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Abstract

We show for every k ≥ 1 that the binomial tree of order 3k has a vertex-coloring
with 2k+1 colors such that every path contains some color odd number of times. This
disproves a conjecture from [1] asserting that for every tree T the minimal number of
colors in a such coloring of T is at least the vertex ranking number of T minus one.

1 Introduction

A parity vertex coloring of a graph G is a vertex coloring such that each path in G contains
some color odd number of times. For a study of parity vertex and (similarly defined) edge
colorings, the reader is referred to [1,2]. A vertex ranking of G is a proper vertex coloring
by a linearly ordered set of colors such that every path between vertices of the same color
contains some vertex of a higher color. The minimum numbers of colors in a parity vertex
coloring and a vertex ranking of G are denoted by χp(G) and χr(G), respectively.

Clearly, every vertex ranking is also parity vertex coloring, so χp(G) ≤ χr(G) for every
graph G. Borowiecki, Budajová, Jendrol’, and Krajči [1] conjectured that for trees these
parameters behave almost the same.

Conjecture 1. For every tree T it holds χr(T ) − χp(T ) ≤ 1.
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Figure 1: (a) The coloring g(a,b,c) of B3, (b) the coloring of two subtrees B3(u) and B3(v)
with uv ∈ E(B3k).

In this note we show that the above conjecture is false for every binominal tree of order
n ≥ 5. A binomial tree Bn of order n ≥ 0 is a rooted tree defined recursively. B0 = K1

with the only vertex as its root. The binomial tree Bn for n ≥ 1 is obtained by taking
two disjoint copies of Bn−1 and joining their roots by an edge, then taking the root of the
second copy to be the root of Bn.

Binomial trees have been under consideration also in other areas. For example, Bn is
a spanning tree of the n-dimensional hypercube Qn that has been conjectured [3] to have
the minimum average congestion among all spanning trees of Qn. In [1] it was shown, in
our notation, that χr(Bn) = n + 1 for all n ≥ 0.

We show that χp(B3k) ≤ 2k + 1 for every k ≥ 1, which hence disproves the above
conjecture. More precisely, for the purpose of induction we prove a stronger statement in
the below theorem. Let us say that a color c on a vertex-colored path P is

• inner, if c does not appear on the endvertices of P ,

• single, if c appears exactly once on P .

Moreover, we say that a vertex of Bn is even (resp. odd) if its distance to the root is even
(resp. odd).

Theorem 2. For every k ≥ 1 the binomial tree B3k has a parity vertex coloring with 2k+1
colors such that every path of length at least 2 has an inner single color.

Proof. For k = 1 we define the coloring f : V (B3) → {1, 2, 3} by f = g(1,2,3) where g(a,b,c) is
defined on Figure 1(a). Observe that f satisfies the statement. In what follows, we assume
k ≥ 2.

The binomial tree B3k+3 can be viewed as B3k with a copy of B3 hanged on each vertex.
See Figure 2 for an illustration. For a vertex v ∈ V (B3k), let us denote the copy of B3

hanged on v by B3(v). Let f ′ be the coloring of B3k with colors {1, 2, . . . , 2k +1} obtained
by induction and let i = 2k + 2, j = 2k + 3 be the new colors. We define the coloring
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Figure 2: The constructed coloring of B6 with 5 colors.

f : V (B3k+3) → {1, 2, . . . , j} by

f(B3(v)) =

{

g(f ′(v),i,j) if v is even,

g(f ′(v),j,i) if v is odd,

for every vertex v ∈ V (B3k). See Figure 2 for an illustration. Obviously, it is a proper
coloring.

Now we show that the constructed coloring f satisfies the statement. Let P be a path
in B3k+3 with endvertices in subtrees B3(u) and B3(v), respectively. We distinguish three
cases.

Case 1: u = v. Then P is inside B3(u) and we are done since the statement holds for
k = 1.

Case 2: uv ∈ E(B3k+3). Without lost of generality, we assume that u is odd and u is a
child of v, see Figure 1(b). Clearly, the path P contains the vertices u and v. Moreover, if
none of the colors a = f ′(u), b = f ′(v) is inner and single on P , then both endvertices of
P are in {u, v, x, y} where x, y are the vertices as on Figure 1(b). Observe that then in all
possible cases, i or j is an inner single color on P or P = (u, v).

Case 3: u 6= v and uv /∈ E(B3k+3). Let P = (P1, P2, P3) where P1, P2, and P3 are
subpaths of P in B3(u), B3k, and B3(v) respectively. As the length of P2 is at least 2, it
contains an inner single color d by induction. Since d is inner, it does not appear neither
on P1 nor P2. Therefore, the color d is also inner and single on P .
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From Theorem 2 we obtain the following upper bound.

Corollary 3. χp(Bn) ≤
⌈

2n+3
3

⌉

for every n ≥ 0.

Proof. It is enough to show that χp(Bn+1) ≤ χp(Bn)+1 for every n ≥ 0. To this end, if we
color both copies of Bn in Bn+1 by (the same) parity vertex coloring with χp(Bn) colors,
and we give the root of Bn+1 a new color, we obtain a parity vertex coloring of Bn+1 with
χp(Bn) + 1 colors.

On the other hand, Borowiecki et al. [1] showed that χp(Pn) = ⌈log2(n + 1)⌉ for every
n-vertex path Pn. This gives us a trivial lower bound χp(Bn) ≥ ⌈log2(2n + 1)⌉ as Bn

contains a 2n-vertex path. We ask if the following linear upper bound holds.

Question 4. Is it true that χp(Bn) ≥ n
2

for every n ≥ 0?
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