IMFM
Institute of Mathematics, Physics and Mechanics
Jadranska 19, 1000 Ljubljana, Slovenia

Preprint series

Vol. 48 (2010), 1128
ISSN 2232-2094

WIENER INDEX IN ITERATED LINE GRAPHS

M. Knor
P. Potočnik
R. Škrekovski

Ljubljana, August 31, 2010

Wiener index in iterated line graphs

M. Knor, P. Potočnik ${ }^{\dagger}$ R. Škrekovski ${ }^{\ddagger}$

July 23, 2010

Abstract

For a graph G, denote by $L^{i}(G)$ its i-iterated line graph and denote by $W(G)$ its Wiener index. We prove that the function $W\left(L^{i}(G)\right)$ is convex in variable i. Moreover, this function is strictly convex if G is different from a path, a claw $K_{1,3}$ and a cycle. As an application we prove that $W\left(L^{i}(T)\right) \neq$ $W(T)$ for every $i \geq 3$ if T is a tree in which no leaf is adjacent to a vertex of degree $2, T \neq K_{1}$ and $T \neq K_{2}$.

1 Introduction

Let $G=(V(G), E(G))$ be a graph. For any two of its vertices, say u and v, we let $d(u, v)$ denote the distance from u to v in G. The Wiener index of $G, W(G)$, is defined as

$$
W(G)=\sum_{u \neq v} d(u, v)
$$

where the sum is taken through all unordered pairs of vertices of G, see [8]. Wiener index has many applications in chemistry, see e.g. [5], therefore it is widely studied by chemists. It attracted the attention of mathematicians in 1970's and it was introduced under the name of transmission or the distance of a graph, see [4] and [7].

The line graph of $G, L(G)$, has vertex set identical with the set of edges of G, i.e. $V(L(G))=E(G)$. Two vertices of $L(G)$ are adjacent if and only if the corresponding

[^0]edges are adjacent in G. Iterated line graphs are defined inductively as follows:
\[

L^{i}(G)= $$
\begin{cases}G & \text { if } i=0 \\ L\left(L^{i-1}(G)\right) & \text { if } i>0\end{cases}
$$
\]

A connected graph is trivial if it contains no edges, i.e., if it has at most one vertex. As shown in [1], for any nontrivial tree T on n vertices we have $W(L(T))=$ $W(T)-\binom{n}{2}$. Hence, there is no nontrivial tree for which $W(L(T))=W(T)$. However, there are trees T satisfying $W\left(L^{2}(T)\right)=W(T)$, see e.g. [2]. In [3], the following problem was posed:

Problem 1.1 Is there any tree T satisfying equality $W\left(L^{i}(T)\right)=W(T)$ for some $i \geq 3$?

If G is a trivial graph, then clearly $W\left(L^{i}(G)\right)=W(G)=0$ for all $i \geq 0$. Therefore it is reasonable to consider only nontrivial graphs. However, there are also other graphs, which behave "trivially". If G is a cycle, then $L(G)=G$ and consequently $W\left(L^{i}(G)\right)=W(G)$ for every $i \geq 0$. For a claw $K_{1,3}$ the graph $L\left(K_{1,3}\right)$ is a triangle, so that $L\left(K_{1,3}\right)=L^{i}\left(K_{1,3}\right)$ and consequently $W\left(L\left(K_{1,3}\right)\right)=W\left(L^{i}\left(K_{1,3}\right)\right)$ for every $i \geq 1$. Finally, for a path on n vertices, P_{n}, we have $L\left(P_{n}\right)=P_{n-1}$ if $n>1$, while $L\left(P_{1}\right)$ is the empty graph. Hence, $W\left(L^{i}\left(P_{n}\right)\right)=0$ if $i \geq n$. These three classes of graphs are exceptional. If G is distinct from a path, a cycle and the claw $K_{1,3}$, then $\lim _{i \rightarrow \infty}\left|V\left(L^{i}(G)\right)\right|=\infty$, see [6]. Therefore graphs, different from a path, a cycle and the claw $K_{1,3}$, are called prolific.

Define a function $f_{G}(i)=W\left(L^{i}(G)\right)$. What is the behaviour of f_{G} ? If G is a connected non-prolific graph then f_{G} is a constant function for $i \geq i_{G}$, where i_{G} is a constant depending on G. But, we do not know, for instance, if it can happen for some i that $f_{G}(i)>f_{G}(0)$ and $f_{G}(i+1)<f_{G}(0)$. Therefore it is important to study the general behaviour of f_{G}. We prove here the following basic statement:

Theorem 1.2 Let G be a connected graph. Then $f_{G}(i)$ is a convex function. Moreover, $f_{G}(i)$ is strictly convex if G is a prolific graph.

We remark that $h(i)$ is convex function if $h(i)+h(i+2) \geq 2 h(i+1)$ for every $i \geq 0$, and $h(i)$ is strictly convex if $h(i)+h(i+2)>2 h(i+1)$.

By the analysis above, the first part of Theorem 1.2 is a straightforward consequence of the second. Theorem 1.2 has following consequences for Problem 1.1.

Corollary 1.3 Let T be a tree such that $W\left(L^{k}(T)\right)>W(T)$ for some k. Then $W\left(L^{i}(T)\right)>W(T)$ for every $i \geq k$.

Computer experiments showed us that there is a big proportion of trees for which already $W\left(L^{3}(T)\right)>W(T)$. Although we have no formula for counting $W\left(L^{3}(G)\right)$ using distances in G, we can use the following corollary of Theorem 1.2.

Corollary 1.4 Let T be a nontrivial tree such that $2 W\left(L^{2}(T)\right) \geq W(T)+W(L(T))$. Then $W\left(L^{3}(T)\right)>W(T)$.

By a 2^{+}-tree we call a tree which is different from K_{1} and K_{2}, and in which no leaf is adjacent to a vertex of degree 2. Using Corollary 1.4 we prove the following statement:

Theorem 1.5 Let T be a 2^{+}-tree different from $K_{1,3}$. Then $W\left(L^{3}(T)\right)>W(T)$.
Hence, if T is a 2^{+}-tree different from $K_{1,3}$, then $W\left(L^{i}(T)\right)>W(T)$ for every $i \geq 3$, by Corollary 1.3. As $W\left(K_{1,3}\right)=9$ and $W\left(L^{j}\left(K_{1,3}\right)\right)=3$ for every $j \geq 1$, we infer that $W\left(L^{i}(T)\right) \neq W(T)$ for every 2^{+}-tree T and every $i \geq 3$. We remark that extension of Theorem 1.5 to other trees is considered in a forthcoming paper.

The outline of this paper is as follows. In the next section we give formulae for $W(G)$ and $W\left(L^{2}(G)\right)$ involving the degrees and distances in G. In the third section we prove:

Theorem 1.6 Let G be a connected graph distinct from an isolated vertex and a cycle. Then $W\left(L^{2}(G)\right)-2 W(L(G))+W(G)>0$.
which implies Theorem 1.2. Finally, in the last section we prove Theorem 1.5.

2 Preliminaries

In our proofs, we do not find $W(L(G))$ and $W\left(L^{2}(G)\right)$ by first constructing $L(G)$ and $L^{2}(G)$ and afterwards counting the distances in $L(G)$ and $L^{2}(G)$. Instead, we compute distances included in $W(L(G))$ and $W\left(L^{2}(G)\right)$ already in G. For this, we use the representation of vertices of $L(G)$ and $L^{2}(G)$ in G.

By the definition of the line graph, every vertex $w \in V(L(G))$ corresponds to an edge of G. Let us denote by $B_{1}(w)$ this edge of G. Analogously, every vertex $x \in V\left(L^{2}(G)\right)$ corresponds to a path of length two in G, denote this path by $B_{2}(x)$. In fact, vertices of $L(G)$ are in one-to-one correspondence with edges of G, and vertices of $L^{2}(G)$ are in one-to-one correspondence with paths of length two in G.

Let S_{1} and S_{2} be two edge-disjoint subgraphs of G. We define the distance $d\left(S_{1}, S_{2}\right)$ to be the length of a shortest path in G joining a vertex of S_{1} to a vertex of S_{2}. Further, if S_{1} and S_{2} share $s \geq 1$ edges, then we set $d\left(S_{1}, S_{2}\right)=-s$. With thus defined function d, the following holds for any $w, z \in V(L(G))$ and any $x, y \in$ $V\left(L^{2}(G)\right)$:

$$
\begin{align*}
d_{L(G)}(w, z) & =d\left(B_{1}(w), B_{1}(z)\right)+1 \tag{1}\\
d_{L^{2}(G)}(x, y) & =d\left(B_{2}(x), B_{2}(y)\right)+2 \tag{2}
\end{align*}
$$

We remark that although there is no one-to-one correspondence between the vertices of $L^{i}(G), i \geq 3$, and subgraphs of G, there are tools for counting distances between vertices of $L^{i}(G)$ already in G, see [6].

Lemma 2.1 Let $u, v \in V(G)$ and let $w, z \in V(L(G))$ such that $u \in V\left(B_{1}(w)\right)$ and $v \in V\left(B_{1}(z)\right)$. Then for some $i \in\{-1,0,1\}$ the following holds:

$$
d_{L(G)}(w, z)=d\left(B_{1}(w), B_{1}(z)\right)+1=d(u, v)+i .
$$

Proof. The first equality follows from (1). Since $B_{1}(w)$ contains u and one neighbour of u, while $B_{1}(z)$ contains v and one neighbour of v, we have

$$
d(u, v)-2 \leq d\left(B_{1}(w), B_{1}(z)\right) \leq d(u, v)
$$

Therefore, $d\left(B_{1}(w), B_{1}(z)\right)+1=d(u, v)+i$, where $-1 \leq i \leq 1$.

Let u and v be two distinct vertices of G. For $i \in\{-1,0,1\}$, let $\alpha_{i}(u, v)$ denote the number of pairs w, z for which $u \in V\left(B_{1}(w)\right), v \in V\left(B_{1}(z)\right)$ and $d\left(B_{1}(w), B_{1}(z)\right)=d(u, v)-1+i$.

In the sequel, denote by d_{u} and d_{v} the degrees of u and v, respectively.
Proposition 2.2 Let G be a connected graph. Then

$$
W(L(G))=\frac{1}{4} \sum_{u \neq v}\left[d_{u} d_{v} d(u, v)-\alpha_{-1}(u, v)+\alpha_{1}(u, v)\right]+\frac{1}{4} \sum_{u \in V(G)}\binom{d_{u}}{2},
$$

where the first sum runs through all unordered pairs $u, v \in V(G)$.
Proof. By definition we have

$$
W(L(G))=\sum_{\left\{u u^{\prime}, v v^{\prime}\right\}} d_{L(G)}\left(u u^{\prime}, v v^{\prime}\right),
$$

where the sum runs through all pairs of edges $u u^{\prime}, v v^{\prime}$ of G. By considering the ordered choices for the vertices $u, v, u^{\prime}, v^{\prime}$, one gets

$$
W(L(G))=\frac{1}{8} \sum_{u \in V(G)} \sum_{v \in V(G)} \sum_{u^{\prime} \in N(u)} \sum_{v^{\prime} \in N(v)} d_{L(G)}\left(u u^{\prime}, v v^{\prime}\right) .
$$

Let us first consider the contribution of ordered pairs $u, v \in V(G)$ with $u \neq v$. Then in view of Lemma 2.1, we see that $d_{L(G)}\left(u u^{\prime}, v v^{\prime}\right)=d(u, v)+i$ for some $i \in\{-1,0,1\}$. By summing over all ordered pairs $(u, v), u \neq v$, one thus gets the contribution of $d_{u} d_{v} d(u, v)$ minus the number of choices for $u^{\prime} \in N(u)$ and $v^{\prime} \in N(v)$ such that $d_{L(G)}\left(u u^{\prime}, v v^{\prime}\right)=d(u, v)-1$ plus the number of choices for u^{\prime} and v^{\prime} such that $d_{L(G)}\left(u u^{\prime}, v v^{\prime}\right)=d(u, v)+1$. This contribution is thus

$$
\frac{1}{8} \sum_{u \in V(G)} \sum_{v \in V(G) \backslash\{u\}}\left[d_{u} d_{v} d(u, v)-\alpha_{-1}(u, v)+\alpha_{1}(u, v)\right],
$$

which clearly equals the first sum in the statement of the proposition.
On the other hand, if $u=v$, then $d_{L(G)}\left(u u^{\prime}, v v^{\prime}\right)=1$ if $u^{\prime} \neq v^{\prime}$ (and 0 otherwise). The contribution of such a pair $\{u, v\}$ to $W(L(G))$ thus equals to

$$
\frac{1}{8} \sum_{u^{\prime} \in N(u)} \sum_{v^{\prime} \in N(u)} 1=\frac{1}{8} d_{u}\left(d_{u}-1\right)=\frac{1}{4} \sum_{u \in V(G)}\binom{d_{u}}{2} .
$$

The result now follows by adding up the two contributions.

In a tree, every pair of vertices is joined by a unique path, so that $\alpha_{-1}(u, v)=1$ and $\alpha_{1}(u, v)=\left(d_{u}-1\right)\left(d_{v}-1\right)$. Hence, we obtain the following consequence of Proposition 2.2.

Corollary 2.3 Let T be a tree. Then

$$
W(L(T))=\frac{1}{4} \sum_{u \neq v}\left[d_{u} d_{v} d(u, v)-1+\left(d_{u}-1\right)\left(d_{v}-1\right)\right]+\frac{1}{4} \sum_{u}\binom{d_{u}}{2},
$$

where the first sum runs through all unordered pairs $u, v \in V(G)$ and the second one runs through all $u \in V(G)$.

Now we turn our attention to $L^{2}(G)$.
Lemma 2.4 Let $u, v \in V(G)$ and let $x, y \in V\left(L^{2}(G)\right)$ such that u is the center of the path $B_{2}(x)$ and v is the center of $B_{2}(y)$. Then for some $i \in\{0,1,2\}$, the following holds:

$$
d_{L^{2}(G)}(x, y)=d\left(B_{2}(x), B_{2}(y)\right)+2=d(u, v)+i .
$$

Proof. The first equality is simply a restatement of formula (2). Since $B_{2}(x)$ contains u and two neighbours of u, while $B_{2}(y)$ contains v and two neighbours of v, analogously as in the proof of Lemma 2.1 we have $d(u, v)-2 \leq d\left(B_{1}(w), B_{1}(z)\right) \leq$ $d(u, v)$. Therefore, $d\left(B_{2}(x), B_{2}(y)\right)+2=d(u, v)+i$, where $0 \leq i \leq 2$.

Let u and v be two distinct vertices of G. For $i \in\{0,1,2\}$, denote by $\beta_{i}(u, v)$ the number of pairs $x, y \in V\left(L^{2}(G)\right)$, for which u is the center of $B_{2}(x)$, the vertex v is the center of $B_{2}(y)$, and $d\left(B_{2}(x), B_{2}(y)\right)=d(u, v)-2+i$.

Proposition 2.5 Let G be a connected graph. Then

$$
\begin{aligned}
W\left(L^{2}(G)\right)= & \sum_{u \neq v}\left[\binom{d_{u}}{2}\binom{d_{v}}{2} d(u, v)+\beta_{1}(u, v)+2 \beta_{2}(u, v)\right] \\
& +\sum_{u \in V(G)}\left[3\binom{d_{u}}{3}+6\binom{d_{u}}{4}\right],
\end{aligned}
$$

where the first sum runs through all unordered pairs $u, v \in V(G)$.

Proof. For a pair $\{u, v\}$ of vertices of G, let $C(u, v)$ be the set of all pairs $\{x, y\}$ of distinct vertices of $L^{2}(G)$ with the centre of one of $\left\{B_{2}(x), B_{2}(y)\right\}$ being u and the centre of the other being v. Then

$$
W\left(L^{2}(G)\right)=\sum_{x \neq y} d_{L^{2}(G)}(x, y)=\sum_{\{u, v\}} \sum_{\{x, y\} \in C(u, v)} d_{L^{2}(G)}(x, y),
$$

where $\{u, v\}$ runs through the set of all unordered pairs of vertices of G. Let us now determine the contribution of a fixed such pair $\{u, v\}$ to the above sum.

If $u \neq v$, then by Lemma 2.4, for every $i \in\{0,1,2\}$ we have precisely $\beta_{i}(u, v)$ pairs x, y such that $d_{L^{2}(G)}(x, y)=d(u, v)+i$. Moreover, note that $|C(u, v)|=\binom{d_{u} u}{2}\binom{d_{v}}{2}$. Therefore, the contribution of the pair $\{u, v\}$ is $\binom{d_{u}}{2}\binom{d_{v}}{2} d(u, v)+\beta_{1}(u, v)+2 \beta_{2}(u, v)$.

If $u=v$, then for a pair $\{x, y\} \in C(u, v)$ we see that $d_{L^{2}(G)}(x, y)$ equals 0 (when $B_{2}(x)=B_{2}(y)$) or 1 (when $B_{2}(x)$ and $B_{2}(y)$ share exactly one edge) or 2 (when $B_{2}(x)$ and $B_{2}(y)$ are edge-disjoint). The number of pairs $\{x, y\} \in C(u, v)$ for which $B_{2}(x)$ and $B_{2}(y)$ share exactly one edge is $3\binom{d_{u}}{3}$ and the number of pairs $\{x, y\} \in C(u, v)$ for which $B_{2}(x)$ and $B_{2}(y)$ are edge-disjoint is $3\binom{d_{u}}{4}$. Hence, all these pairs contribute $3\binom{d_{u}}{3}+6\binom{d_{u}}{4}$ to $W\left(L^{2}(G)\right)$.

As already mentioned above, in a tree every pair of vertices is joined by a unique path. Therefore $\beta_{0}(u, v)=\left(d_{u}-1\right)\left(d_{v}-1\right), \beta_{1}(u, v)=\left(d_{u}-1\right)\binom{d_{v}-1}{2}+\binom{d_{u}-1}{2}\left(d_{v}-1\right)$ and $\beta_{2}(u, v)=\binom{d_{u}-1}{2}\binom{d_{v}-1}{2}$. Observe that $\beta_{0}(u, v)+\beta_{1}(u, v)+\beta_{2}(u, v)=\binom{d_{u}}{2}\binom{d_{v}}{2}$. Hence, we have the following consequence of Proposition 2.5.

Corollary 2.6 Let T be a tree. Then

$$
\begin{aligned}
& W\left(L^{2}(T)\right)=\sum_{u \neq v}\left[\binom{d_{u}}{2}\binom{d_{v}}{2} d(u, v)+\left(d_{u}-1\right)\binom{d_{v}-1}{2}\right. \\
& \left.+\binom{d_{u}-1}{2}\left(d_{v}-1\right)+2\binom{d_{u}-1}{2}\binom{d_{v}-1}{2}\right] \\
& +\sum_{u \in V(T)}\left[3\binom{d_{u}}{3}+6\binom{d_{u}}{4}\right] \text {, }
\end{aligned}
$$

where the first sum runs through all unordered pairs $u, v \in V(G)$.

3 Convexity of Wiener index

Define

$$
A(G)=\sum_{u \neq v}\left(\binom{d_{u}}{2}\binom{d_{v}}{2}-\frac{d_{u} d_{v}}{2}+1\right) d(u, v)
$$

$$
\begin{aligned}
B(G) & =\sum_{u \neq v}\left[\beta_{1}(u, v)+2 \beta_{2}(u, v)+\frac{\alpha_{-1}(u, v)}{2}-\frac{\alpha_{1}(u, v)}{2}\right] \\
C(G) & =\sum_{u}\left[3\binom{d_{u}}{3}+6\binom{d_{u}}{4}-\frac{1}{2}\binom{d_{u}}{2}\right]
\end{aligned}
$$

where the first two sums run through all unordered pairs $u, v \in V(G)$ and the third one runs through all $u \in V(G)$. By Propositions 2.2 and 2.5 we have

Proposition 3.1 Let G be a connected graph. Then

$$
W\left(L^{2}(G)\right)-2 W(L(G))+W(G)=A(G)+B(G)+C(G)
$$

We will now prove the inequality $A(G)+B(G)+C(G)>0$ in two steps. First we prove the following:

Lemma 3.2 Let G be a connected graph other than an isolated vertex or a cycle. Then $A(G)+C(G)>0$.

Proof. Denote by $a_{G}(u, v)$ the summand of $A(G)$ corresponding to u and v. Since

$$
\begin{aligned}
\binom{d_{u}}{2}\binom{d_{v}}{2}-\frac{d_{u} d_{v}}{2}+1 & =\frac{\left(d_{u}^{2}-d_{u}\right)\left(d_{v}^{2}-d_{v}\right)-2 d_{u} d_{v}+4}{4} \\
& =\frac{d_{u} d_{v}\left(d_{u} d_{v}-d_{u}-d_{v}-1\right)+4}{4}
\end{aligned}
$$

we have

$$
\begin{equation*}
A(G)=\sum_{u \neq v} a_{G}(u, v)=\sum_{u \neq v} \frac{d_{u} d_{v}\left(d_{u} d_{v}-d_{u}-d_{v}-1\right)+4}{4} d(u, v) \tag{3}
\end{equation*}
$$

Further, denote by $c_{G}(u)$ the summand of $C(G)$ corresponding to u. Then

$$
\begin{align*}
C(G) & =\sum_{u} c_{G}(u)=\sum_{u}\left[3\binom{d_{u}}{3}+6\binom{d_{u}}{4}-\frac{1}{2}\binom{d_{u}}{2}\right] \\
& =\sum_{u}\left[\frac{d_{u}\left(d_{u}-1\right)\left(2 d_{u}-4\right)}{4}+\frac{d_{u}\left(d_{u}-1\right)\left(d_{u}^{2}-5 d_{u}+6\right)}{4}+\frac{d_{u}\left(d_{u}-1\right)(-1)}{4}\right] \\
& =\sum_{u}\left[\frac{d_{u}\left(d_{u}-1\right)\left(d_{u}^{2}-3 d_{u}+1\right)}{4}\right] \tag{4}
\end{align*}
$$

Let us first focus on $C(G)$. Since $x^{2}-3 x+1$ is a quadratic function with minimum at $x=\frac{3}{2}$, and since its values at $x=2$ and $x=3$ are -1 and 1 , respectively, we
have $c_{G}(u)=0$ for $d_{u}=1 ; c_{G}(u)=-\frac{1}{2}$ for $d_{u}=2$ and $c_{G}(u)>0$ for $d_{u} \geq 3$. Hence, $C(G) \geq-n_{2} / 2$, where n_{2} is the number of vertices of degree 2 in G.

Suppose now that the statement of the lemma is wrong, and let G be a minimal (with respect to $|V(G)|$) counterexample. We will now split the proof into two cases, depending on whether G has a vertex of degree 1 or not.

Let us first consider the case where G is a graph with minimum degree $\delta(G) \geq 2$, not isomorphic to a cycle. Let $\{u, v\}$ be an unordered pair of vertices of G and assume that u is the one with smaller degree, that is, $d_{u} \leq d_{v}$. If $d_{u} \geq 3$, then

$$
a_{G}(u, v) \geq \frac{d_{u} d_{v}\left(d_{u} d_{v}-d_{u}-d_{v}-1\right)+4}{4} \geq \frac{3 d_{v}\left(3 d_{v}-d_{v}-d_{v}-1\right)+4}{4}>1 .
$$

On the other hand, if $d_{u}=2$, then

$$
\begin{aligned}
a_{G}(u, v) & \geq \frac{d_{u} d_{v}\left(d_{u} d_{v}-d_{u}-d_{v}-1\right)+4}{4}=\frac{2 d_{v}\left(2 d_{v}-2-d_{v}-1\right)+4}{4} \\
& =\frac{d_{v}^{2}-3 d_{v}+2}{2}=\frac{\left(d_{v}-1\right)\left(d_{v}-2\right)}{2} \geq 0 .
\end{aligned}
$$

Denote by n the number of vertices of G and let v be a vertex of maximum degree in G. If $d_{v} \geq 4$, then by the above we have that $a_{G}(u, v)>1$ for every $u \in V(G)$, $u \neq v$, and therefore $A(G)>n-1 \geq n_{2}$. If $d_{v}=3$, then $a_{G}(u, v) \geq 1$ for every $u \in V(G), u \neq v$. In this case there is at least one more vertex of degree 3 in G, so we have $A(G) \geq n-1>n_{2}$. Therefore in both cases we see that $A(G)>n_{2}$, and thus $A(G)+C(G)>n_{2}-\frac{n_{2}}{2} \geq 0$, as claimed.

Suppose now that G has a vertex of degree 1. Then remove from G this vertex and the incident edge, and denote the resulting graph by G^{\prime}. Then one of the following occurs:
(i) $G^{\prime} \cong K_{1}$ is an isolated vertex;
(ii) $G^{\prime} \cong C_{n}$ is a cycle;
(iii) G^{\prime} is neither an isolated vertex nor a cycle.

If (i) occurs, then $G \cong K_{2}$, and so $A(G)=\frac{1}{2}$ by (3) and $C(G)=0$ by (4). Hence, $A(G)+C(G)>0$ in this case, as claimed.

If (ii) occurs, then G is isomorphic to a cycle C_{n} with a pending edge attached to it. Let x and y be the vertices in G of degree 3 and 1, respectively (note that $d_{u}=2$ for any $\left.u \notin\{x, y\}\right)$. Then we have

$$
a_{G}(u, v)= \begin{cases}0 & \text { if }\{u, v\} \cap\{x, y\}=\emptyset \\ -\frac{1}{2} & \text { if }\{u, v\}=\{x, y\}, \\ 0 & \text { if }\{u, v\}=\{y, z\} \text { for } z \neq x \\ d(u, v) & \text { if }\{u, v\}=\{z, x\} \text { for } z \neq y\end{cases}
$$

Since G has $n-1$ vertices of degree 2 , one vertex of degree 1 and one vertex of degree 3 , the last two vertices being adjacent, we infer $A(G) \geq-\frac{1}{2}+n-1$. As $C(G) \geq-\frac{n_{2}}{2}=-\frac{n-1}{2}$ and $n \geq 3$, we conclude $A(G)+C(G) \geq \frac{n-2}{2}>0$. Hence the statement of the lemma holds in this case.

If (iii) occurs, then by minimality of G^{\prime} we know that $A\left(G^{\prime}\right)+C\left(G^{\prime}\right)>0$. To conclude the proof of lemma it remains to show that introducing a pendant edge to G^{\prime} cannot decrease the value of $A\left(G^{\prime}\right)+C\left(G^{\prime}\right)$.

Let u be a vertex of degree d_{u} in G^{\prime} and let G be obtained from G^{\prime} by adding a single edge $u a$, where a is a new vertex. We show that $A(G)-A\left(G^{\prime}\right) \geq \frac{1}{2}$.

Observe that $C(G)=C\left(G^{\prime}\right)-c_{G^{\prime}}(u)+c_{G}(u)+c_{G}(a)$. We have $c_{G}(a)=0$. Moreover, $c_{G}(u)-c_{G^{\prime}}(u)>0$ if $d_{u} \geq 2$, while $c_{G}(u)-c_{G^{\prime}}(u)=-\frac{1}{2}$ if $d_{u}=1$, see (4). Thus, $C(G)-C\left(G^{\prime}\right) \geq-\frac{1}{2}$, so that if we prove $A(G)-A\left(G^{\prime}\right) \geq \frac{1}{2}$, we obtain $A(G)+C(G) \geq A\left(G^{\prime}\right)+C\left(G^{\prime}\right)$, as desired.

To avoid fractions, we investigate the difference $4 A(G)-4 A\left(G^{\prime}\right)$ and we prove that $4 A(G)-4 A\left(G^{\prime}\right) \geq 2$. In $4 A(G)-4 A\left(G^{\prime}\right)$ the terms which do not contain neither u nor a cancel out. Hence, we need to consider only the terms corresponding to u in both $A\left(G^{\prime}\right)$ and $A(G)$ and we have to add the terms corresponding to a, together with the term corresponding to the pair (a, u), see (3). We obtain:

$$
\begin{aligned}
4 A(G)-4 A\left(G^{\prime}\right)= & \sum_{v \in V\left(G^{\prime}\right) \backslash\{u\}}\left[\left(\left(d_{u}+1\right) d_{v}\left(\left(d_{u}+1\right) d_{v}-d_{u}-d_{v}-2\right)+4\right) d(u, v)\right. \\
& \quad-\left(d_{u} d_{v}\left(d_{u} d_{v}-d_{u}-d_{v}-1\right)+4\right) d(u, v) \\
& \left.+\left(1 d_{v}\left(1 d_{v}-d_{v}-2\right)+4\right)(d(u, v)+1)\right] \\
& +\left(1\left(d_{u}+1\right)\left(1\left(d_{u}+1\right)-d_{u}-3\right)+4\right) 1 \\
= & \sum_{v \in V\left(G^{\prime}\right) \backslash\{u\}}\left[2\left(d_{u} d_{v}-2\right)\left(d_{v}-1\right) d(u, v)-2 d_{v}+4\right]-2 d_{u}+2 .
\end{aligned}
$$

Let $g(u, v)=\left(d_{u} d_{v}-2\right)\left(d_{v}-1\right) d(u, v)-d_{v}+2$. Then

$$
4 A(G)-4 A\left(G^{\prime}\right)=2\left(\sum_{v \in V\left(G^{\prime}\right) \backslash\{u\}} g(u, v)-d_{u}+1\right)
$$

Now, if always $g(u, v) \geq 1$, then $4 A(G)-4 A\left(G^{\prime}\right) \geq 2\left(\sum_{v} 1-d_{u}+1\right) \geq 2$. If $d_{v}=1$, then $g(u, v)=1$. On the other hand, if $d_{v} \geq 2$, then $g(u, v)=\left(d_{u} d_{v}-\right.$ $2)\left(d_{v}-1\right) d(u, v)-d_{v}+2 \geq\left(d_{v}-2\right)-d_{v}+2=0$, with equality holding only if $d_{u}=1$ (and also $d_{v}=2$ and $d(u, v)=1$). Hence, if $d_{u}>1$ then $g(u, v) \geq 1$ for every v and $4 A(G)-4 A\left(G^{\prime}\right) \geq 2$. Suppose therefore that $d_{u}=1$. Then $4 A(G)-4 A\left(G^{\prime}\right)=$ $2 \sum_{v} g(u, v)$. We already know that $g(u, v) \geq 0$ for every v and that $g(u, v)=0$ only if $d_{v}=2$ (and $d(u, v)=1$). Hence, $2 \sum_{v} g(u, v)=0$ only if all the vertices $v \in V\left(G^{\prime}\right), v \neq u$, have degrees 2 . Since $d_{u}=1$, we cannot have $d_{v}=2$ for every
$v \in V\left(G^{\prime}\right) \backslash\{u\}$, so that $4 A(G)-4 A\left(G^{\prime}\right)=2 \sum_{v} g(u, v)>0$. Since $g(u, v)$ is integer, we have $4 A(G)-4 A\left(G^{\prime}\right) \geq 2$ also in this case.

Thus, in any case $A(G)-A\left(G^{\prime}\right) \geq \frac{1}{2}$, so that $A(G)+C(G) \geq A\left(G^{\prime}\right)+C\left(G^{\prime}\right)$, and the lemma is proved.

Lemma 3.3 Let G be a connected graph distinct from an isolated vertex and a cycle. Then $B(G) \geq 0$.

Proof. Consider distinct vertices $u, v \in V(G)$. Partition the neighbours of u into three sets S_{1}, S_{2} and S_{3} :

$$
\begin{aligned}
& S_{1}=\{a ; d(a, v)=d(u, v)-1\} \\
& S_{2}=\{a ; d(a, v)=d(u, v)\} \\
& S_{3}=\{a ; d(a, v)=d(u, v)+1\}
\end{aligned}
$$

Analogously partition the neighbours of v into three sets T_{1}, T_{2} and T_{3} :

$$
\begin{aligned}
& T_{1}=\{b ; d(b, u)=d(u, v)-1\} \\
& T_{2}=\{b ; d(b, u)=d(u, v)\} \\
& T_{3}=\{b ; d(b, u)=d(u, v)+1\}
\end{aligned}
$$

Denote by $b(u, v)$ the summand of $B(G)$ corresponding to u and v. Further, denote by $b_{2}(u, v)$ the part of $b(u, v)$ corresponding to $W\left(L^{2}(G)\right)$ (i.e., $b_{2}(u, v)=$ $\left.\beta_{1}(u, v)+2 \beta_{2}(u, v)\right)$ and denote by $b_{1}(u, v)$ the part of $b(u, v)$ corresponding to $2 W(L(G))$ (i.e., $\left.b_{1}(u, v)=\left(-\alpha_{-1}(u, v)+\alpha_{1}(u, v)\right) / 2\right)$. Then $b(u, v)=b_{2}(u, v)-$ $b_{1}(u, v)$. We find a lower bound for $b_{2}(u, v)$ and an upper bound for $b_{1}(u, v)$, and we show that $b_{2}(u, v)-b_{1}(u, v) \geq 0$, which establish the lemma.

Consider the vertices x and y of $L^{2}(G)$ such that u is the center of $B_{2}(x)$ and v is the center of $B_{2}(y)$. Moreover, denote by u_{1} and u_{2} the other vertices of $B_{2}(x)$ and denote by v_{1} and v_{2} the other vertices of $B_{2}(v)$. Then $B_{2}(x)=\left(u_{1}, u, u_{2}\right)$ and $B_{2}(y)=\left(v_{1}, v, v_{2}\right)$. There are several possibilities.

- $\left\{u_{1}, u_{2}\right\} \cap S_{1} \neq \emptyset$ and $\left\{v_{1}, v_{2}\right\} \cap T_{1} \neq \emptyset$: Then $d_{L^{2}(G)}(x, y)=d\left(B_{2}(x), B_{2}(y)\right)+$ $2 \geq d(u, v)+0$. Hence, the pair x, y adds at least 0 to $b_{2}(u, v)$ in this case.
- $\left\{u_{1}, u_{2}\right\} \cap S_{1} \neq \emptyset$ and $\left\{v_{1}, v_{2}\right\} \cap T_{1}=\emptyset$: Then $d_{L^{2}(G)}(x, y) \geq d(u, v)+1$. Hence, the pair x, y adds at least 1 to $b_{2}(u, v)$ in this case.
- $\left\{u_{1}, u_{2}\right\} \cap S_{1}=\emptyset,\left\{u_{1}, u_{2}\right\} \cap S_{2} \neq \emptyset$ and $\left\{v_{1}, v_{2}\right\} \cap\left(T_{1} \cup T_{2}\right) \neq \emptyset$: Then $d_{L^{2}(G)}(x, y) \geq d(u, v)+1$.
- $\left\{u_{1}, u_{2}\right\} \cap S_{1}=\emptyset,\left\{u_{1}, u_{2}\right\} \cap S_{2} \neq \emptyset$ and $\left\{v_{1}, v_{2}\right\} \cap\left(T_{1} \cup T_{2}\right)=\emptyset$: Then $d_{L^{2}(G)}(x, y) \geq d(u, v)+2$.
- $\left\{u_{1}, u_{2}\right\} \cap\left(S_{1} \cup S_{2}\right)=\emptyset$ and $\left\{v_{1}, v_{2}\right\} \cap T_{1} \neq \emptyset$: Then $d_{L^{2}(G)}(x, y) \geq d(u, v)+1$.
- $\left\{u_{1}, u_{2}\right\} \cap\left(S_{1} \cup S_{2}\right)=\emptyset$ and $\left\{v_{1}, v_{2}\right\} \cap T_{1}=\emptyset$: Then $d_{L^{2}(G)}(x, y) \geq d(u, v)+2$.

For $i=1,2,3$, denote by s_{i} and t_{i} the size of S_{i} and T_{i}, respectively. Then the above bounds force that

$$
\begin{align*}
b_{2}(u, v) \geq 0 & +\left[\binom{s_{1}+s_{2}+s_{3}}{2}-\binom{s_{2}+s_{3}}{2}\right]\binom{t_{2}+t_{3}}{2} \\
& +\left[\binom{s_{2}+s_{3}}{2}-\binom{s_{3}}{2}\right]\left[\binom{t_{1}+t_{2}+t_{3}}{2}-\binom{t_{3}}{2}\right] \\
& +2\left[\binom{s_{2}+s_{3}}{2}-\binom{s_{3}}{2}\right]\binom{t_{3}}{2} \\
& +\binom{s_{3}}{2}\left[\binom{t_{1}+t_{2}+t_{3}}{2}-\binom{t_{2}+t_{3}}{2}\right]+2\binom{s_{3}}{2}\binom{t_{2}+t_{3}}{2} \\
= & {\left[\binom{s_{1}+s_{2}+s_{3}}{2}-\binom{s_{2}+s_{3}}{2}\right]\binom{t_{2}+t_{3}}{2} } \\
& +\left[\binom{s_{2}+s_{3}}{2}-\binom{s_{3}}{2}\right]\left[\binom{t_{1}+t_{2}+t_{3}}{2}+\binom{t_{3}}{2}\right] \\
& +\binom{s_{3}}{2}\left[\binom{t_{1}+t_{2}+t_{3}}{2}+\binom{t_{2}+t_{3}}{2}\right] . \tag{5}
\end{align*}
$$

Now consider the vertices w and z of $L(G)$ such that $u \in B_{1}(w)$ and $v \in B_{1}(z)$. Denote by u_{1} the other vertex of $B_{1}(w)$ and denote by v_{1} the other vertex of $B_{1}(z)$. Then $B_{1}(w)=\left(u, u_{1}\right)$ and $B_{1}(z)=\left(v, v_{1}\right)$. There are two possibilities.

- $u_{1} \in S_{1}$: Then there is at least one $v_{1} \in T_{1}$ such that $d\left(B_{1}(w), B_{1}(z)\right)=$ $d(u, v)-2$. In this case $d_{L(G)}(w, z)=d\left(B_{1}(w), B_{1}(z)\right)+1=d(u, v)-1$. For other $v_{1} \in N(v)$ we have $d_{L(G)}(w, z) \leq d(u, v)$.
- $u_{1} \in S_{2} \cup S_{3}$: Then for every $v_{1} \in T_{1}$ we have $d_{L(G)}(w, z) \leq d(u, v)$. For $v_{1} \in T_{2} \cup T_{3}$ we have $d_{L(G)}(w, z) \leq d(u, v)+1$.

This means that (recall that $\left.b_{1}(u, v)=\left(-\alpha_{-1}(u, v)+\alpha_{1}(u, v)\right) / 2\right)$

$$
b_{1}(u, v) \leq-\frac{s_{1}}{2}+\frac{\left(s_{2}+s_{3}\right)\left(t_{2}+t_{3}\right)}{2}
$$

Analogously one can derive

$$
b_{1}(u, v) \leq-\frac{t_{1}}{2}+\frac{\left(s_{2}+s_{3}\right)\left(t_{2}+t_{3}\right)}{2}
$$

so that

$$
b_{1}(u, v) \leq \frac{\left(s_{2}+s_{3}\right)\left(t_{2}+t_{3}\right)}{2}-\frac{s_{1}}{4}-\frac{t_{1}}{4}
$$

In the following we prove that $b(u, v)=b_{2}(u, v)-b_{1}(u, v) \geq 0$. Observe that the unique negative term in $b_{2}(u, v)-b_{1}(u, v)$ is $\left(s_{2}+s_{3}\right)\left(t_{2}+t_{3}\right) / 2$. If we show that one of the three terms of (5) is not smaller than $\left(s_{2}+s_{3}\right)\left(t_{2}+t_{3}\right) / 2$, then we are done.

Observe that $s_{1} \geq 1$. This means that

$$
\binom{s_{1}+s_{2}+s_{3}}{2}-\binom{s_{2}+s_{3}}{2} \geq\binom{ s_{2}+s_{3}+1}{2}-\binom{s_{2}+s_{3}}{2}=s_{2}+s_{3} .
$$

If $t_{2}+t_{3} \geq 2$ then $\binom{t_{2}+t_{3}}{2} \geq \frac{t_{2}+t_{3}}{2}$. This means that if $t_{2}+t_{3} \geq 2$ then for the first term of (5) we have

$$
\left[\binom{s_{1}+s_{2}+s_{3}}{2}-\binom{s_{2}+s_{3}}{2}\right]\binom{t_{2}+t_{3}}{2} \geq \frac{\left(s_{2}+s_{3}\right)\left(t_{2}+t_{3}\right)}{2}
$$

so that $b(u, v)=b_{2}(u, v)-b_{1}(u, v) \geq 0$ in this case.
Obviously, if $t_{2}+t_{3}=0$, then $\left(s_{2}+s_{3}\right)\left(t_{2}+t_{3}\right) / 2=0$ and we have $b(u, v)=$ $b_{2}(u, v)-b_{1}(u, v) \geq 0$ again.

Thus, consider the remaining case $t_{2}+t_{3}=1$. In this case (5) reduces to

$$
\begin{aligned}
b_{2}(u, v) & \geq\left[\binom{s_{2}+s_{3}}{2}-\binom{s_{3}}{2}\right]\binom{t_{1}+1}{2}+\binom{s_{3}}{2}\binom{t_{1}+1}{2} \\
& =\binom{s_{2}+s_{3}}{2}\binom{t_{1}+1}{2} \geq\binom{ s_{2}+s_{3}}{2}
\end{aligned}
$$

as $t_{1} \geq 1$. Now if $s_{2}+s_{3} \geq 2$ then $\binom{s_{2}+s_{3}}{2} \geq \frac{s_{2}+s_{3}}{2}$ and consequently $b_{2}(u, v) \geq$ $\left(s_{2}+s_{3}\right)\left(t_{2}+t_{3}\right) / 2$. Thus, suppose that $s_{2}+s_{3}=1$, as in the case $s_{2}+s_{3}=0$ we have $b(u, v) \geq 0$ trivially. Then

$$
-b_{1}(u, v) \geq \frac{s_{1}}{4}+\frac{t_{1}}{4}-\frac{\left(s_{2}+s_{3}\right)\left(t_{2}+t_{3}\right)}{2} \geq \frac{1}{4}+\frac{1}{4}-\frac{1}{2}=0
$$

as both s_{1} and t_{1} are at least 1. Therefore $b(u, v)=b_{2}(u, v)-b_{1}(u, v) \geq 0$ also in this case.

Since we proved $b(u, v) \geq 0$ in all cases, we have $B(G) \geq 0$ and the lemma is proved.

Proof of Theorem 1.6. By Proposition 3.1 we have $W\left(L^{2}(G)\right)-2 W(L(G))+$ $W(G)=A(G)+B(G)+C(G)$. By Lemma 3.2 we have $A(G)+C(G)>0$ and by Lemma 3.3 we have $B(G) \geq 0$ for every graph G distinct from an isolated vertex and a cycle. Hence $A(G)+B(G)+C(G)>0$ for such a graph.

4 Wiener index of 2^{+}-trees

Here we prove Theorem 1.5 using Corollary 1.4. For any tree T, different from an isolated vertex, define

$$
D(T)=8 W\left(L^{2}(T)\right)-4 W(L(T))-4 W(T)
$$

If $D(T) \geq 0$ then also $\frac{1}{4} D(T) \geq 0$ and by Corollary 1.4 we obtain $W\left(L^{3}(T)\right)>$ $W(T)$.

Proposition 4.1 Let T be a tree different from an isolated vertex. Then

$$
\begin{aligned}
D(T)= & \sum_{u \neq v}\left(d_{u} d_{v}\left[2\left(d_{u}-1\right)\left(d_{v}-1\right)-1\right]-4\right) d(u, v) \\
& +\sum_{u \neq v}\left(\left(d_{u}-1\right)\left(d_{v}-1\right)\left[4\left(d_{u}-1\right)\left(d_{v}-1\right)-5\right]+1\right) \\
& +\sum_{u} \frac{1}{2} d_{u}\left(d_{u}-1\right)\left[4\left(d_{u}-1\right)\left(d_{u}-2\right)-1\right],
\end{aligned}
$$

where the first two sums run through all unordered pairs $u, v \in V(G)$ and the third one goes through all $u \in V(G)$.

Proof. By Corolaries 2.3 and 2.6 we have

$$
\begin{aligned}
D(T)= & 8\left(\sum _ { u \neq v } \left[\binom{d_{u}}{2}\binom{d_{v}}{2} d(u, v)+\left(d_{u}-1\right)\binom{d_{v}-1}{2}+\binom{d_{u}-1}{2}\left(d_{v}-1\right)\right.\right. \\
& \left.\left.+2\binom{d_{u}-1}{2}\binom{d_{v}-1}{2}\right]+\sum\left[3\binom{d u}{3}+6\binom{d_{u}}{4}\right]\right) \\
& -\frac{4}{4}\left(\sum_{u \neq v}\left[d_{u} d_{v} d(u, v)-1+\left(d_{u}-1\right)\left(d_{v}-1\right)\right]+\sum_{u}\binom{d_{u}}{2}\right) \\
& -4 \sum_{u \neq v} d(u, v)
\end{aligned}
$$

and by reordering the terms we obtain the statement of the proposition.

We start with stars.
Lemma 4.2 If $G=K_{1, k}$ is a star with $k \geq 4$, then $D(G) \geq 0$.

Proof. In $K_{1, k}$ there are k vertices of degree 1 and one vertex of degree k. Moreover, there are $\binom{k}{2}$ pairs of vertices at distance 2 where both vertices are of degree 1 , and there are k pairs of vertices at distance 1 where one of these vertices has degree 1 and the other one has degree k. Substituting these pairs and singletons into Proposition 4.1, we obtain

$$
\begin{aligned}
D\left(K_{1, k}\right)= & \binom{k}{2}[(-1-4) 2+1]+k[(-k-4) 1+1] \\
& +k \cdot 0+\frac{1}{2} k(k-1)[4(k-1)(k-2)-1] \\
= & \frac{k^{2}-k}{2}(-9)+\left(-k^{2}-3 k\right)+\left(2 k^{4}-8 k^{3}+\frac{19}{2} k^{2}-\frac{7}{2} k\right) \\
= & 2\left[(k-4) k^{3}+(2 k-1) k\right] .
\end{aligned}
$$

Since $k \geq 4$, we have $D\left(K_{1, k}\right) \geq 0$.

Lemma 4.2 will serve for the basis of induction, using which we prove Theorem 1.5. However, since the statement of Lemma 4.2 is not true for $k=3$, we need to extend the result slightly; denote by H the tree having six vertices, out of which two have degree 3 and the remaining four have degree 1. (Then H is a graph which "looks" like the letter H.)

Lemma 4.3 It holds $D(H)=-4$ and $W\left(L^{3}(H)\right)>W(H)$.
Proof. Observe that $L(H)$ consists of two triangles sharing a common vertex, while $L^{2}(H)$ consists of a clique K_{4}, two vertices of which are adjacent to one extra vertex of degree 2 , while the other two vertices of this clique are adjacent to another extra vertex of degree 2. It is easy to calculate that $W(H)=29, W(L(H))=14$, $W\left(L^{2}(H)\right)=21$ and $W\left(L^{3}(H)\right)=64$, where $W\left(L^{3}(H)\right)$ can be evaluated using distances between edges of $L^{2}(H)$. Hence $W\left(L^{3}(H)\right)>W(H)$ and $D(H)=8 \cdot 21-$ $4 \cdot 14-4 \cdot 29=-4$.

Observe that every vertex of degree 1 in a 2^{+}-tree is adjacent with a vertex whose degree is at least 3 .

Lemma 4.4 Let T be a 2^{+}-tree and let a be a leaf of T. Let T^{\prime} be the tree obtained from T by attaching k leaves at $a, k \geq 2$. Then $D\left(T^{\prime}\right) \geq D(T)+20$.

Proof. Many pairs of vertices have in T the same degrees and distance as in T^{\prime}. These pairs we do not need to consider, as the corresponding terms will cancel

$$
\begin{aligned}
& \text { out. We need to consider only the pairs involving } a \text { in both } D\left(T^{\prime}\right) \text { and } D(T) \text {, and } \\
& \text { the pairs involving pendant vertices adjacent to } a \text {. Of course, we have to take in } \\
& \text { mind that the degree of } a \text { is } 1 \text { in } T \text { and } k+1 \text { in } T^{\prime} \text {. Hence, using Proposition } 4.1 \\
& \text { we obtain (the sums go through } u \in V(T) \backslash\{a\} \text {) } \\
& D\left(T^{\prime}\right)-D(T)=\sum_{u}\left(d_{u}(k+1)\left[2\left(d_{u}-1\right) k-1\right]-4\right) d(u, a) \\
& +\sum_{u}\left(\left(d_{u}-1\right) k\left[4\left(d_{u}-1\right) k-5\right]+1\right) \\
& -\sum_{u}\left(d_{u}[-1]-4\right) d(u, a)-\sum_{u} 1 \\
& +k \sum_{u}\left(d_{u}[-1]-4\right)(d(u, a)+1)+k \sum_{u} 1 \\
& +k((k+1)[-1]-4) \cdot 1+k \cdot 1+\binom{k}{2}(1[-1]-4) \cdot 2 \\
& +\binom{k}{2} \cdot 1+\frac{1}{2}(k+1) k[4 k(k-1)-1]-0 \\
& =\sum_{u}\left(2 k^{2} d_{u}\left(d_{u}-1\right)+2 k d_{u}\left(d_{u}-1\right)\right. \\
& \left.-d_{u} k-d_{u}-4+d_{u}+4-k d_{u}-4 k\right) d(u, a) \\
& +\sum_{u}\left(4 k^{2}\left(d_{u}-1\right)^{2}-5 k\left(d_{u}-1\right)+1-1-k d_{u}-4 k+k\right) \\
& -k^{2}-5 k+k-5 k^{2}+5 k+\frac{k^{2}}{2}-\frac{k}{2}+2 k^{4}-2 k^{2}-\frac{k^{2}}{2}-\frac{k}{2} \\
& =k \sum_{u}\left(\left(2 k d_{u}\left(d_{u}-1\right)+2\left(d_{u}-1\right)^{2}-6\right) d(u, a)\right. \\
& \left.+4 k\left(d_{u}-1\right)^{2}-6\left(d_{u}-1\right)-4\right) \\
& +2 k^{2}\left(k^{2}-4\right) \text {. }
\end{aligned}
$$

Let $g(u)=\left[2 k d_{u}\left(d_{u}-1\right)+2\left(d_{u}-1\right)^{2}-6\right] d(u, a)+4 k\left(d_{u}-1\right)^{2}-6\left(d_{u}-1\right)-4$. Then

$$
D\left(T^{\prime}\right)-D(T)=k \sum_{u \in V(T) \backslash\{a\}} g(u)+2 k^{2}\left(k^{2}-4\right) .
$$

If $d_{u} \geq 2$, then $2 k d_{u}\left(d_{u}-1\right)+2\left(d_{u}-1\right)^{2}-6 \geq 4$ and $\left(d_{u}-1\right)\left(4 k\left(d_{u}-1\right)-6\right)-4 \geq$ -2 , so that $g(u) \geq 4-2>0$. On the other hand, $g(u)=-6 d(u, a)-4<0$ if $d_{u}=1$. Nevertheless, we show that $\sum_{u} g(u) \geq 10$.

Let S be the set of vertices of degree at least 3 in T. For every $u \in S$ denote by $S(u)$ the set consisting of u and all pendant vertices of T adjacent to u. Then $S(u) \cap S\left(u^{\prime}\right)=\emptyset$ for every $u, u^{\prime} \in S, u \neq u^{\prime}$. Since $\cup_{u \in S} S(u)$ contains all vertices of $V(T) \backslash\{a\}$, whose degree is different from 2 , and since $g(v)>0$ if $d_{v}=2$, we have

$$
\sum_{v} g(v) \geq \sum_{u \in S} \sum_{v \in S(u)} g(v) .
$$

Let $u \in S$. We find a lower bound for $\sum_{v \in S(u)} g(v)$. Suppose that u is adjacent to l leaves in T, where $l \leq d_{u}-1$. Then

$$
\begin{aligned}
\sum_{v \in S(u)} g(v)= & \left(2 k d_{u}\left(d_{u}-1\right)+2\left(d_{u}-1\right)^{2}-6\right) d(u, a)+4 k\left(d_{u}-1\right)^{2} \\
& -6\left(d_{u}-1\right)-4-6 l(d(u, a)+1)-4 l .
\end{aligned}
$$

Note that for every vertex v of degree 1 we have $g(v)<0$. Since $l \leq d_{u}-1$, we obtain

$$
\begin{aligned}
\sum_{v \in S(u)} g(v) \geq & \left(2 k d_{u}\left(d_{u}-1\right)+2\left(d_{u}-1\right)^{2}-6\right) d(u, a)+4 k\left(d_{u}-1\right)^{2} \\
& -6\left(d_{u}-1\right)-4-6\left(d_{u}-1\right)(d(u, a)+1)-4\left(d_{u}-1\right) \\
= & \left(\left(2 k d_{u}-6\right)\left(d_{u}-1\right)+2\left(d_{u}-1\right)^{2}-6\right) d(u, a) \\
& +\left(4 k\left(d_{u}-1\right)-16\right)\left(d_{u}-1\right)-4 .
\end{aligned}
$$

Since $k \geq 2, d_{u} \geq 3$ and $d(u, a) \geq 1$, we have

$$
\sum_{v \in S(u)} g(v) \geq 14 d(u, a)-4 \geq 10
$$

Notice that $2 k^{2}\left(k^{2}-4\right) \geq 0$. As T is not a path, we have $|S| \geq 1$, so that

$$
k \sum_{v} g(v)+2 k^{2}\left(k^{2}-4\right) \geq k \sum_{u \in S} \sum_{v \in S(u)} g(v) \geq \sum_{u \in S} 10 k \geq 10 k \geq 20
$$

Observe that $W\left(K_{1,3}\right)=9$ while $W\left(L^{i}\left(K_{1,3}\right)\right)=3$ for $i \geq 1$, so that $D\left(K_{1,3}\right)=$ $8 \cdot 3-4 \cdot 3-4 \cdot 9=-24$. Therefore $D(H)-D\left(K_{1,3}\right)=20$, so that the statement of Lemma 4.4 is sharp.

Lemma 4.5 Let T be a 2^{+}-tree, and let a be a vertex of degree $k+1$ in $T, k \geq 2$, such that a is adjacent to exactly k pendant vertices in T. Denote by a^{\prime} the unique vertex adjacent to a, whose degree is greater than 1 . Subdivide once the edge $a^{\prime} a$ and denote the resulting graph by T^{\prime}. Then $D\left(T^{\prime}\right) \geq D(T)+8$.

Proof. Analogously as in the proof of Lemma 4.4, it is enough to consider only those pairs of vertices, whose distance or degrees in T and T^{\prime}, are different. Denote by b the vertex subdividing the edge $a^{\prime} a$ in T^{\prime}. In $D\left(T^{\prime}\right)$ we need to add pairs containing b, as these pairs do not occure in terms of $D(T)$. Moreover, for all pairs which are connected by a path containing b, we need to increase their distance by 1 . Finally, we need to include a single term depending on the degree of b. Hence, using Proposition 4.1 we obtain (the sums go through $u \in V(T)$ such that $u-b$ path in T^{\prime} does not contain a, and $d(u, a)$ is considered in $\left.T\right)$

$$
\begin{aligned}
D\left(T^{\prime}\right)-D(T)= & \sum_{u}\left(2 d_{u}\left[2\left(d_{u}-1\right)-1\right]-4\right) d(u, a) \\
& +\sum_{u}\left(\left(d_{u}-1\right)\left[4\left(d_{u}-1\right)-5\right]+1\right) \\
& +(2(k+1)[2 k-1]-4) \cdot 1+k[4 k-5]+1 \\
& +k(2[-1]-4) \cdot 2+k \\
& +\sum_{u}\left(d_{u}(k+1)\left[2\left(d_{u}-1\right) k-1\right]-4\right) \\
& +k \sum_{u}\left(d_{u}[-1]-4\right)+\frac{1}{2} 2[-1] \\
= & \sum_{u}\left(2 d_{u}\left[2 d_{u}-3\right]-4\right) d(u, a) \\
& +\sum_{u}\left[\left(d_{u}-1\right)\left(4 d_{u}-6\right)-3 d_{u}+3+1+2 d_{u} k^{2}\left(d_{u}-1\right)\right. \\
& \left.+d_{u}^{2} k+d_{u}^{2} k-2 d_{u} k-d_{u} k-d_{u}-4-k d_{u}-4 k\right] \\
& +4 k^{2}+2 k-6+4 k^{2}-5 k+1-12 k+k-1 \\
= & \sum_{u}\left(\left(2 d_{u}\left[2 d_{u}-3\right]-4\right) d(u, a)+2 d_{u} k\left(k\left(d_{u}-1\right)-2\right)\right. \\
& \left.+d_{u}\left(d_{u} k-4\right)+k\left(d_{u}^{2}-4\right)+\left(d_{u}-1\right) 2\left(2 d_{u}-3\right)\right) \\
& +2 k(4 k-7)-6
\end{aligned}
$$

Recall that $k \geq 2$. If $d_{u} \geq 2$ then $2 d_{u}\left[2 d_{u}-3\right]-4 \geq 0, k\left(d_{u}-1\right)-2 \geq 0$, $d_{u} k-4 \geq 0, d_{u}^{2}-4 \geq 0$ and also $\left(d_{u}-1\right) 2\left(2 d_{u}-3\right) \geq 0$. Hence, $h(u) \geq 0$ in this case. On the other hand, $h(u)=-6 d(u, a)-6 k-4<0$ if $d_{u}=1$. Nevertheless, we show that $\sum_{u} h(u) \geq 10$.

Analogously as in the proof of Lemma 4.4, let S be the set of vertices of degree at least 3 of $V(T) \backslash\{a\}$. For every $u \in S$ denote by $S(u)$ the set consisting of u and all pendant vertices of T adjacent to u. Then $S(u) \cap S\left(u^{\prime}\right)=\emptyset$ for every $u, u^{\prime} \in S$, $u \neq u^{\prime}$. Observe that $\cup_{u \in S} S(u)$ contains all vertices v of $V(T)$, for which $v-b$ path in T^{\prime} does not contain a and which degree is different from 2 . Since $h(v) \geq 0$ if $d_{v}=2$, we have

$$
\sum_{v} h(v) \geq \sum_{u \in S} \sum_{v \in S(u)} h(v) .
$$

Let $u \in S$. We find a lower bound for $\sum_{v \in S(u)} h(v)$. Suppose that u is adjacent to l leaves in T, where $l \leq d_{u}-1$. Then

$$
\begin{aligned}
\sum_{v \in S(u)} h(v)= & \left(2 d_{u}\left(2 d_{u}-3\right)-4\right) d(u, a)+2 d_{u} k\left(k\left(d_{u}-1\right)-2\right) \\
& +d_{u}\left(d_{u} k-4\right)+k\left(d_{u}^{2}-4\right)+\left(d_{u}-1\right) 2\left(2 d_{u}-3\right) \\
& -6 l(d(u, a)+1)-6 k l-4 l .
\end{aligned}
$$

Since for every vertex v of degree 1 we have $h(v)<0$ and since $l \leq d_{u}-1$, we have

$$
\begin{aligned}
\sum_{v \in S(u)} h(v) \geq & \left(2 d_{u}\left(2 d_{u}-3\right)-4\right) d(u, a)+2 d_{u} k\left(k\left(d_{u}-1\right)-2\right) \\
& +d_{u}\left(d_{u} k-4\right)+k\left(d_{u}^{2}-4\right)+\left(d_{u}-1\right) 2\left(2 d_{u}-3\right) \\
& -6\left(d_{u}-1\right)(d(u, a)+1)-6 k\left(d_{u}-1\right)-4\left(d_{u}-1\right) \\
= & \left(2 d_{u}\left(2 d_{u}-6\right)+2\right) d(u, a)+2 d_{u} k\left(k\left(d_{u}-1\right)-4\right) \\
& +d_{u}\left(2 d_{u} k-2 k-4\right)-4 k+\left(4 d_{u}^{2}-10 d_{u}+6\right) \\
& -6 d_{u}+6+6 k-4 d_{u}+4 .
\end{aligned}
$$

Since $d_{u} \geq 3$, we have $2 d_{u}-6 \geq 0$ and consequently $2 d_{u}\left(2 d_{u}-6\right)+2>0$. Thus,

$$
\begin{aligned}
\sum_{v \in S(u)} h(v) \geq & \left(4 d_{u}^{2}-12 d_{u}+2\right)+2 d_{u} k\left(k\left(d_{u}-1\right)-4\right) \\
& +d_{u}\left(2 d_{u} k-2 k-8\right)+\left(4 d_{u}^{2}-16 d_{u}+10\right)+2 k+6 \\
= & 2 d_{u} k\left(k\left(d_{u}-1\right)-4\right)+2 d_{u}\left(k\left(d_{u}-1\right)-4\right) \\
& +\left(8 d_{u}^{2}-28 d_{u}+12\right)+2(k+3) \\
= & 2 d_{u}(k+1)\left(k\left(d_{u}-1\right)-4\right)+4\left(2 d_{u}-1\right)\left(d_{u}-3\right)+2(k+3)
\end{aligned}
$$

Since $d_{u} \geq 3$ and $k \geq 2$, we have $k\left(d_{u}-1\right)-4 \geq 0$ and $d_{u}-3 \geq 0$, so that

$$
\sum_{v \in S(u)} h(v) \geq 2(k+3) \geq 10
$$

Since $k \geq 2$, we have $2 k(4 k-7)-6 \geq-2$. As T is not a path, we have $|S| \geq 1$, so that

$$
\sum_{v} h(v)+2 k(k-7)-6 \geq \sum_{u \in S} \sum_{v \in S(u)} h(v)-2 \geq \sum_{u \in S} 10-2 \geq 10-2 \geq 8
$$

Denote by H^{s} a tree obtained by subdividing the central edge of H. Since $W\left(H^{s}\right)=48, W\left(L\left(H^{s}\right)\right)=27$ and $W\left(L^{2}\left(H^{s}\right)\right)=38$, we have $D\left(H^{s}\right)=4$. By Lemma 4.3 $D(H)=-4$, so that Lemma 4.5 is sharp for $T=H$.

Proof of Theorem 1.5. By induction we prove that $D(T) \geq 0$ if T is 2^{+}-tree different from $K_{1,3}$ and H. If T is a star $K_{1, k}, k \geq 4$, then $D(T) \geq 0$ by Lemma 4.2, while $D(H)=-4$ by Lemma 4.3. Thus, suppose that T has at least two vertices of degree at least 3 and T is different from H.

Denote by T^{*} a subgraph of T formed by vertices of degree at least 2 . Then T^{*} is a nontrivial tree, so that it has at least two pendant vertices. Denote by a a pendant vertex of T^{*}, whose degree in T is the smallest possible. Moreover, denote by v a vertex of T^{*} which is adjacent to a. Consider the degree of v in T. We distinguish two cases.

- $d_{v} \geq 3$: Remove from T all pendant vertices adjacent to a, together with the corresponding edges, and denote the resulting graph by T^{\prime}. In T^{\prime} the vertex a has degree 1 and is adjacent to v, where $d_{v} \geq 3$. Thus, T^{\prime} is a 2^{+}-tree. Since $T \neq H$, by the choice of a if T^{\prime} has only one vertex of degree at least 3 , then T^{\prime} is $K_{1, k}$, where $k \geq 4$, so that $D\left(T^{\prime}\right) \geq 0$, by Lemma 4.2. If T^{\prime} has at least two vertices of degree at least 3 , then $D\left(T^{\prime}\right)=-4$ if T^{\prime} is H by Lemma 4.3, while otherwise $D\left(T^{\prime}\right) \geq 0$ by induction. Since $D(T) \geq D\left(T^{\prime}\right)+20$ by Lemma 4.4, we have $D(T) \geq 0$.
- $d_{v}=2$: Denote by a^{\prime} the vertex of T adjacent to $v, a^{\prime} \neq a$. Remove from T the vertex v and the edges $v a$ and $v a^{\prime}$, insert the edge $a a^{\prime}$, and denote the resulting graph by T^{\prime}. Then T^{\prime} is a 2^{+}-tree having at least two vertices of degree at least 3. Hence $D\left(T^{\prime}\right)=-4$ if $T^{\prime}=H$ by Lemma 4.3 , while otherwise $D\left(T^{\prime}\right) \geq 0$ by induction. Since $D(T) \geq D\left(T^{\prime}\right)+8$ by Lemma 4.5 , we have $D(T) \geq 0$.

Hence, in both cases we have $D(T) \geq 0$. Since $D(T)=4\left[2 W\left(L^{2}(T)\right)-W(L(T))-\right.$ $W(T)$], by Corollary 1.4, we have $W\left(L^{3}(T)\right)>W(T)$ for every 2^{+}-tree different from $K_{1,3}$ and H.

By Lemma 4.3 we have also $W\left(L^{3}(H)\right)>W(H)$, so that $W\left(L^{3}(T)\right)>W(T)$ for every 2^{+}-tree different from $K_{1,3}$.

Acknowledgements. The first author acknowledges partial support by Slovak research grants VEGA 1/0489/08, APVV-0040-06 and APVV-0104-07, and the second the support of Slovenian research agency ARRS, project number J1-0540.

References

[1] F. Buckley, Mean distance in line graphs, Congr. Numer. 32 (1981), 153-162.
[2] A. A. Dobrynin, Distance of iterated line graphs, Graph Theory Notes of New York 37 (1999), 50-54.
[3] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66(3) (2001), 211-249.
[4] R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976), 283-296.
[5] I. Gutman, I. G. Zenkevich, Wiener index and vibrational energy, Z. Naturforsch. 57 A (2002), 824-828.
[6] L. Niepel, M. Knor, L. Šoltés, Distances in iterated line graphs, Ars Combin. 43 (1996), 193-202.
[7] J. Plesník, On the sum of all distances in a graph or digraph, J. Graph Theory 8 (1984), 1-21.
[8] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.

[^0]: *Slovak University of Technology, Faculty of Civil Engineering, Department of Mathematics, Radlinského 11, 813 68, Bratislava, Slovakia, knor@math.sk.
 ${ }^{\dagger}$ Faculty of Mathematics and Physics, University of Ljubljana, and Institute of Mathematics, Physics and Mechanics, Jadranska 21, 1111 Ljubljana, Slovenia, primoz.potocnik@fmf.uni-lj.si.
 ${ }^{\ddagger}$ Faculty of Mathematics and Physics, University of Ljubljana, and Institute of Mathematics, Physics and Mechanics, Jadranska 21, 1111 Ljubljana, Slovenia, skrekovski@gmail.com.

