6, the last two images. In both cases there are three 4-vertices which send at
least 1

4
of charge to f , hence, its charge is nonnegative.
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Let f have received −1

2
of charge from two blue 3-vertices v1 and v5. Then v2, v4,

v6, v8 are white 2-vertices and v3 and v7 are 4-vertices. The 4-vertex v3 is subadjacent
to two 3-vertices v1 and v5, thus by Claim 11 it is not subadjacent to any other vertex.
Hence, it only receives −2 of charge from its 2-neighbors by (R5a), and then it sends 1

2

of charge to all incident faces by (R7). Since the same holds for v7, the face f receives
1

2
of charge from both v3 and v7, thus its charge in nonnegative.

All the vertices and faces of G have nonnegative charge, a contradiction which es-
tablishes the lemma.

2.6 Planar graphs with girth 12

Lemma 9. Let ∆ ≥ 3. Every planar graph with girth at least 12 and maximum degree

at most ∆ admits an acyclic edge coloring with ∆ colors.

If ∆ ≥ 4, then the statement follows from Lemma 8. Therefore, we may assume that
∆ = 3 and ∆(G) ≤ 3. Suppose G is a minimal counterexample to Lemma 9.

Before setting discharging rules, we prove one more structural property of G.

Claim 12. There is no path v1v2v3v4v5v6v7 with degrees 2, 2, 3, 2, 3, 2, 2 in G.

Proof. Let v1v2v3v4v5v6v7 be a path with degrees 2, 2, 3, 2, 3, 2, 2 in G. Let ei = vivi+1,
i = 1, . . . , 6; let e0 be the edge incident with v1 distinct from e1, let e7 be the edge
incident with v7 distinct from e6; let f3 (resp. f5) be the edge incident with v3 (resp. v5)
distinct from e2 and e3 (resp. e4 and e5). Since we assume g ≥ 12 all considered edges
are pairwise distinct.

Let ϕ be an acyclic edge coloring of G′ = G − e1 using colors 1, 2, 3. Let ϕ(e2) = 1,
ϕ(e3) = 2, ϕ(f3) = 3. We may assume ϕ(e0) = 1, otherwise we can extend the coloring
easily. We also may assume ϕ(e4) = 1, otherwise we can set ϕ(e1) = 2. See Figure 7(a)
for illustration.

Let Gij be a subgraph of G′ induced by edges colored i and j, {i, j} ⊂ {1, 2, 3}. If
v1 and v2 are not endvertices of the same path in G13, we set ϕ(e1) = 3. Hence, we may
assume there is a {1, 3}-path from v1 to v2 in G′. If v1 and v2 are not endvertices of one
path in G12, we set ϕ(e1) = 2. Hence, we may assume there is a {1, 2}-path from v1 to
v2 in G′. We set ϕ(e1) = 3, ϕ(e2) = 2 and ϕ(e3) = 1. Now the edges e3 and e4 both
have color 1. We now look at the end of the {1, 2}-path from v1 to v2:

• Let ϕ(e5) = 2, ϕ(e6) = 1, and ϕ(e7) = 2. Then ϕ(f5) = 3. In this case we recolor
the path in the following way: ϕ(e4) = 2, ϕ(e5) = 1, and ϕ(e6) = 3, see Figure
7(b).

• Let ϕ(f5) = 2. Then ϕ(e5) = 3. If ϕ(e7) 6= 2, then we set ϕ(e4) = 3, ϕ(e5) = 1,
and ϕ(e6) = 2, see Figure 7(c). If ϕ(e7) = 2, then we set ϕ(e4) = 3, ϕ(e5) = 1,
and ϕ(e6) = 3, see Figure 7(d).

It can be checked easily that in all the cases no bichromatic cycle can arise.

2.6.1 Discharging rules

Let the initial charge be set as follows:

• w(v) = 4d(v) − 10 for each vertex v of G;

• w(f) = d(f) − 10 for each face f of G.
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(a)
v1 v2 v3 v4 v5 v6 v7

e0 e1 e2 e3 e4 e5 e6 e7

f3

f5

1 1 2 1
3

13

−→
v1 v2 v3 v4 v5 v6 v7

e0 e1 e2 e3 e4 e5 e6 e7

f3

f5

1 3 2 1 1
3

13

(b) v1 v2 v3 v4 v5 v6 v7

e0 e1 e2 e3 e4 e5 e6 e7

f3

f5

1 3 2 1 1 2 1 2
3

3

13

12

−→ v1 v2 v3 v4 v5 v6 v7

e0 e1 e2 e3 e4 e5 e6 e7

f3

f5

1 3 2 1 2 1 3 2
3

3

13

12

(c) v1 v2 v3 v4 v5 v6 v7

e0 e1 e2 e3 e4 e5 e6 e7

f3

f5

1 3 2 1 1 3 6= 2
3

2

13

12

−→ v1 v2 v3 v4 v5 v6 v7

e0 e1 e2 e3 e4 e5 e6 e7

f3

f5

1 3 2 1 3 1 2 6= 2
3

2

13

12

(d) v1 v2 v3 v4 v5 v6 v7

e0 e1 e2 e3 e4 e5 e6 e7

f3

f5

1 3 2 1 1 3 1 2
3

2

13

12

−→ v1 v2 v3 v4 v5 v6 v7

e0 e1 e2 e3 e4 e5 e6 e7

f3

f5

1 3 2 1 3 1 3 2
3

2

13

12

Figure 7: Reducing a path with degrees 2, 2, 3, 2, 3, 2, 2.

By Euler’s formula we have that the sum of charges of vertices and faces is −20.
It is clear that vertices of degree 3 have charge 2, vertices of degree 2 have charge

−2. We redistribute the charge from vertices to faces by the following rules:

(R8a) Each 2-vertex sends −1 of charge to each face it is incident with.

(R8b) Each 3-vertex sends 2

3
of charge to each face it is incident with.

It is clear that all vertices have zero final charge. It suffices to consider how the
charge is distributed among the faces.

Let f be a face of size d. By Claims 4 and 5 among any five consecutive vertices
incident with f at least two are 3-vertices and at most three are 2-vertices. The charge
of f is therefore at least d−10+ 2d

5
· 2

3
− 3d

5
·1 = 2d

3
−10 which is nonnegative for d ≥ 15.

Let f be a face of size d, d ≤ 14. If it is incident with at least six 3-vertices, its
charge is at least d − 10 + 6 · 2

3
− (d − 6) · 1 = 0. Assume f is incident with (at most)

five 3-vertices. By Claim 5 there are at most two pairs of black 2-vertices incident with
f . Since g ≥ 12, there are at least seven 2-vertices incident with f . Hence d = 12, there
are two pairs of black 2-vertices and three other white 2-vertices. But then there must
be a reducible configuration from Claim 12 in G, a contradiction.

All the vertices and faces of G have nonnegative charge, a contradiction which es-
tablishes the lemma.
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