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Abstract

For a graph G, denote by L‘(G) its i-iterated line graph and denote by
W (@) its Wiener index. We prove that the function W (L!(G)) is convex in
variable . Moreover, this function is strictly convex if G is different from a
path, a claw Kj 3 and a cycle. As an application we prove that W (L(T)) #
W (T) for every ¢ > 3 if T is a tree in which no leaf is adjacent to a vertex of
degree 2, T # K; and T # K».

1 Introduction

Let G = (V(G), E(G)) be a graph. For any two of its vertices, say u and v, we let
d(u,v) denote the distance from u to v in G. The Wiener indez of G, W(G), is

defined as
W(G) =) _d(u,v),
uFU

where the sum is taken through all unordered pairs of vertices of G, see [8]. Wiener
index has many applications in chemistry, see e.g. [5], therefore it is widely studied
by chemists. It attracted the attention of mathematicians in 1970’s and it was
introduced under the name of transmission or the distance of a graph, see [4] and
[7].

The line graph of G, L(G), has vertex set identical with the set of edges of G, i.e.
V(L(G)) = E(G). Two vertices of L(G) are adjacent if and only if the corresponding
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edges are adjacent in GG. Iterated line graphs are defined inductively as follows:

i G ifi=20
Le) = { LLFY(G)) ifi> 0.

A connected graph is trivial if it contains no edges, i.e., if it has at most one
vertex. As shown in [1], for any nontrivial tree 7" on n vertices we have W (L(T)) =
W(T) — (3). Hence, there is no nontrivial tree for which W (L(T)) = W(T). How-
ever, there are trees T satisfying W(L?(T)) = W(T), see e.g. [2]. In [3], the following
problem was posed:

Problem 1.1 Is there any tree T satisfying equality W (L'(T)) = W(T) for some
1>37

If G is a trivial graph, then clearly W (L'(G)) = W(G) = 0 for all 4 > 0. There-
fore it is reasonable to consider only nontrivial graphs. However, there are also other
graphs, which behave “trivially”. If G is a cycle, then L(G) = G and consequently
W(LY(G)) = W(Q) for every i > 0. For a claw K3 the graph L(K3) is a triangle,
so that L(K3) = L'(K;3) and consequently W(L(K;3)) = W(L'(K,3)) for every
i > 1. Finally, for a path on n vertices, P,, we have L(P,) = P,_1 if n > 1, while
L(Py) is the empty graph. Hence, W(L'(P,)) = 0 if ¢« > n. These three classes of
graphs are exceptional. If G is distinct from a path, a cycle and the claw K 3, then
lim; . |V(LY(G))| = oo, see [6]. Therefore graphs, different from a path, a cycle
and the claw K, 3, are called prolific.

Define a function fg(i) = W(L'(G)). What is the behaviour of f¢? If G is a
connected non-prolific graph then fg is a constant function for i > ig, where 74 is
a constant depending on GG. But, we do not know, for instance, if it can happen for
some i that fg(i) > fe(0) and fo(i+1) < fo(0). Therefore it is important to study
the general behaviour of fi. We prove here the following basic statement:

Theorem 1.2 Let G be a connected graph. Then fq(i) is a convex function. More-
over, fq(i) is strictly convez if G is a prolific graph.

We remark that h(i) is convex function if h(i) + h(i + 2) > 2h(i + 1) for every
i >0, and h(i) is strictly convex if h(i) + h(i +2) > 2h(i + 1).

By the analysis above, the first part of Theorem 1.2 is a straightforward conse-
quence of the second. Theorem 1.2 has following consequences for Problem 1.1.

Corollary 1.3 Let T be a tree such that W(LF(T)) > W(T) for some k. Then
W(LYT)) > W(T) for everyi > k.

Computer experiments showed us that there is a big proportion of trees for which
already W(L*(T)) > W(T). Although we have no formula for counting W(L?*(G))
using distances in G, we can use the following corollary of Theorem 1.2.

2



Corollary 1.4 Let T be a nontrivial tree such that 2W (L*(T)) > W(T)+W (L(T)).
Then W (L3(T)) > W(T).

By a 2" -tree we call a tree which is different from K; and K5, and in which no
leaf is adjacent to a vertex of degree 2. Using Corollary 1.4 we prove the following
statement:

Theorem 1.5 Let T be a 2" -tree different from Ky 3. Then W (L3 (T)) > W(T).

Hence, if T is a 27-tree different from K3, then W(LY(T)) > W(T) for every
i > 3, by Corollary 1.3. As W(K;3) =9 and W (L/(K,3)) = 3 for every j > 1, we
infer that W (L (T)) # W(T) for every 2*-tree T and every i > 3. We remark that
extension of Theorem 1.5 to other trees is considered in a forthcoming paper.

The outline of this paper is as follows. In the next section we give formulae for
W (G) and W (L*(G)) involving the degrees and distances in G. In the third section
we prove:

Theorem 1.6 Let G be a connected graph distinct from an isolated verter and a
cycle. Then W(L*(G)) — 2W(L(G)) + W(G) > 0.

which implies Theorem 1.2. Finally, in the last section we prove Theorem 1.5.

2 Preliminaries

In our proofs, we do not find W(L(G)) and W(L*(G)) by first constructing L(G)
and L?(G) and afterwards counting the distances in L(G) and L?(G). Instead, we
compute distances included in W(L(G)) and W (L?*(G)) already in G. For this, we
use the representation of vertices of L(G) and L*(G) in G.

By the definition of the line graph, every vertex w € V(L(G)) corresponds to
an edge of G. Let us denote by Bj(w) this edge of G. Analogously, every vertex
x € V(L*(G)) corresponds to a path of length two in G, denote this path by By(z).
In fact, vertices of L(G) are in one-to-one correspondence with edges of G, and
vertices of L?*(@) are in one-to-one correspondence with paths of length two in G.

Let S; and Sy be two edge-disjoint subgraphs of G. We define the distance
d(Si, S2) to be the length of a shortest path in G joining a vertex of Sy to a vertex
of Sy. Further, if S; and Sy share s > 1 edges, then we set d(S;,5;) = —s. With
thus defined function d, the following holds for any w, z € V(L(G)) and any z,y €
V(L*(G)):

dey(w.2) = d(Bi(w), By(z)) + 1, 1)
dixe(w.y) = d(Bale). Baly)) +2. 2)

We remark that although there is no one-to-one correspondence between the
vertices of L(G), 1 > 3, and subgraphs of G, there are tools for counting distances
between vertices of L(G) already in G, see [6].
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Lemma 2.1 Let u,v € V(G) and let w,z € V(L(G)) such that uw € V(B (w)) and
v € V(Bi(z)). Then for somei € {—1,0,1} the following holds:

dr)(w,2) = d(By(w), B1(2)) + 1 = d(u, v) + 1.

PROOF. The first equality follows from (1). Since Bj(w) contains u and one
neighbour of u, while B;(z) contains v and one neighbour of v, we have

d(u,v) —2 < d(Bi(w), B1(z)) < d(u,v).

Therefore, d(B;(w), Bi(2)) + 1 = d(u,v) + i, where —1 <7 < 1. O

Let uw and v be two distinct vertices of G. For ¢ € {—1,0,1}, let a;(u,v)
denote the number of pairs w,z for which v € V(By(w)), v € V(Bi(z)) and
d(By(w), B1(2)) = d(u,v) — 1 + 1.

In the sequel, denote by d, and d, the degrees of u and v, respectively.

Proposition 2.2 Let G be a connected graph. Then

1

W(L(@) = 1 3 [dud dlu,0) = aca(u,v) + s u,v)| + i 3 (cl;)
uFv ueV(G)

where the first sum runs through all unordered pairs u,v € V(QG).

PRrROOF. By definition we have

Z dre)(ud', vv'),

{uwu’ v’}

where the sum runs through all pairs of edges uu’,vv’ of G. By considering the
ordered choices for the vertices u, v, u’,v’, one gets

Z Z Z Z dre)(uu', vv").

uGV (@) veV(G) v €N (u) v'€N (v

Let us first consider the contribution of ordered pairs u,v € V(G) with u # v. Then
in view of Lemma 2.1, we see that dp ) (uu/, vv") = d(u, v)+1 for some i € {—1,0,1}.
By summing over all ordered pairs (u,v), u # v, one thus gets the contribution of
dyd,d(u,v) minus the number of choices for v’ € N(u) and v € N(v) such that
drc)(uv',vv') = d(u,v) — 1 plus the number of choices for u' and v’ such that
drc)(uu',vv") = d(u,v) + 1. This contribution is thus

Z Z [du dy d(u,v) — a_1(u,v) + oy (u,v)|,

uGV(G) veV (G)\{u}



which clearly equals the first sum in the statement of the proposition.
On the other hand, if v = v, then dp ) (v, vv’) = 1 if v’ # v' (and 0 otherwise).
The contribution of such a pair {u, v} to W(L(G)) thus equals to

£33 imgada-n=3 3 (%)
w'EN(u) v'eN(u ueV(G)

The result now follows by addlng up the two contributions. 0

In a tree, every pair of vertices is joined by a unique path, so that a_;(u,v) =1
and «a;(u,v) = (d, — 1)(d, — 1). Hence, we obtain the following consequence of
Proposition 2.2.

Corollary 2.3 Let T be a tree. Then
1 1 dy
W) =33 )~ -0 53 (5),

where the first sum runs through all unordered pairs u,v € V(G) and the second one
runs through all u € V(G).

Now we turn our attention to L?(G).

Lemma 2.4 Let u,v € V(G) and let z,y € V(L*(G)) such that u is the center
of the path Bs(x) and v is the center of Ba(y). Then for some i € {0,1,2}, the
following holds:

dLQ(G) (ZE, y) = d(BQ(‘T)v BQ(y)) +2= d(u7 U) + 1.

PROOF. The first equality is simply a restatement of formula (2). Since By(z)
contains u and two neighbours of u, while Bs(y) contains v and two neighbours of v,
analogously as in the proof of Lemma 2.1 we have d(u,v) — 2 < d(B;(w), B1(z)) <
d(u,v). Therefore, d(Bs(x), B2(y)) + 2 = d(u,v) + i, where 0 < ¢ < 2. O

Let u and v be two distinct vertices of G. For i € {0,1,2}, denote by [;(u,v)
the number of pairs z,y € V(L*(G)), for which u is the center of By(x), the vertex
v is the center of By(y), and d(By(x), B2(y)) = d(u,v) — 2 + 4.

Proposition 2.5 Let G be a connected graph. Then

W(LAG)) = ZK‘Z“) (d”>d(u,v)+ﬁ1(u,v)+2ﬁ2(u,v)

2 2
UFEV

e 2 b))

where the first sum runs through all unordered pairs u,v € V(QG).
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PROOF. For a pair {u,v} of vertices of G, let C(u,v) be the set of all pairs
{x,y} of distinct vertices of L*(G) with the centre of one of { By(), Ba(y)} being u
and the centre of the other being v. Then

W(L*(@)) = Zsz(G)(x,y) = Z Z dr2) (2, y),

T#Y {u.v} {zy}eCuw)

where {u, v} runs through the set of all unordered pairs of vertices of G. Let us now
determine the contribution of a fixed such pair {u, v} to the above sum.

If u # v, then by Lemma 2.4, for every i € {0, 1,2} we have precisely [3;(u, v) pairs
x,y such that di2gy(x,y) = d(u,v) +i. Moreover, note that |C(u,v)| = (d2“) (d;).
Therefore, the contribution of the pair {u, v} is (%) (%) d(u, v) + Bi(u, v) +23(u, v).

If w = v, then for a pair {z,y} € C(u,v) we see that dp>c)(z,y) equals 0
(when Bs(x) = Bs(y)) or 1 (when By(x) and Bsy(y) share exactly one edge) or 2
(when Bs(x) and Bs(y) are edge-disjoint). The number of pairs {z,y} € C(u,v)
for which By(x) and Bs(y) share exactly one edge is 3(%) and the number of pairs
{z,y} € C(u,v) for which By(z) and By(y) are edge-disjoint is 3(‘2‘). Hence, all

these pairs contribute 3(d§) + 6(‘2‘) to W(L*(@)). O

As already mentioned above, in a tree every pair of vertices is joined by a unique
path. Therefore By(u,v) = (dy, —1)(d, — 1), Bi(u,v) = (dy — 1) (") + (") (dy— 1)

2 2
and Fa(u,v) = (d“Q_l) (d”;). Observe that Go(u,v) + B1(u,v) + Bo(u,v) = (d;) (d;).
Hence, we have the following consequence of Proposition 2.5.

Corollary 2.6 Let T be a tree. Then

v - [(Eanrasf)

uFv
d, — 1 dy—1\ (d, — 1
u d _ 1 2 u v
(=) (%)
dy dy
= 3 1(s) (%)
ueV(T)
where the first sum runs through all unordered pairs u,v € V(G).

3 Convexity of Wiener index

AG) = Y ((012) (C;) - d“Qd“ + 1) d(u,v),

uFv

Define




B(G) = ) {ﬁl(u,v)wﬁz(u,vw O‘—I(QU’@ _ %(;w)}
uFv

c@ = X [s(5)+o(%) -3(5)]

u

where the first two sums run through all unordered pairs u,v € V(G) and the third
one runs through all u € V(G). By Propositions 2.2 and 2.5 we have

Proposition 3.1 Let G be a connected graph. Then
W(L*(G)) = 2W (L(G)) + W(G) = A(G) + B(G) + C(G).

We will now prove the inequality A(G) + B(G) 4+ C(G) > 0 in two steps. First
we prove the following:

Lemma 3.2 Let G be a connected graph other than an isolated vertex or a cycle.
Then A(G) + C(G) > 0.

PROOF. Denote by ag(u,v) the summand of A(G) corresponding to u and wv.
Since

(du> (dv) Cdudy (2 — dy) (2 — dy) — 2d, dy + 4

2 2 2 4
dydy(dydy —d, —d, —1)+4
_ . ,
we have
dy do(dy dy — dy —dy — 1) + 4
AG) =) ac(u,v)=> ; d(u,v). (3)

uFv uFv

Further, denote by c¢g(u) the summand of C(G) corresponding to u. Then

o0 - Fuo-ZHE) ()1

B dy(dy—1)(2d,—4)  dy(d,—1)(d?> = 5d, +6) dy(d,~1)(—1)
B zu: { 4 * 4 * 4

u

Let us first focus on C(G). Since 22 —3z+1 is a quadratic function with minimum

at r = %, and since its values at © = 2 and «x = 3 are —1 and 1, respectively, we
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have cg(u) =0 for d, = 1; cg(u) = —% for d, =2 and cg(u) > 0 for d, > 3. Hence,
C(G) > —ny /2, where ny is the number of vertices of degree 2 in G.

Suppose now that the statement of the lemma is wrong, and let G be a minimal
(with respect to |V (G)|) counterexample. We will now split the proof into two cases,
depending on whether GG has a vertex of degree 1 or not.

Let us first consider the case where G is a graph with minimum degree 6(G) > 2,
not isomorphic to a cycle. Let {u,v} be an unordered pair of vertices of G and
assume that v is the one with smaller degree, that is, d, < d,,. If d, > 3, then

dydy(dydy —dy —dy — 1) +4 _ 3dy(3dy, —d, — d, — 1) + 4
oo, v) > 2 ( : )+ 23 (3 - )+ -

On the other hand, if d, = 2, then

1.

dydy(dydy —dy —dy — 1)+ 4 2dy(2dy —2 —dy — 1) + 4
CLG(U,U) = 4 = 4
@2 —3d,+2  (d,—1)(d,—2)

2 2

> 0.

Denote by n the number of vertices of G and let v be a vertex of maximum degree
in G. If d, > 4, then by the above we have that ag(u,v) > 1 for every u € V(G),
u # v, and therefore A(G) > n —1 > ny. If d, = 3, then ag(u,v) > 1 for every
u € V(G), u # v. In this case there is at least one more vertex of degree 3 in G, so
we have A(G) > n — 1 > ny. Therefore in both cases we see that A(G) > ng, and
thus A(G) + C(G) > ny — % > 0, as claimed.

Suppose now that GG has a vertex of degree 1. Then remove from G this vertex
and the incident edge, and denote the resulting graph by G’. Then one of the
following occurs:

(i) G’ = K is an isolated vertex;
(ii) G' = C, is a cycle;
(i) G’ is neither an isolated vertex nor a cycle.

If (i) occurs, then G 2 K,, and so A(G) = 3 by (3) and C(G) = 0 by (4). Hence,
A(G) + C(G) > 0 in this case, as claimed.

If (ii) occurs, then G is isomorphic to a cycle C,, with a pending edge attached
to it. Let x and y be the vertices in G of degree 3 and 1, respectively (note that

d, = 2 for any u & {z,y}). Then we have

if {u,v}N{z,y} =0,

if {u, v} = {z,y},

0 if {u,v} ={y, z} for z # x,
d(u,v) if {u,v} ={z,z} for z £ y.

e}

1
CLG(U,U) - 2
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Since G has n — 1 vertices of degree 2, one vertex of degree 1 and one vertex of
degree 3, the last two vertices being adjacent, we infer A(G) > —% +n—1. As
C(G) > =2 = —251 and n > 3, we conclude A(G) + C(G) > %52 > 0. Hence the
statement of the lemma holds in this case.

If (iii) occurs, then by minimality of G’ we know that A(G’) + C(G') > 0. To
conclude the proof of lemma it remains to show that introducing a pendant edge to
G’ cannot decrease the value of A(G") + C(G").

Let u be a vertex of degree d, in G’ and let G be obtained from G’ by adding a
single edge ua, where a is a new vertex. We show that A(G) — A(G') > 3.

Observe that C(G) = C(G') — cer(u) + ca(u) + cg(a). We have cg(a) = 0.
Moreover, cg(u) — cer(u) > 0 if d, > 2, while cq(u) — cer(u) = —1 if d, = 1, see
(4). Thus, C(G) — C(G") = —3, so that if we prove A(G) — A(G') > 3, we obtain
A(G) + C(G) > A(G') + C(G'"), as desired.

To avoid fractions, we investigate the difference 4A(G) — 4A(G’) and we prove
that 4A(G)—4A(G") > 2. In 4A(G)—4A(G") the terms which do not contain neither
u nor a cancel out. Hence, we need to consider only the terms corresponding to u
in both A(G’) and A(G) and we have to add the terms corresponding to a, together

with the term corresponding to the pair (a,u), see (3). We obtain:

IAG) —4AQ) = Y [((du+1)dv((du+1)dy —dy—d,—2) + 4)d(u, v)
veV (G )\{u}

- <du dy(dydy — dy — dy — 1) + 4) d(u, v)
n <1dv(1dv —dy—2)+ 4) (d(u,v) + 1)}
+ (1(du+1)(1(du+1) —d,—3)+ 4)1

- ¥ [Q(du dy — 2)(dy — 1)d(u, v) — 2d, + 4] —2d, + 2.
veV{GH\(u)

Let g(u,v) = (d, d, — 2)(d, — 1)d(u,v) — d, + 2. Then

LA(G) — 4A(G") = 2( S gluw) —dy + 1).
veV(G)\{u}

Now, if always g(u,v) > 1, then 4A(G) — 4A(G") > 2(>_,1 —d, +1) > 2. If
d, = 1, then g(u,v) = 1. On the other hand, if d, > 2, then g(u,v) = (d.,d, —
2)(d, —1)d(u,v) —d,+2 > (d, —2) —d,+2 = 0, with equality holding only if d, =1
(and also d, = 2 and d(u,v) = 1). Hence, if d, > 1 then g(u,v) > 1 for every v
and 4A(G) — 4A(G") > 2. Suppose therefore that d, = 1. Then 4A(G) — 4A(G') =
2>, 9(u,v). We already know that g(u,v) > 0 for every v and that g(u,v) = 0
only if d, = 2 (and d(u,v) = 1). Hence, 23" g(u,v) = 0 only if all the vertices
v € V(G'), v # u, have degrees 2. Since d,, = 1, we cannot have d, = 2 for every

9



v € V(G')\{u}, so that 4A(G) —4A(G") =23, g(u,v) > 0. Since g(u, v) is integer,
we have 4A(G) — 4A(G") > 2 also in this case.

Thus, in any case A(G) — A(G") > 3, so that A(G) + C(G) > A(G") + C(G"),
and the lemma is proved. O

Lemma 3.3 Let G be a connected graph distinct from an isolated vertex and a cycle.
Then B(G) > 0.

Proor. Consider distinct vertices u,v € V(G). Partition the neighbours of u
into three sets S, So and Ss:

S1 = {a; d(a,v) =d(u,v) — 1};
Sy = {@5 d(a’ U) = d(u’ U)},
Sy = {a; d(a,v) = d(u,v) + 1}.

Ty = {b;d(byu) =d(u,v)—1};
Ty = {b;d(b,u) = d(u,v)};
Ts = {b;d(b,u) =d(u,v)+1}

Denote by b(u,v) the summand of B(G) corresponding to uw and v. Further,
denote by by(u,v) the part of b(u,v) corresponding to W (L*(G@)) (i.e., ba(u,v) =
B1(u,v) + 2P5(u,v)) and denote by by(u,v) the part of b(u,v) corresponding to
2W(L(G)) (i-e., by(u,v) = (—a—i(u,v) + a1(u,v))/2). Then b(u,v) = be(u,v) —
b1 (u,v). We find a lower bound for by(u,v) and an upper bound for b (u, v), and we
show that by(u,v) — by(u,v) > 0, which establish the lemma.

Consider the vertices z and y of L?(G) such that u is the center of By(z) and v
is the center of By(y). Moreover, denote by u; and uy the other vertices of By(z)
and denote by vy and vy the other vertices of By(v). Then By(z) = (uy,u,us) and
Bs(y) = (v1,v,v3). There are several possibilities.

[} {Ul,UQ} ﬂSl 7é @ and {Ul,?}g} ﬂTl 7é @I Then dLQ(G)('Ta y) = d(BQ([L’), Bg(y)) +
2 > d(u,v) + 0. Hence, the pair z,y adds at least 0 to by(u,v) in this case.

o {u1,ux} NSy # 0 and {vy,v2}NTy = 0: Then dp2(¢y(z,y) > d(u,v)+1. Hence,
the pair x,y adds at least 1 to by(u,v) in this case.

o {up,us} NSy = 0, {uy,us} NSy # O and {vi,v2} N (Ty UTy) # @: Then
dLQ(G’)(xay) > d(ua U) + L

o {up,us} NSy = 0, {uy,us} NSy # O and {vi,v2} N (T3 UTy) = @: Then
dLQ(G’) (l’, y) > d(ua U) +2.
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o {u,us} N(S1USs) =0 and {vy,v2} NTy # 0: Then dr2)(z,y) > d(u,v) + 1.
o {u1,us} N (S1USs) =0 and {vi,v2} NTy = 0: Then dr2(g)(z,y) > d(u,v) +2.

For ©+ = 1,2, 3, denote by s; and ¢; the size of S; and T}, respectively. Then the
above bounds force that

by(u,v) > 0+ Ksl +$22+33) B (32;53)} (tg-gtg)
A3 -G -()
A6l
GO - (550 =0 (55")
[
) -+ ()]
OO (0] ®

Now consider the vertices w and z of L(G) such that u € By(w) and v € By(z).
Denote by u; the other vertex of B;(w) and denote by v; the other vertex of By(z).
Then Bi(w) = (u,u;) and By(z) = (v,v1). There are two possibilities.

e u; € Si: Then there is at least one v; € T) such that d(Bi(w), Bi(2)) =
d(u,v) — 2. In this case de(w, 2) = d(Bi(w), Bi(2)) + 1 = d(u,v) — 1. For
other v; € N(v) we have dp ) (w, 2) < d(u,v).

o u; € S, USs: Then for every v; € T we have dp)(w,2) < d(u,v). For
vy € Ty UT5 we have dpe)(w, z) < d(u,v) + 1.

This means that (recall that by (u,v) = (—a_1(u,v) + a1 (u,v))/2)

) < -0y Lol )

Analogously one can derive

t t t
) < b 4 (bt

so that ; , ,
byfu,w) < 2B EL) ot
2 4 4
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In the following we prove that b(u,v) = by(u,v) — by (u,v) > 0. Observe that the
unique negative term in bg(u, v) — by (u, v) is (s2 + s3)(t2 +t3) /2. If we show that one
of the three terms of (5) is not smaller than (ss + s3)(f2 + t3)/2, then we are done.

Observe that s; > 1. This means that

S1 + So + S3 S9 + S3 82+83+1 Sg + S3
— Z — = S9 + S3.
2 2 2 2

If t5 +t3 > 2 then (”?3) > % This means that if ¢35 + ¢t3 > 2 then for the first
term of (5) we have

[(51 + 322 + 33) B (52 —5 53)} <t2 -g t3) > (s2 + 53)2(152 + t3)7

so that b(u,v) = by(u,v) — by(u,v) > 0 in this case.

Obviously, if t5 + t3 = 0, then (sq + s3)(t2 + t3)/2 = 0 and we have b(u,v) =
be(u,v) — by(u,v) > 0 again.

Thus, consider the remaining case ty + t3 = 1. In this case (5) reduces to

So + S3 S3 t1+1 S3 t1+1
b > —
oo = [(757) =00+ () )
. So + S3 t1+1 > So + S3
B 2 2 )= 2
as t; > 1. Now if sy + s3 > 2 then (**3%) > %215 and consequently by(u,v) >

(s2 + s3)(t2 + t3)/2. Thus, suppose that sy 4+ s3 = 1, as in the case sy + s3 = 0 we
have b(u,v) > 0 trivially. Then

S1 4 t_l _ (82 +83)(t2 +t3) Z

1
b > 21 -
1w v) 2 545 2 1

+o - =0,

1
4 2
as both sy and ¢; are at least 1. Therefore b(u,v) = by(u,v) — by(u,v) > 0 also in
this case.

Since we proved b(u,v) > 0 in all cases, we have B(G) > 0 and the lemma is
proved. O

PROOF OF THEOREM 1.6. By Proposition 3.1 we have W (L?*(G))—2W (L(G))+
W(G) = A(G) + B(G) + C(G). By Lemma 3.2 we have A(G) + C(G) > 0 and by
Lemma 3.3 we have B(G) > 0 for every graph G distinct from an isolated vertex
and a cycle. Hence A(G) + B(G) 4+ C(G) > 0 for such a graph. O

12



4 Wiener index of 27 -trees

Here we prove Theorem 1.5 using Corollary 1.4. For any tree 7', different from an
isolated vertex, define

D(T) = 8W (L*(T)) — 4W (L(T)) — 4W(T).

If D(T) > 0 then also 2D(T) > 0 and by Corollary 1.4 we obtain W (L3*(T)) >
W(T).

Proposition 4.1 Let T be a tree different from an isolated vertex. Then

D(T) = Z(dudU[Z(du—l)(dU—l)—l]—4)d(u,v)

UFv

+3 ((du —1)(d, — 1) [4(du 1) (d, —1) — 5} + 1)

uFv
+> %du(du —1) [4(du —1(du—2) - 1]7

where the first two sums run through all unordered pairs u,v € V(G) and the third
one goes through all u € V(G).

Proor. By Corolaries 2.3 and 2.6 we have

< (S [(5) € (45 (-
()b ()

—%(Z {dudyd(u,w — 14 (du = 1)(ds - 1)] t2 <d2))

uFv u
—4 Z d(u,v)
uFv
and by reordering the terms we obtain the statement of the proposition. O

We start with stars.

Lemma 4.2 If G = Ky is a star with k > 4, then D(G) > 0.

13



PrOOF. In K there are k vertices of degree 1 and one vertex of degree k.
Moreover, there are (g) pairs of vertices at distance 2 where both vertices are of
degree 1, and there are k pairs of vertices at distance 1 where one of these vertices
has degree 1 and the other one has degree k. Substituting these pairs and singletons
into Proposition 4.1, we obtain

D(K.,) = (g) [(—1 424 1] + k[(—k 41+ 1]
+k-o+%k(k—1)[4(k—1)(k—2)—1]

k* —k

19, 7
_ _ 1.2 4 3 12 0
= (-9 +(—k 3k;)+<2k: 8K + -k 2k>
- 2[(k — 41 + (2k — 1)/{]

Since k > 4, we have D(K ;) > 0. O

Lemma 4.2 will serve for the basis of induction, using which we prove Theo-
rem 1.5. However, since the statement of Lemma 4.2 is not true for k£ = 3, we need
to extend the result slightly; denote by H the tree having six vertices, out of which
two have degree 3 and the remaining four have degree 1. (Then H is a graph which
“looks” like the letter H.)

Lemma 4.3 It holds D(H) = —4 and W (L*(H)) > W(H).

PROOF. Observe that L(H) consists of two triangles sharing a common vertex,
while L?(H) consists of a clique K}, two vertices of which are adjacent to one extra
vertex of degree 2, while the other two vertices of this clique are adjacent to another
extra vertex of degree 2. It is easy to calculate that W(H) =29, W(L(H)) = 14,
W(L*(H)) = 21 and W(L*(H)) = 64, where W(L*(H)) can be evaluated using
distances between edges of L?(H). Hence W (L*(H)) > W(H) and D(H) = 8-21 —
4.14—-4-29 = —4. O

Observe that every vertex of degree 1 in a 2'-tree is adjacent with a vertex whose

degree is at least 3.

Lemma 4.4 Let T be a 2% -tree and let a be a leaf of T. Let T' be the tree obtained
from T by attaching k leaves at a, k > 2. Then D(T") > D(T') + 20.

PrRoOOF. Many pairs of vertices have in T" the same degrees and distance as in
T'. These pairs we do not need to consider, as the corresponding terms will cancel

14



out. We need to consider only the pairs involving a in both D(7") and D(T'), and
the pairs involving pendant vertices adjacent to a. Of course, we have to take in
mind that the degree of a is 1 in 7" and k£ + 1 in 7”. Hence, using Proposition 4.1
we obtain (the sums go through v € V(T') \ {a})

DT)-D(T) = Y <du(k +1) [Q(du 1)k — 1} - 4) d(u, a)

+Z ((du ~ Dk[A(d— Dk - 5] + 1)

X (dul-1] —4)d<u,a>—;1

87 (1) = 4) (d(w,a) + 1) + £ D71
+k(:k+1>[—11 1)1 ke1s () (uu—u 1)

+(§> ~1+%(k+1)k[4k(k—1)—1} 0

— Z (2k2du (dy — 1) +2kd, (d, — 1)

u

—duk—du—4+du+4—kdu—4k)d(u,a)

+Z(4k2(du—1)2—5k(du—1)+1—1—kdu—4k+k)

Kk Kk
12 _E2 M_F o g2 BN
k™ — 5k + k — 5k +5k+2 2+k k 7 3

— ¥y ((%du (dy — 1) +2(dy — 1) — 6)d(u,a)

+4k(d, — 1)* — 6(d, — 1) — 4)
+ 2K%(k* — 4).
Let g(u) = [2kd, (d, — 1) +2(d, — 1)* — 6]d(u, a) +4k(d, — 1)* —6(d, — 1) — 4. Then

DT)-DT) =k Y  g(u)+2k> (K —4).
eV (T)\{a}

If dy > 2, then 2kdy(dy—1)+2(dy —1)2—6 > 4 and (dy — 1)(4k(dy — 1) —6) —4 >
—2, so that g(u) > 4—2 > 0. On the other hand, g(u) = —6d(u,a) —4 < 0if d,, = 1.
Nevertheless, we show that ) g(u) > 10.
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Let S be the set of vertices of degree at least 3 in T'. For every u € S denote
by S(u) the set consisting of u and all pendant vertices of T adjacent to u. Then
S(u)n S(u') = 0 for every u,u’ € S, u # u'. Since U,esS(u) contains all vertices of
V(T) \ {a}, whose degree is different from 2, and since g(v) > 0 if d, = 2, we have

SozY T o

ueS veS(u

Let u € S. We find a lower bound for 3 g, 9(v). Suppose that u is adjacent
to [ leaves in T', where [ < d,, — 1. Then

3 gv) = <2k dy (dy — 1) +2(dy — 1) — 6) d(u, a) + 4k(d, — 1)?
veS(u)

C6(dy — 1) — 4 — 6l(d(u,a) + 1) Al

Note that for every vertex v of degree 1 we have g(v) < 0. Since | < d, — 1, we
obtain

3 () = <2k dy (dy — 1) +2(dy — 1)? — 6>d(u,a) + dk(d, — 1)

—6(dy — 1) — 4 — 6(dy — 1) (d(u, a) + 1) —A(dy — 1)
— ((Zk dy — 6)(dy — 1) +2(dy — 1)* — 6>d<u, a)
+ (4(dy = 1) = 16) (d, — 1) — 4.
Since k > 2, d, > 3 and d(u,a) > 1, we have

3" g(v) > 14d(u,a) — 4 > 10.
veS(u)

Notice that 2k%(k* —4) > 0. As T is not a path, we have |S| > 1, so that

ng )+ 2K (K —4) > kY Z g(v) =Y 10k > 10k > 20.

ueS veS(u u€eS

Observe that W(K;3) =9 while W(L'(K;3)) = 3 for i > 1, so that D(K;3) =
8-3—4-3—4-9= —24. Therefore D(H) — D(K; 3) = 20, so that the statement of
Lemma 4.4 is sharp.
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Lemma 4.5 Let T be a 2% -tree, and let a be a vertex of degree k +1 in T, k > 2,
such that a is adjacent to exactly k pendant vertices in T. Denote by a' the unique

vertex adjacent to a, whose degree is greater than 1. Subdivide once the edge a’a and
denote the resulting graph by T'. Then D(T") > D(T) + 8.

PrROOF. Analogously as in the proof of Lemma 4.4, it is enough to consider
only those pairs of vertices, whose distance or degrees in 17" and 1", are different.
Denote by b the vertex subdividing the edge a’a in 77. In D(T’) we need to add
pairs containing b, as these pairs do not occure in terms of D(T'). Moreover, for all
pairs which are connected by a path containing b, we need to increase their distance
by 1. Finally, we need to include a single term depending on the degree of b. Hence,
using Proposition 4.1 we obtain (the sums go through u € V(T') such that v — b
path in 7" does not contain a, and d(u, a) is considered in T')

DT -D(T) = Y (Qdu [Q(du 1) - 1} - 4) d(u, a)

+Z(d —1[ (dy— 1) — 5}+1)
+ (206 + )2k —1] —4) 1+ k|1 —5] +1
+k<2[—1]—4)-2+k

+Z( (k+1) [ (du—l)k—l] —4)
+kY (du [—1] — 4) + %2[—1]
= 3 (20 2dy — 3]~ 4)d(u,a)

u

+3 [(du —1)(4d, — 6) — 3dy + 3 + 1 + 2d, k*(dy — 1)

+d§k+d§k—2duk—duk—du—4—kdu—4k]
+4k* + 2k — 6+ 4k* =5k +1— 12k +k —1
-y ((Zdu 2d, — 3] —4)d(u,a)+2duk(k(du ~1) —2)

u

+dy (dyk —4) + k(d2 —4) + (d, — 1)2(2d,, — 3))
+2k(4k —7) — 6
= Zh ) 4 2k(4k — 7) — 6.
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Recall that £ > 2. If d, > 2 then 2d,[2d, — 3] —4 > 0, k(d, —1) —2 > 0,
dyk —4>0,d>—4>0 and also (d, — 1)2(2d, — 3) > 0. Hence, h(u) > 0 in this
case. On the other hand, h(u) = —6d(u,a) — 6k —4 < 0 if d, = 1. Nevertheless, we
show that »_ h(u) > 10.

Analogously as in the proof of Lemma 4.4, let S be the set of vertices of degree
at least 3 of V/(T') \ {a}. For every u € S denote by S(u) the set consisting of u and
all pendant vertices of T adjacent to u. Then S(u) N S(w') = O for every u,u’ € S,
u # . Observe that U,csS(u) contains all vertices v of V(T'), for which v — b path
in 7" does not contain a and which degree is different from 2. Since h(v) > 0 if

d, = 2, we have
PIGOEDY Z h(v

ueS veS(u

Let u € S. We find a lower bound for Zves(u) h(v). Suppose that u is adjacent
to [ leaves in T', where [ < d, — 1. Then

3 hw) :( W (2d, — 3) — 4>d(u,a)+2duk<k(du—1)—2>

veS(u)
+dy (dyk —4) + k(d2 — 4) + (d, — 1)2(2d,, — 3)
. 6z(d(u, a) + 1) — 6k — 4l.

Since for every vertex v of degree 1 we have h(v) < 0 and since [ < d,, — 1, we have

3 ) = <2du (2d, — 3) — 4) d(u, a) + 2d, k(k(du 1) - 2)

veS(u)
+dy (dy k — 4)+k;(d2— 4) + (d, — 1)2(2d, — 3)

—6(d—1< u, )—de—l — 4(d, - 1)

- <2du (2d, — 6) + 2)d(u, a) + 2d, k(k(du 1) - 4)
+d, (2d, k — 2k — 4) — 4k + (4d> — 10d,, + 6)
—6dy, + 6 + 6k — 4d, + 4.

Since d,, > 3, we have 2d, — 6 > 0 and consequently 2d,,(2d, — 6) + 2 > 0. Thus,

Y hv) > (42— 12d,+2) +2d, k:(k:(du 1) - 4)
veS(u)
+dy (2d, k — 2k — 8) + (4d> — 16d,, + 10) + 2k + 6

— 2, k;<k(du 1) - 4) +2d, (k;(du 1) - 4)
+ (842 — 28d,, + 12) + 2(k + 3)
— 2, (k+1) (k:(du 1) 4) +4(2d, — 1)(dy — 3) + 2(k + 3).
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Since d,, > 3 and k > 2, we have k(d, —1) —4 >0 and d,, — 3 > 0, so that

> h(v) > 2(k+3) > 10.
veS(u)

Since k > 2, we have 2k(4k —7) —6 > —2. As T is not a path, we have |S| > 1,
so that

Zh )+ 2k(k — 7—6>ZZh —22210—2210—228.

uesS vesS(u) ues

Denote by H?® a tree obtained by subdividing the central edge of H. Since
W(H®) = 48, W(L(H?®)) = 27 and W(L*(H?®)) = 38, we have D(H®*) = 4. By
Lemma 4.3 D(H) = —4, so that Lemma 4.5 is sharp for T'= H.

PROOF OF THEOREM 1.5. By induction we prove that D(T) > 0 if T is 2" -tree
different from K, 3 and H. If T' is a star K; , k > 4, then D(T) > 0 by Lemma 4.2,
while D(H) = —4 by Lemma 4.3. Thus, suppose that T has at least two vertices of
degree at least 3 and 7' is different from H.

Denote by T™ a subgraph of T" formed by vertices of degree at least 2. Then T is
a nontrivial tree, so that it has at least two pendant vertices. Denote by a a pendant
vertex of T, whose degree in T' is the smallest possible. Moreover, denote by v a
vertex of 1™ which is adjacent to a. Consider the degree of v in T. We distinguish
two cases.

e d, > 3: Remove from 7T all pendant vertices adjacent to a, together with the
corresponding edges, and denote the resulting graph by 7”. In T” the vertex a
has degree 1 and is adjacent to v, where d, > 3. Thus, 7" is a 2"-tree. Since
T # H, by the choice of a if T has only one vertex of degree at least 3, then T’
is K1 i, where k > 4, so that D(T") > 0, by Lemma 4.2. If 7" has at least two
vertices of degree at least 3, then D(7") = —4 if 7" is H by Lemma 4.3, while
otherwise D(7") > 0 by induction. Since D(T") > D(T") + 20 by Lemma 4.4,
we have D(T") > 0.

e d, = 2: Denote by a’ the vertex of T" adjacent to v, ' # a. Remove from T the
vertex v and the edges va and vad’, insert the edge aa’, and denote the resulting
graph by T”. Then T is a 2*-tree having at least two vertices of degree at least
3. Hence D(T") = —4 if T" = H by Lemma 4.3, while otherwise D(7") > 0 by
induction. Since D(T") > D(T") + 8 by Lemma 4.5, we have D(T") > 0.
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Hence, in both cases we have D(T') > 0. Since D(T') = 42W (L*(T))-W (L(T))—
W (T)], by Corollary 1.4, we have W (L*(T)) > W (T for every 2"-tree different from
K173 and H.

By Lemma 4.3 we have also W(L*(H)) > W (H), so that W (L*(T)) > W(T) for
every 27-tree different from K 3. O
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