IMFM
Institute of Mathematics, Physics and Mechanics
Jadranska 19, 1000 Ljubljana, Slovenia

Preprint series

Vol. 49 (2011), 1146
ISSN 2232-2094

PARITY VERTEX COLORINGS OF BINOMIAL TREES

Petr Gregor Riste Škrekovski

Ljubljana, March 14, 2011

Parity vertex colorings of binomial trees

Petr Gregor ${ }^{a}$ and Riste ŠKrekovski ${ }^{b}$

March 11, 2011
${ }^{a}$ Department of Theoretical Computer Science, Charles University, Malostranské nám. 25, 11800 Prague, Czech Republic Email: gregor@ktiml.mff.cuni.cz
${ }^{b}$ Department of Mathematics, University of Ljubljana, Jadranska 21, 1000 Ljubljana, Slovenia.

Email: skrekovski@gmail.com

Keywords: binomial tree, parity coloring, vertex ranking
2010 Mathematics Subject Classification: 05C15, 05C05, 05C90, 68R10

Abstract

We show for every $k \geq 1$ that the binomial tree of order $3 k$ has a vertex-coloring with $2 k+1$ colors such that every path contains some color odd number of times. This disproves a conjecture from [1] asserting that for every tree T the minimal number of colors in a such coloring of T is at least the vertex ranking number of T minus one.

1 Introduction

A parity vertex coloring of a graph G is a vertex coloring such that each path in G contains some color odd number of times. For a study of parity vertex and (similarly defined) edge colorings, the reader is referred to $[1,2]$. A vertex ranking of G is a proper vertex coloring by a linearly ordered set of colors such that every path between vertices of the same color contains some vertex of a higher color. The minimum numbers of colors in a parity vertex coloring and a vertex ranking of G are denoted by $\chi_{p}(G)$ and $\chi_{r}(G)$, respectively.

Clearly, every vertex ranking is also parity vertex coloring, so $\chi_{p}(G) \leq \chi_{r}(G)$ for every graph G. Borowiecki, Budajová, Jendrol', and Krajči [1] conjectured that for trees these parameters behave almost the same.

Conjecture 1. For every tree T it holds $\chi_{r}(T)-\chi_{p}(T) \leq 1$.

Figure 1: (a) The coloring $g_{(a, b, c)}$ of $B_{3},(\mathrm{~b})$ the coloring of two subtrees $B_{3}(u)$ and $B_{3}(v)$ with $u v \in E\left(B_{3 k}\right)$.

In this note we show that the above conjecture is false for every binominal tree of order $n \geq 5$. A binomial tree B_{n} of order $n \geq 0$ is a rooted tree defined recursively. $B_{0}=K_{1}$ with the only vertex as its root. The binomial tree B_{n} for $n \geq 1$ is obtained by taking two disjoint copies of B_{n-1} and joining their roots by an edge, then taking the root of the second copy to be the root of B_{n}.

Binomial trees have been under consideration also in other areas. For example, B_{n} is a spanning tree of the n-dimensional hypercube Q_{n} that has been conjectured [3] to have the minimum average congestion among all spanning trees of Q_{n}. In [1] it was shown, in our notation, that $\chi_{r}\left(B_{n}\right)=n+1$ for all $n \geq 0$.

We show that $\chi_{p}\left(B_{3 k}\right) \leq 2 k+1$ for every $k \geq 1$, which hence disproves the above conjecture. More precisely, for the purpose of induction we prove a stronger statement in the below theorem. Let us say that a color c on a vertex-colored path P is

- inner, if c does not appear on the endvertices of P,
- single, if c appears exactly once on P.

Moreover, we say that a vertex of B_{n} is even (resp. odd) if its distance to the root is even (resp. odd).

Theorem 2. For every $k \geq 1$ the binomial tree $B_{3 k}$ has a parity vertex coloring with $2 k+1$ colors such that every path of length at least 2 has an inner single color.

Proof. For $k=1$ we define the coloring $f: V\left(B_{3}\right) \rightarrow\{1,2,3\}$ by $f=g_{(1,2,3)}$ where $g_{(a, b, c)}$ is defined on Figure 1(a). Observe that f satisfies the statement. In what follows, we assume $k \geq 2$.

The binomial tree $B_{3 k+3}$ can be viewed as $B_{3 k}$ with a copy of B_{3} hanged on each vertex. See Figure 2 for an illustration. For a vertex $v \in V\left(B_{3 k}\right)$, let us denote the copy of B_{3} hanged on v by $B_{3}(v)$. Let f^{\prime} be the coloring of $B_{3 k}$ with colors $\{1,2, \ldots, 2 k+1\}$ obtained by induction and let $i=2 k+2, j=2 k+3$ be the new colors. We define the coloring

Figure 2: The constructed coloring of B_{6} with 5 colors.

$$
\begin{aligned}
& f: V\left(B_{3 k+3}\right) \rightarrow\{1,2, \ldots, j\} \text { by } \\
& \qquad f\left(B_{3}(v)\right)= \begin{cases}g_{\left(f^{\prime}(v), i, j\right)} & \text { if } v \text { is even, } \\
g_{\left(f^{\prime}(v), j, i\right)} & \text { if } v \text { is odd, }\end{cases}
\end{aligned}
$$

for every vertex $v \in V\left(B_{3 k}\right)$. See Figure 2 for an illustration. Obviously, it is a proper coloring.

Now we show that the constructed coloring f satisfies the statement. Let P be a path in $B_{3 k+3}$ with endvertices in subtrees $B_{3}(u)$ and $B_{3}(v)$, respectively. We distinguish three cases.

Case 1: $u=v$. Then P is inside $B_{3}(u)$ and we are done since the statement holds for $k=1$.

Case 2: $u v \in E\left(B_{3 k+3}\right)$. Without lost of generality, we assume that u is odd and u is a child of v, see Figure 1(b). Clearly, the path P contains the vertices u and v. Moreover, if none of the colors $a=f^{\prime}(u), b=f^{\prime}(v)$ is inner and single on P, then both endvertices of P are in $\{u, v, x, y\}$ where x, y are the vertices as on Figure 1(b). Observe that then in all possible cases, i or j is an inner single color on P or $P=(u, v)$.

Case 3: $u \neq v$ and $u v \notin E\left(B_{3 k+3}\right)$. Let $P=\left(P_{1}, P_{2}, P_{3}\right)$ where P_{1}, P_{2}, and P_{3} are subpaths of P in $B_{3}(u), B_{3 k}$, and $B_{3}(v)$ respectively. As the length of P_{2} is at least 2 , it contains an inner single color d by induction. Since d is inner, it does not appear neither on P_{1} nor P_{2}. Therefore, the color d is also inner and single on P.

From Theorem 2 we obtain the following upper bound.
Corollary 3. $\chi_{p}\left(B_{n}\right) \leq\left\lceil\frac{2 n+3}{3}\right\rceil$ for every $n \geq 0$.
Proof. It is enough to show that $\chi_{p}\left(B_{n+1}\right) \leq \chi_{p}\left(B_{n}\right)+1$ for every $n \geq 0$. To this end, if we color both copies of B_{n} in B_{n+1} by (the same) parity vertex coloring with $\chi_{p}\left(B_{n}\right)$ colors, and we give the root of B_{n+1} a new color, we obtain a parity vertex coloring of B_{n+1} with $\chi_{p}\left(B_{n}\right)+1$ colors.

On the other hand, Borowiecki et al. [1] showed that $\chi_{p}\left(P_{n}\right)=\left\lceil\log _{2}(n+1)\right\rceil$ for every n-vertex path P_{n}. This gives us a trivial lower bound $\chi_{p}\left(B_{n}\right) \geq\left\lceil\log _{2}(2 n+1)\right\rceil$ as B_{n} contains a $2 n$-vertex path. We ask if the following linear upper bound holds.

Question 4. Is it true that $\chi_{p}\left(B_{n}\right) \geq \frac{n}{2}$ for every $n \geq 0$?

References

[1] P. Borowiecki, K. Budajová, S. Jendrol', S. Krajči, Parity vertex colouring of graphs, Discuss. Math. Graph Theory 31 (2011) 183-195.
[2] D. P. Bunde, K. Milans, D. B. West, H. Wu, Parity and strong parity edge-colorings of graphs, Combinatorica 28 (2008) 625-632.
[3] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211-249.

