IMFM

Institute of Mathematics, Physics and Mechanics
Jadranska 19, 1000 Ljubluana, Slovenia

Preprint series

Vol. 49 (2011), 1158
ISSN 2232-2094

ON THE MUTUALLY INDEPENDENT
 HAMILTONIAN CYCLES IN FAULTY
 HYPERCUBES

Vida Vukašinović Petr Gregor

Riste Škrekovski

Ljubljana, September 6, 2011

On the mutually independent Hamiltonian cycles in faulty hypercubes*

Vida Vukašinović ${ }^{1}$, Petr Gregor ${ }^{2}$, Riste Škrekovski ${ }^{3}$
March 26, 2011
${ }^{1}$ Computer Systems Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
vida.vukasinovic@ijs.si
${ }^{2}$ Department of Theoretical Computer Science and Mathematical Logic, Charles University, Malostranské nám. 25, 11800 Prague, Czech Republic
gregor@ktiml.mff.cuni.cz
${ }^{3}$ Department of Mathematics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
skrekovski@gmail.com

Abstract

Two ordered Hamiltonian paths in the n-dimensional hypercube Q_{n} are said to be independent if i-th vertices of the paths are distinct for every $1 \leq i \leq 2^{n}$. Similarly, two s-starting Hamiltonian cycles are independent if i-th vertices of the cycle are distinct for every $2 \leq i \leq 2^{n}$. A set S of Hamiltonian paths and s starting Hamiltonian cycles are mutually independent if every two paths or cycles, respectively, from S are independent. We show that for every set F of f edges and $n-f$ pairs of adjacent vertices w_{i} and b_{i}, there are $n-f$ mutually independent Hamiltonian paths with endvertices w_{i}, b_{i} and avoiding edges of F in Q_{n}. We also show that Q_{n} contains $n-f$ fault-free mutually independent s-starting Hamiltonian cycles, for every set of $f \leq n-2$ faulty edges in Q_{n} and every vertex s. This improves previously known results on the numbers of mutually independent Hamiltonian paths and cycles in the hypercube with faulty edges.

Keywords: hypercube, Hamiltonian path, Hamiltonian cycle, faulty edges, interconnection network

[^0]
1 Introduction

A parallel computer network is often modeled as an undirected graph in which the vertices correspond to processors and the edges correspond to communication links between the processors. Graphs which represent topological structure of parallel computer networks are required to posses elegant properties such as small degree and diameter, high connectivity, recursive structure, symmetry, etc. Moreover, one of the major concerns of the parallel network design is its robustness, i.e. tolerance to the occurence of faults. Failures could happen in hardware, software or even because of missing transmitted packet. In this paper we study a fault tolerance of the hypercube, one of the most popular architectures which has all above mentioned properties.

The n-dimensional hypercube Q_{n} is a (bipartite) graph with all binary vectors of length n as vertices, and with edges between every two vertices that differ in exactly one coordinate. Connection failures in computer network correspond to faulty edges in the underlying graph. It is important that network stays highly connected even if several connection failures appear. For this reason, mutually independent Hamiltonian paths/cycles of Q_{n} with arbitrarily chosen f faulty edges are studied.

In this paper, n always denotes a positive integer and $[n]$ denotes the set $\{1,2, \ldots, n\}$. A path in the graph G is a sequence $P=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ of distinct vertices such that every two consecutive vertices are adjacent. For a path $P=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ we say that v_{1} and v_{k} are the endvertices of P, and that P is a $v_{1} v_{k}$-path, which is denoted by $P\left[v_{1}, v_{k}\right]$. A path in G is Hamiltonian if it contains all vertices of G. Let $V(G)$ and $E(G)$ denote the vertex set and the edge set of a graph G, respectively, and let $m=|V(G)|$. Two Hamiltonian paths $P_{1}=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ and $P_{2}=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ of G are independent if $u_{i} \neq v_{i}$ for all $i \in[m]$. A set S of Hamiltonian paths of G is mutually independent if every two paths from S are independent. A study of such paths is motivated by the problem of simultaneous transmitting packets along these path such that they never meet in the same vertex.

A cycle is a sequence $C=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ of $k \geq 3$ distinct vertices such that every two consecutive vertices, including the first and the last vertex of the sequence are adjacent. We say that the cycle $C=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ is v_{1}-starting to emphasize the first vertex v_{1} and we denote it by $C\left[v_{1}\right]$. A cycle C in a graph G is Hamiltonian, if it contains all vertices of G. Two v-starting Hamiltonian cycles $C_{1}=\left(v, u_{2}, \ldots, u_{m}\right)$ and $C_{2}=\left(v, v_{2}, \ldots, v_{m}\right)$ are independent if $v_{i} \neq u_{i}$ for all $2 \leq i \leq m$. A set S of v-starting Hamiltonian cycles of G is mutually independent if every two cycles from S are independent. A study of mutually independent v-starting Hamiltonian cycles is motivated by the problem of transferring different pieces of a given message from one node to all recipients simultaneously such that they never meet in the same node.

In 2005, Sun, Lin, Huang and Hsu [10] proved that for any vertex s, the n-dimensional hypercube Q_{n} contains $n-1$ mutually independent s-starting Hamiltonian cycles if $n=2,3$; and n mutually independent s-starting Hamiltonian cycles if $n \geq 4$. They also proved that for any set of $n-1$ distinct pairs of adjacent vertices, Q_{n} contains $n-1$ mutually independent Hamiltonian paths with these pairs of vertices as endvertices. In 2006, Hsieh and Yu [4] claimed that the n-dimensional hypercube Q_{n} with at most $f \leq n-2$ faulty
edges contains a set of $n-1-f$ mutually independent Hamiltonian paths and a set of $n-1-f$ mutually independent s-starting Hamiltonian cycles for any vertex s. However, in 2007, Kueng, Lin, Liang, Tan and Hsu [6] noticed a flaw in their proof and published the correction. In 2009 Hsieh and Weng [3] proved that for $n \geq 3, Q_{n}$ with at most $f \leq n-2$ faulty edges contains a set of $n-1-f$ mutually independent Hamiltonian paths between any two vertices of different parity. In 2010 Shih, Tan and Hsu [9] studied mutually independent paths of different length in Q_{n}.

In this paper, we improve previous known results by showing that Q_{n} contains a set of $n-f$ mutually independent Hamiltonian paths, see Theorem 13. We also prove that Q_{n} with at most $f \leq n-2$ faulty edges contains a set of $n-f$ mutually independent s-starting Hamiltonian cycles for any vertex s, see Theorem 15. This is the optimal result since s may be incident with f faulty edges.

2 Preliminaries

In this section we define notations and summarize previously known results that we use.
The distance of two edges $e_{1}, e_{2} \in E(G)$ is the minimal distance between a vertex of e_{1} and a vertex of e_{2}. Let us say that the edge $v_{i} v_{j} \in E(G)$ is directed, if we fix the order of its vertices by $\left(v_{i}, v_{j}\right)$. We say that a cycle $C=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ is directed if $v_{i} v_{i+1}$ are directed edges in C for all $i \in[k]$ (where $v_{k+1}=v_{1}$).

Let Q_{n} be the n-dimensional hypercube. For a vertex $v \in V\left(Q_{n}\right)$, let v^{i} be the neighbor of v that differs from v exactly in the i-th coordinate. We say that the edge $v v^{i}$ is i directional. Furthermore, for an edge $e=u v$ we denote $e^{i}=u^{i} v^{i}$. The antipodal vertex to a vertex v differs from v in all coordinates, and is denoted by \bar{v}. Note that the hypercube Q_{n} is an n-regular graph with 2^{n} vertices.

Two vertices of Q_{n} are of the same parity if both of them have even (odd) number of 1's. We say the vertex is white (black) if it has even (odd) number of 1's. Note that vertices of each parity form bipartite classes of Q_{n}. Consequently, u and v have the same parity if and only if $d(u, v)$ is even. We say that the edges $u_{i} u_{i+1}$ and $u_{j} u_{j+1}$ of a directed path or cycle $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ have the same parity if u_{i} and u_{j} are of the same parity; that is, $i-j \equiv 0(\bmod 2)$.

For $d \in[n]$ and $i \in\{0,1\}$ let $Q_{n-1}^{d ; i}$ be the subgraph of Q_{n} induced by the vertices with i on the d-th coordinate. Notice that $Q_{n-1}^{d ; i}$ is isomorphic to Q_{n-1}. In other words, by removing all edges of the direction d, the hypercube Q_{n} splits into two (induced) subgraphs $Q_{n-1}^{d ; 0}, Q_{n-1}^{d ; 1}$ isomorphic to Q_{n-1}. We say that Q_{n} is split along the direction d into subcubes $Q_{n-1}^{d ; 0}$ and $Q_{n-1}^{d ; 1}$. Let us write Q_{n-1}^{i} instead of $Q_{n-1}^{d ; i}$ if the direction d is clear from the context. Furthermore, we generalize this concept as follows. For $\left\{d_{1}, d_{2}, \ldots, d_{p}\right\} \subseteq[n]$ and $\left(i_{1}, i_{2}, \ldots, i_{p}\right) \in\{0,1\}^{p}$ let $Q_{n-p}^{\left(d_{1}, d_{2}, \ldots, d_{p}\right) ;\left(i_{1}, i_{2}, \ldots, i_{p}\right)}$ be the subgraph of Q_{n} induced by all the vertices whose d_{1}-th, d_{2}-th, \ldots, d_{p}-th coordinate equals to $i_{1}, i_{2}, \ldots, i_{p}$, respectively. Let us write simply $Q_{n-p}^{i_{1} i_{2} \cdots i_{p}}$ for $Q_{n-p}^{\left(d_{1}, d_{2}, \ldots, d_{p}\right) ;\left(i_{1}, i_{2}, \ldots, i_{p}\right)}$ when $\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ is clear from the context.

The cartesian product $G \square H$ of two graphs G and H is the graph with the vertex set

$$
V(G \square H)=\{(u, v) ; u \in V(G), v \in V(H)\}
$$

and the edge set

$$
E(G \square H)=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) ; u_{1} u_{2} \in E(G) \text { and } v_{1}=v_{2}, \text { or } u_{1}=u_{2} \text { and } v_{1} v_{2} \in E(H)\right\} .
$$

Note that $Q_{n} \square Q_{m}$ is isomorphic to Q_{n+m}. For $u \in V\left(Q_{n}\right)$ and $v \in V\left(Q_{m}\right)$ let (u,v) represent the vertex of Q_{n+m} with u on the first n coordinates and v on the last m coordinates.

$Z(R, d)$

$W(R, d)$

Figure 1: The directed zigzag Hamiltonian cycle $Z(R, d)$ and the directed zigzag Hamiltonian cycle $W(R, d)$ of Q_{n}.

Now we define a useful concept of zigzag paths and cycles. Let $R=\left(u_{1}, u_{2}, \ldots, u_{2^{n-1}}\right)$ be a directed Hamiltonian path (cycle) in $Q_{n-1}^{d ; i}$ for some $i \in\{0,1\}$ and $d \in[n]$. Then, we say that

$$
Z(R, d)=\left(u_{1}, u_{1}^{d}, u_{2}^{d}, u_{2}, \ldots, u_{2^{n-1}}^{d}, u_{2^{n-1}}\right)
$$

and

$$
W(R, d)=\left(u_{1}^{d}, u_{1}, u_{2}, u_{2}^{d}, \ldots, u_{2^{n-1}}, u_{2^{n-1}}^{d}\right)
$$

are directed zigzag Hamiltonian paths (cycles) in Q_{n}. See Figure 1 for an illustration. Zigzag cycles have the following property.
Proposition 1. Let $R=\left(u_{1}, \ldots, u_{2^{n-1}}\right)$ be a Hamiltonian cycle in $Q_{n-1}^{d i t}$ for some $d \in[n]$ and $b \in\{0,1\}$. Then for every distinct $0 \leq i, j<2^{n-2}$, the subpaths $P_{1}\left[u_{2 i+1}, u_{2 i}\right]$ and $P_{2}\left[u_{2 j+1}, u_{2 j+1}^{d}\right]$ of $Z(R, d)$ and $W(R, d)$, respectively, are independent Hamiltonian paths in Q_{n}.
Proof. By the definition of $Z(R, d)$ and $W(R, d)$, we have

$$
\begin{aligned}
P_{1}\left[u_{2 i+1}, u_{2 i}\right] & =\left(u_{2 i+1}, u_{2 i+1}^{d}, u_{2 i+2}^{d}, u_{2 i+2}, u_{2 i+3}, \ldots, u_{2 i}^{d}, u_{2 i}\right), \\
P_{2}\left[u_{2 j+1}, u_{2 j+1}^{d}\right] & =\left(u_{2 j+1}, u_{2 j+2}, u_{2 j+2}^{d}, u_{2 j+3}^{d}, u_{2 j+3}, \ldots, u_{2 j}^{d}, u_{2 j+1}^{d}\right),
\end{aligned}
$$

where the indices are taken cyclically; that is, $u_{2^{n-1}+1}=u_{1}$. Observe that the k-th vertices, $1 \leq k \leq 2^{n}$, of P_{1} and P_{2} are in distinct subcubes if k is even. If $k \equiv 1(\bmod 3)$, they are in the form of $u_{2 i+s}$ and $u_{2 j+s}$ for some s. If $k \equiv 3(\bmod 3)$, they are in the form $u_{2 i+s}^{d}$ and $u_{2 j+s}^{d}$ for some s. Thus, since i and j are distinct, the k-th vertices of P_{1} and P_{2} are distinct for every $1 \leq k \leq 2^{n}$.

Now, we list the results that we need. It is well known that the hypercube Q_{n} is Hamiltonian for every $n \geq 2$. It is also Hamiltonian laceable [2]; that is, there is a Hamiltonian path between every two vertices of opposite parity. Even if some faulty edges appear in Q_{n}, the hypercube Q_{n} stays Hamiltonian laceable.

Proposition 2 (Tsai et al. [11]). Let $F \subseteq E\left(Q_{n}\right), n \geq 2$ and $|F| \leq n-2$. Then, there exists a Hamiltonian path in $Q_{n}-F$ between every two vertices of opposite parity.

We also need several basic results on Hamiltonian cycles and paths in the hypercube with some removed vertices. The following proposition describes the case of one removed vertex.

Proposition 3 (Lewinter and Widulski [7]). For $n \geq 2$ and every three distinct vertices $u_{1}, u_{2}, v \in V\left(Q_{n}\right)$ such that u_{1}, u_{2} have the same parity opposite to the parity of $v \in V\left(Q_{n}\right)$, the graph $Q_{n}-\{v\}$ has a Hamiltonian $u_{1} u_{2}$-path P.

A similar result holds for the case of two removed vertices.
Proposition 4 (Sun et al. [10]). The graph $Q_{n}-\{u, v\}, n \geq 4$ is Hamiltonian laceable for every two vertices u and v of opposite parity.

A set $M \subseteq E(G)$ of pairwise non-adjacent edges is called a matching. A matching M is perfect if every vertex of G is covered by M. Kreweras [5] conjectured that every perfect matching of the hypercube Q_{n}, where $n \geq 2$, can be extended to a Hamiltonian cycle. Fink [1] affirmatively answered this conjecture by proving a stronger result for the complete graph on the vertices of Q_{n}, denoted by $K\left(Q_{n}\right)$.

Theorem 5 (Fink [1]). For every perfect matching M of $K\left(Q_{n}\right)$ where $n \geq 2$, there exists a perfect matching N of Q_{n} such that $M \cup N$ forms a Hamiltonian cycle of $K\left(Q_{n}\right)$.

We say that k edges $e_{1}, e_{2}, \ldots, e_{k} \in E\left(Q_{n}\right)$ are rigid if they have distinct directions. Note that necessarily $k \leq n$. For a set S of edges of Q_{n}, we say that S saturates a vertex v if some edge of S is incident with the vertex v. Otherwise, v is said to be unsaturated by S. Furthermore, we say that a vertex v of Q_{n} is blocked by S if all neighbors of v are saturated by S and v is not saturated by S.

Theorem 6 (Limaye and Sarvate [8]). If a matching $M \subseteq E\left(Q_{n}\right)$ of size $n \geq 2$ does not extend to a perfect matching in Q_{n}, then there is an unsaturated vertex v whose neighborhood is saturated by M.

The previous results on mutually independent Hamiltonian paths and cycles in the hypercube are as follows.

Theorem 7 (Sun et al. [10]). For any $s \in V\left(Q_{n}\right)$, the hypercube Q_{n} contains $n-1$ mutually independent s-starting Hamiltonian cycles if $2 \leq n \leq 3$, and n mutually independent s starting Hamiltonian cycles if $n \geq 4$.

Lemma 8 (Sun et al. [10]). Let $w_{1}, w_{2}, \ldots, w_{n-1}$ be vertices of the same parity in $Q_{n}, n \geq 2$ and let $\left\{w_{1} b_{1}, w_{2} b_{2}, \ldots, w_{n-1} b_{n-1}\right\} \subseteq E\left(Q_{n}\right)$ be a matching in Q_{n}. Then, Q_{n} contains $n-1$ mutually independent Hamiltonian paths $P_{1}\left[w_{1}, b_{1}\right], P_{2}\left[w_{2}, b_{2}\right], \ldots, P_{n-1}\left[w_{n-1}, b_{n-1}\right]$.

Lemma 9 (Kueng et al. [6]). Let $F \subseteq E\left(Q_{n}\right), n \geq 3, f=|F| \leq n-2$ and $w_{1}, w_{2}, \ldots, w_{k}$ be vertices of the same parity in $Q_{n}, k \leq n-1-f$. Let $\left\{w_{1} b_{1}, w_{2} b_{2}, \ldots, w_{k} b_{k}\right\} \subseteq E\left(Q_{n}\right)$ be a matching in Q_{n}. Then, $Q_{n}-F$ contains k mutually independent Hamiltonian paths $P_{1}\left[w_{1}, b_{1}\right], P_{2}\left[w_{2}, b_{2}\right], \ldots, P_{k}\left[w_{k}, b_{k}\right]$.

We use Theorem 6, Theorem 7 and Lemma 8 to improve the result by Kueng, Lin, Liang, Tan and Hsu stated in Theorem 10. In the next section, we prove Theorem 13 which is improvement of Lemma 8 then we apply it in Section 4 (Theorem 15) to improve the following result.

Theorem 10 (Kueng et al. [6]). Let $F \subseteq E\left(Q_{n}\right), n \geq 4, f=|F| \leq n-2$, and $s \in V\left(Q_{n}\right)$. Then, $Q_{n}-F$ has $n-1-f$ mutually independent s-starting Hamiltonian cycles.

3 Independent Hamiltonian paths in hypercubes

We start with an improvement in a special case that follows from Theorem 5.
Lemma 11. Let $w_{1}, w_{2}, \ldots, w_{k}$ be vertices of the same parity in $Q_{n}, n \geq 2$. If $w_{1} b_{1}, w_{2} b_{2}, \ldots, w_{k} b_{k}$ are edges of a perfect matching M of Q_{n}, then Q_{n} has k mutually independent Hamiltonian paths $P_{1}\left[w_{1}, b_{1}\right], P_{2}\left[w_{2}, b_{2}\right], \ldots, P_{k}\left[w_{k}, b_{k}\right]$.

Proof. By Theorem 5, there is a Hamiltonian cycle C containing the edges $w_{1} b_{1}, w_{2} b_{2}, \ldots, w_{k} b_{k}$. Moreover, edges $w_{1} b_{1}, w_{2} b_{2}, \ldots, w_{k} b_{k}$ have the same parity on C as they are included in the perfect matching M. If we disconnect the cycle C between vertices w_{i} and b_{i}, we obtain a Hamiltonian path $P_{i}\left[w_{i}, b_{i}\right]$ of Q_{n}. As $P_{1}, P_{2}, \ldots, P_{k} \subset C$ and $w_{1} b_{1}, w_{2} b_{2}, \ldots, w_{k} b_{k}$ have the same parity on C, P_{i} and P_{j} are independent for every distinct $i, j \in[k]$.

We need the next proposition to prove Theorem 13.
Proposition 12. Let \mathcal{P}_{i} be a set of mutually independent Hamiltonian paths in $Q_{n-1}^{d ; i}$ for $i=0,1$ and some direction d. Then, the set $\left\{Z(P, d) ; P \in \mathcal{P}_{0} \cup \mathcal{P}_{1}\right\}$ is a set of mutually independent Hamiltonian paths in Q_{n}.

Proof. Let $P_{1}, P_{2} \in \mathcal{P}_{0}$. Then, observe that $Z\left(P_{1}, d\right), Z\left(P_{2}, d\right)$ are mutually independent Hamiltonian paths in Q_{n}. Indeed, since every t-th vertex v of P_{1} and t-th vertex u of P_{2} are distinct, we infer that v^{d} and u^{d} are distinct and so $Z\left(P_{1}, d\right)$ and $Z\left(P_{2}, d\right)$ are independent in Q_{n}. A similar argument holds if $P_{1}, P_{2} \in \mathcal{P}_{1}$.

Now, let $P_{i} \in \mathcal{P}_{i}$ for $i=0,1$. Then, the claim obviously holds as t-th vertices of $Z\left(P_{0}, d\right)$ and $Z\left(P_{1}, d\right)$ are in distinct parts $Q_{n-1}^{d ; 0}$ and $Q_{n-1}^{d ; 1}$ for all $t \in\left[2^{n}\right]$.

The following theorem improves Lemma 8 by one additional independent Hamiltonian path.

Theorem 13. Let $w_{1}, w_{2}, \ldots, w_{n}$ be vertices of the same parity in Q_{n} and let $M=$ $\left\{w_{1} b_{1}, w_{2} b_{2}, \ldots, w_{n} b_{n}\right\} \subseteq E\left(Q_{n}\right)$ be a matching of $Q_{n}(n \geq 2)$. Then, Q_{n} has n mutually independent Hamiltonian paths $P_{1}\left[w_{1}, b_{1}\right], P_{2}\left[w_{2}, b_{2}\right], \ldots, P_{n}\left[w_{n}, b_{n}\right]$.

Proof. We prove that Q_{n} contains n mutually independent Hamiltonian paths $P_{i}\left[w_{i}, b_{i}\right]$ for $i \in[n]$ by induction on the dimension n. The base of induction for Q_{2} trivially holds since Q_{2} contains two mutually independent Hamiltonian paths whose first and last vertices are vertices of two independent edges of M, respectively. Now, we assume that the statement holds for Q_{n-1} and we prove it for $Q_{n}, n \geq 3$. We consider three cases regarding M.
Case 1: The matching M extends to a perfect matching. Then, Q_{n} has n mutually independent Hamiltonian paths by Lemma 11.

In the remaining two cases, we assume due to Theorem 6 that some vertex v is blocked by M.
Case 2: M is not rigid. We proceed similarly as in the proof of Lemma 8 from Sun et. al. [10]. Since M is not rigid, there exists a direction d such that M contains no d directional edge. We split Q_{n} along the direction d and we obtain two subcubes Q_{n-1}^{0} and Q_{n-1}^{1}. Since there exists $v \in V\left(Q_{n}\right)$ blocked by M, for some $i \in\{0,1\}$ the subcube Q_{n-1}^{i} contains one edge $w_{k} b_{k}$ of M where $k \in[n]$ and the subcube Q_{n-1}^{1-i} contains all the other edges of M. By induction, there is one Hamiltonian path $P_{k}\left[w_{k}, b_{k}\right]$ in Q_{n-1}^{i} and $n-1$ mutually independent Hamiltonian paths $P_{l}\left[w_{l}, b_{l}\right]$ in Q_{n-1}^{1-i} for $l \in[n] \backslash\{k\}$. We extend all these Hamiltonian paths P_{j} to Hamiltonian zigzag paths $Z\left(P_{j}, d\right)$ in Q_{n}, which are mutually independent by Proposition 12 .
Case 3: M is rigid. First, in case $n=3$, there is only one possibility up to isomorphism that the vertex v is blocked by a set of three rigid edges. In this case the example of mutually independent Hamiltonian paths are

$$
\begin{aligned}
& P_{1}\left[w_{1}, b_{1}\right]=\left(w_{1}, b, w_{3}, b_{3}, v, b_{2}, w_{2}, b_{1}\right), \\
& P_{2}\left[w_{2}, b_{2}\right]=\left(w_{2}, b_{1}, w_{1}, b, w_{3}, b_{3}, v, b_{2}\right), \\
& P_{3}\left[w_{3}, b_{3}\right]=\left(w_{3}, b_{2}, v, b_{1}, w_{2}, b, w_{1}, b_{3}\right) .
\end{aligned}
$$

as illustrated in Figure 2.
Suppose now $n \geq 4$. We can assume $b_{i}=w_{i}^{i}$ for every $i \in[n]$ as M is a set of n rigid edges. Our aim is the following: We split Q_{n} along an arbitrary direction $k \in[n]$

Figure 2: Q_{3} with three mutually independent Hamiltonian paths. Each vertex u of Q_{3} is associated with a triple $\left(k_{1}, k_{2}, k_{3}\right)$ which says that u is the k_{i}-th vertex in the i-th Hamiltonian path $P_{i}\left[w_{i}, b_{i}\right]$.
into subcubes Q_{n-1}^{0} and Q_{n-1}^{1}. Notice that one of the subcubes Q_{n-1}^{0}, Q_{n-1}^{1} contains one edge of the matching M and the other subcube contains all the remaining edges except the one which is of direction k. Without loss of generality, we may assume that the vertex v is black and $v \in V\left(Q_{n-1}^{0}\right)$. Then, Q_{n-1}^{0} contains $n-2$ edges of M, and Q_{n-1}^{1} contains $e_{j}=w_{j} b_{j} \in M$ for some $j \in[n] \backslash\{k\}$ such that $w_{j}=v^{k}$. Notice that b_{k} is adjacent to w_{j}. The vertices of the edges $e_{j}, w_{j} b_{k}$ in Q_{n-1}^{1} are neighbors of the vertices of edges $e_{j}^{k}, v w_{k}$ in Q_{n-1}^{0}, respectively. Note that the edge $w_{j}^{k} w_{k}$ is incident with v, as $v=w_{j}^{k}$. See Figure 3 for an illustration.

In the rest of the proof we proceed as follows: We find an v-starting Hamiltonian cycle $C^{0}=\left(v, v_{2}, \ldots, v_{2^{n-1}}\right)$ of Q_{n-1}^{0} such that C^{0} contains $M \backslash\left\{e_{j}, e_{k}\right\} \cup\left\{e_{j}^{k}\right\}$, the edges of $M \backslash\left\{e_{j}, e_{k}\right\}$ have the same parity on C^{0} and $v_{2}=w_{k}, v_{2^{n-1}}=w_{i}$. Then, the cycle $C=Z\left(C^{0}, k\right)$ is a Hamiltonian cycle of Q_{n} containing M. Furthermore, the edges of

$$
M \backslash\left\{e_{k}\right\}=\left\{w_{1} b_{1}, \ldots, w_{k-1} b_{k-1}, w_{k+1} b_{k+1}, \ldots, w_{n} b_{n}\right\}
$$

have the same parity on C. Then, the paths

$$
P_{1}\left[w_{1}, b_{1}\right], \ldots, P_{k-1}\left[w_{k-1}, b_{k-1}\right], P_{k+1}\left[w_{k+1}, b_{k+1}\right], \ldots, P_{n}\left[w_{n}, b_{n}\right]
$$

on C are mutually independent Hamiltonian paths of Q_{n}. Finally, for the differently directed edge $e_{k}=w_{k} b_{k}$ on the cycle C we find a Hamiltonian path $P_{k}\left[w_{k}, b_{k}\right]$ that is mutually independent with all the other already constructed Hamiltonian paths of Q_{n}.

Now, let us find an v-starting Hamiltonian cycle C^{0} of Q_{n-1}^{0} such that C^{0} contains $M \backslash\left\{e_{j}, e_{k}\right\} \cup\left\{e_{j}^{k}\right\}$ and the edges of $M \backslash\left\{e_{j}, e_{k}\right\}$ have the same parity on C^{0}. Note that $e_{j}^{k}=w_{j}^{k} b_{j}^{k}$ is an j-directional edge in Q_{n-1}^{0} and it is incident with e_{i} for some $i \in[n] \backslash\{j, k\}$. We split Q_{n-1}^{0} along the direction j into subcubes Q_{n-2}^{00} and Q_{n-2}^{01}. One of the subcubes Q_{n-2}^{00} and Q_{n-2}^{01} contains the edges of

$$
M^{\prime}=M \backslash\left\{e_{i}, e_{j}, e_{k}\right\}
$$

Figure 3: (a) The construction of a Hamiltonian cycle C^{0} of Q_{n-1}^{0} if $w_{l}^{j} \neq b_{i}$. (b) The construction of a Hamiltonian cycle C^{0} of Q_{n-1}^{0} if $w_{l}^{j}=b_{i}$. The edges of M are bold.
and the other contains the edge e_{i}. Without loss of generality we assume Q_{n-2}^{00} contains M^{\prime} and therefore it also contains the vertex v, see Figure 3. The set of edges M^{\prime} is a matching of Q_{n-2}^{00} such that Q_{n-2}^{00} has no vertex u with neighborhood saturated by M^{\prime} since Q_{n-2}^{00} contains $n-3$ edges of M^{\prime}. We extend M^{\prime} to a perfect matching R of Q_{n-2}^{00} by Theorem 6 . Note that R contains the edge $v w_{k}$. Then, we apply Theorem 5 and find a Hamiltonian cycle C^{00} of Q_{n-2}^{00} containing M^{\prime} as edges of the same parity.

Let w_{l} be the neighbor of the vertex v on the Hamiltonian cycle C^{00} other than w_{k}. Now, we find a Hamiltonian cycle C^{0} of Q_{n-1}^{0}. To do so, we distinguish the following two cases regarding whether w_{l}^{j} and b_{i} coincide.

Subcase 3.1: $w_{l}^{j} \neq b_{i}$. See Figure 3(a) for an illustration. By Proposition 3, $Q_{n-2}^{01}-\left\{w_{i}\right\}$ contains a Hamiltonian path $S\left[w_{l}^{j}, b_{i}\right]$. Let $P\left[w_{k}, w_{l}\right]$ be the path from w_{k} to w_{l} on the Hamiltonian cycle C^{00} in Q_{n-2}^{00}. Then, the desired v-starting Hamiltonian cycle C^{0} of Q_{n-1}^{0} is

$$
C^{0}=\left(v, P, S, w_{i}\right)
$$

Subcase 3.2: $w_{l}^{j}=b_{i}$. See Figure 3(b) for an illustration. We choose two adjacent vertices w and b on the Hamiltonian cycle C^{00} of Q_{n-2}^{00} such that $w b \notin M$ and b is a black vertex distinct from v. Observe that we can always choose such w and b since $n \geq 4$. Note that $\left\{w^{j}, b^{j}\right\} \cap\left\{w_{i}, b_{i}\right\}=\emptyset$. Let $P\left[w_{k}, w_{l}\right]$ be the directed path from w_{k} to w_{l} on the Hamiltonian cycle C^{00}, and without loss of generality we may assume that the vertex b follows the vertex w on the path P. Let $R_{1}\left[w_{k}, w\right], R_{2}\left[b, w_{l}\right]$ be the subpaths of the path P.

Subcase 3.2.1: $n=4$. The v-starting Hamiltonian cycle C^{0} of Q_{3}^{0} is

$$
C^{0}=\left(v, R_{1}, w^{j}, b^{j}, R_{2}, b_{i}, w_{i}\right)
$$

Subcase 3.2.2: $n=5$. Note that we could choose $w b$ among four edges of C^{00} that are not part of the matching M and are not incident with v. Observe that only one configuration of two pairs of adjacent vertices $w^{j} b^{j}$ and $w_{i} b_{i}$ in Q_{3}^{01} up to isomorphism is possible so that there is no Hamiltonian path $S\left[w^{j}, b^{j}\right]$ in $Q_{3}^{01}-\left\{w_{i}, b_{i}\right\}$. Thus, we choose $w b$ such that this configuration is avoided. Then, the desired v-starting Hamiltonian cycle C^{0} of Q_{n-1}^{0} is

$$
C^{0}=\left(v, R_{1}, S, R_{2}, b_{i}, w_{i}\right)
$$

Subcase 3.2.3: $n>5$. We find a Hamiltonian path $S\left[w^{j}, b^{j}\right]$ in $Q_{n-2}^{01}-\left\{w_{i}, b_{i}\right\}$ by Proposition 4 and the desired v-starting Hamiltonian cycle C^{0} of Q_{n-1}^{0} is

$$
C^{0}=\left(v, R_{1}, S, R_{2}, b_{i}, w_{i}\right)
$$

This establishes Subcase 3.2.
Finally, it remains to find a Hamiltonian path $P_{k}\left[w_{k}, b_{k}\right]$ of Q_{n} that is mutually independent with already constructed Hamiltonian paths $P_{1}, \ldots, P_{k-1}, P_{k+1}, \ldots, P_{n}$ of Q_{n}. So, let P_{k} be the Hamiltonian path of Q_{n} induced by Hamiltonian cycle $W\left(C^{0}, k\right)$ of Q_{n}. The Hamiltonian path P_{r} and P_{k} are independent for every $r \in[n] \backslash\{k\}$ by Proposition 1, as P_{r} are Hamiltonian paths induced by $Z\left(C^{0}, k\right)$ and b_{k}, w_{k} and w_{r}, b_{r} are consecutive pairs of vertices on $Z\left(C^{0}, k\right)$.

4 Independent Hamiltonian cycles in faulty Q_{n}

The following lemma is used as a base of induction in the proof of Theorem 15.
Lemma 14. Let $F \subseteq E\left(Q_{4}\right), f=|F| \leq 2$, $s \in V\left(Q_{4}\right)$. Then, $Q_{4}-F$ has $4-f$ mutually independent s-starting Hamiltonian cycles.

Proof. Let $s=\mathbf{0}$ be the starting vertex. We distinguish three cases regarding the number of faulty edges f.
Case 1: $F=\emptyset$. It holds by Theorem 7 .
Case 2: $F=\{e\}$. The proof of this case is straightforward. For a given vertex $s=\mathbf{0}$ and any faulty edge e, we show that there exist three s-starting mutually independent Hamiltonian cycles. Automorphisms which preserve the vertex s, are called s-preserving. They can be presented as permutations between dimensions. Clearly, s-preserving automorphisms preserve distances to s. Furthermore, note that for every two edges e, g with the same distance to s there exists an s-preserving automorphism that maps e to g. Observe on Figure 4 that the edges $s v_{9}, v_{5} v_{13}, v_{4} v_{12}, v_{8} v_{16}$ are at distance $0,1,2,3$ from the vertex s,

Figure 4: Three mutually independent s-starting Hamiltonian cycles C_{1}, C_{2}, C_{3} of Q_{4}. Each vertex u of Q_{4} is associated with a triple $\left(k_{1}, k_{2}, k_{3}\right)$ which says that u is the k_{i}-th vertex in the Hamiltonian cycle C_{i}.
respectively. Thus, there exists an s-preserving automorphism of Q_{4} such that the faulty edge e is mapped to one of the these edges. After applying such automorphism in Q_{4}, the s-starting mutually independent cycles are

$$
\begin{align*}
& C_{1}=\left(s, v_{5}, v_{7}, v_{3}, v_{4}, v_{8}, v_{6}, v_{14}, v_{13}, v_{9}, v_{11}, v_{15}, v_{16}, v_{12}, v_{10}, v_{2}\right), \\
& C_{2}=\left(s, v_{2}, v_{4}, v_{8}, v_{6}, v_{5}, v_{7}, v_{15}, v_{16}, v_{12}, v_{10}, v_{14}, v_{13}, v_{9}, v_{11}, v_{3}\right), \tag{1}\\
& C_{3}=\left(s, v_{3}, v_{11}, v_{9}, v_{13}, v_{15}, v_{16}, v_{12}, v_{10}, v_{14}, v_{6}, v_{2}, v_{4}, v_{8}, v_{7}, v_{5}\right) .
\end{align*}
$$

Note that they are all avoiding the edges $s v_{9}, v_{5} v_{13}, v_{4} v_{12}, v_{8} v_{16}$. For an illustration see Figure 4.

Case 3: $F=\left\{e_{1}, e_{2}\right\}$. First consider the following remark for Q_{3}. There is a Hamiltonian cycle that contains the first edge and avoids the second edge for any two edges of Q_{3} by Proposition 2. Furthermore, Q_{3} has two independent Hamiltonian cycles

$$
\begin{aligned}
& C_{1}=\left(s, x_{1}, y_{1}, x_{2}, y_{3}, t, y_{2}, x_{3}\right), \\
& C_{2}=\left(s, x_{3}, y_{3}, t, y_{2}, x_{1}, y_{1}, x_{2}\right)
\end{aligned}
$$

as on Figure 5 and they are unique up to isomorphism. Notice that the edge $y_{1} x_{2}$ has the same direction on both cycles. By some s-preserving automorphism of Q_{3}, the edge $y_{1} x_{2}$ can move to any $y_{i} x_{j}$ edge for $i, j=1,2,3$. Similarly, $y_{3} t$ can move to $y_{1} t$ or $y_{2} t$ by some s-preserving automorphism of Q_{3}.

Figure 5: Two independent s-starting Hamiltonian cycles $C_{1}=\left(s, x_{1}, y_{1}, x_{2}, y_{3}, t, y_{2}, x_{3}\right)$ and $C_{2}=\left(s, x_{3}, y_{3}, t, y_{2}, x_{1}, y_{1}, x_{2}\right)$ of Q_{3}^{0}. Each vertex u of Q_{3}^{0} is associated with a tuple (k_{1}, k_{2}) which says that u is the k_{1}-th vertex in C_{1} and k_{2}-th vertex in C_{2}.

We split Q_{4} along some direction d into Q_{3}^{0} and Q_{3}^{1}. We assume that $s \in V\left(Q_{3}^{0}\right)$ and vertices of Q_{3}^{0} are denoted as in Figure 5. Now, we distinguish the following cases regarding the position of e_{1} and e_{2} :
Subcase 3.1: Both e_{1}, e_{2} are incident with s. Then, we may assume that $e_{1}=s x_{1}$ and $e_{2}=s x_{2}$. In Q_{3}^{1} we find Hamiltonian paths $P\left[s^{d}, x_{1}^{d}\right]$ and $R\left[x_{2}^{d}, s^{d}\right]$. Observe that $H_{1}=\left(s, P, C_{1} \backslash\{s\}\right)$ and $H_{2}=\left(C_{2} \backslash\left\{s x_{2}\right\}, R\right)$ are s-starting Hamiltonian cycles of Q_{4}. Furthermore, all except the 9-th vertices of H_{1}, H_{2} are in distinct subcubes C_{3}^{0}, C_{3}^{1} and the 9-th vertices of H_{1}, H_{2} are x_{2}^{d}, x_{1}^{d}, respectively. Hence H_{1}, H_{2} are independent.

For the purpose of clarity in the following cases we denote $e_{1}=a_{1} b_{1}$ and $e_{2}=a_{2} b_{2}$.
Subcase 3.2: $e_{1}, e_{2} \in E\left(Q_{3}^{1}\right)$. If both e_{1} and e_{2} are incident with s^{d}, then we may assume $e_{1}=s^{d} x_{1}^{d}$ and $e_{2}=s^{d} x_{2}^{d}$. In Q_{3}^{1} we find Hamiltonian paths $P\left[s^{d}, x_{1}^{d}\right] R\left[x_{2}^{d}, s^{d}\right]$ which avoids e_{1} and e_{2} by Proposition 2. Then, we can argue as in the previous case that $H_{1}=\left(s, P, C_{1} \backslash\{s\}\right)$ and $H_{2}=\left(C_{2} \backslash\left\{s x_{2}\right\}, R\right)$ are independent s-starting Hamiltonian cycles of Q_{4}.

So, we can assume that e_{2} is not incident with s^{d} and hence, we can assume that $e_{2}=y_{1}^{d} x_{2}^{d}$ or $e_{2}=t^{d} y_{3}^{d}$. Let H be a Hamiltonian cycle in Q_{3}^{1} that contains e_{2} and avoids e_{1}. Then, $\left(P_{1}, H \backslash\left\{e_{2}\right\}, P_{2}\right)$ and $\left(R_{1}, H \backslash\left\{e_{2}\right\}, R_{2}\right)$ are independent s-starting Hamiltonian cycles in Q_{4}, where $P_{1}\left[s, a_{2}^{d}\right], P_{2}\left[b_{2}^{d}, x_{3}\right]$ are subpaths of C_{1} and $R_{1}\left[s, a_{2}^{d}\right], R_{2}\left[b_{2}^{d}, x_{2}\right]$ are subpaths of C_{2}.

Subcase 3.3: Either e_{1} or e_{2} is incident with s. We can assume e_{1} is incident with s. Let d be the direction of e_{1}, then e_{2} can be in $Q_{3}^{d ; 0}, Q_{3}^{d ; 1}$ or it can be of direction d. If e_{2} is in Q_{3}^{0}, then we can assume $e_{2}=y_{1} x_{2}$ or $e_{2}=t y_{3}$. In Q_{3}^{1} we take a Hamiltonian cycle H that contains e_{2}^{d}. Then, observe that ($P_{1}, H \backslash\left\{e_{2}^{d}\right\}, P_{2}$) and ($R_{1}, H \backslash\left\{e_{2}^{d}\right\}, R_{2}$) are independent s-starting Hamiltonian cycles, where $P_{1}\left[s, a_{2}\right], P_{2}\left[b_{2}, x_{3}\right]$ are subpaths of C_{1} and $R_{1}\left[s, a_{2}\right], R_{2}\left[b_{2}, x_{2}\right]$ are subpaths of C_{2}. If $e_{2} \in E\left(Q_{3}^{1}\right)$, we take a Hamiltonian cycle H of Q_{3}^{1} that avoids e_{2} and contains an edge $\left(y_{1} x_{2}\right)^{d}$, or $\left(t y_{3}\right)^{d}$. Then, $\left(P_{1}, H \backslash\left\{\left(t y_{3}\right)^{d}\right\}, P_{2}\right)$
and $\left(R_{1}, H \backslash\left\{\left(t y_{3}\right)^{d}\right\}, R_{2}\right)$ are independent s-starting Hamiltonian cycles, where $P_{1}[s, t]$, $P_{2}\left[y_{3}, x_{3}\right]$ are subpaths of C_{1} and $R_{1}[s, t], R_{2}\left[y_{3}, x_{2}\right]$ are subpaths of C_{2}. Finally, if e_{2} is of direction d, then $y_{1} x_{2}$ or $t y_{3}$ is not incident with e_{2}. Let us assume $t y_{3}$ is not incident with e_{2}. We take a Hamiltonian cycle H that contains $\left(t y_{3}\right)^{d}$ in Q_{3}^{1}. Then, $\left(P_{1}, H \backslash\left\{\left(t y_{3}\right)^{d}\right\}, P_{2}\right)$ and $\left(R_{1}, H \backslash\left\{\left(t y_{3}\right)^{d}\right\}, R_{2}\right)$ are independent s-starting Hamiltonian cycles, where $P_{1}[s, t]$, $P_{2}\left[y_{3}, x_{3}\right]$ are subpaths of $C_{1}, R_{1}[s, t]$ and $R_{2}\left[y_{3}, x_{2}\right]$ are subpaths of C_{2}.
Subcase 3.4: Finally, excluding the previous cases, the direction d keeps e_{1} in Q_{3}^{0} and e_{2} in Q_{3}^{1}. As e_{1} is not incident with s, we can assume $e_{1}=y_{1} x_{2}$ or $e_{1}=t y_{3}$. Again, we take a Hamiltonian cycle H in Q_{3}^{1} that contains e_{1}^{d}. We may assume H avoids e_{2} unless $e_{1}^{d}=e_{2}$. Now ($P_{1}, H \backslash\left\{e_{1}^{d}\right\}, P_{2}$) and ($R_{1}, H \backslash\left\{e_{1}^{d}\right\}, R_{2}$) are independent s-starting Hamiltonian cycles, where $P_{1}\left[s, a_{1}\right], P_{2}\left[b_{1}, x_{3}\right]$ are subpaths of C_{1} and $R_{1}\left[s, a_{1}\right], R_{2}\left[b_{1}, x_{2}\right]$ are subpaths of C_{2}.

The following theorem improves Theorem 10 by one additional Hamiltonian cycle. For simplicity, let us denote $\mathbf{0}=\{0\}^{n}$ and $\mathbf{1}=\{1\}^{n}$ in Q_{n}.

Theorem 15. Let $F \subseteq E\left(Q_{n}\right), n \geq 4, f=|F| \leq n-2$, and $s \in V\left(Q_{n}\right)$. Then, $Q_{n}-F$ has $n-f$ mutually independent s-starting Hamiltonian cycles.

Proof. If Q_{n} has no faulty edges, i.e. $f=0$, then Q_{n} has n mutually independent s-starting Hamiltonian cycles by Theorem 7. So, we assume $f \geq 1$.

We proceed by induction on n. For $n=4$ the statement holds by Lemma 14. Let us assume that the statement holds for $n-1$, and we will prove it for $n \geq 5$. By symmetry, we may assume $s=\mathbf{0} \in V\left(Q_{n}\right)$. Furthermore, let $D_{F}=\left\{d \in[n] ; \exists v v^{d} \in F\right\}$ be the set of directions of faulty edges in Q_{n}. In the following we need one additional definition. Assume that $C_{1}, C_{2}, \ldots, C_{n-f}$ are mutually independent $v_{i, 1}$-starting Hamiltonian cycles in Q_{m} for $n-f \leq m<n$ and $C_{i}=\left(v_{i, 1}, v_{i, 2}, \ldots, v_{i, 2^{m}}\right)$. Then, for $u=\left(u_{1}, u_{2}, \ldots, u_{n-m}\right) \in V\left(Q_{n-m}\right)$ let $C_{1}^{u}, C_{2}^{u}, \ldots, C_{n-f}^{u}$ be the Hamiltonian cycles in $Q_{m}^{\left(d_{1}, d_{2}, \ldots, d_{n-m}\right) ; u}$, where $d_{1}<\cdots<d_{n-m}$ and $d_{1}, \ldots, d_{n-m} \in D_{F}$. Let us denote

$$
S_{k}^{u}=\left\{\left(v_{i, k}, u\right) \in V\left(Q_{m}^{u}\right) ; i \in[n-f]\right\}
$$

that is, S_{k}^{u} is the set of k-th vertices of $C_{1}^{u}, C_{2}^{u}, \ldots, C_{n-f}^{u}$.
First, we consider the case of one faulty edge. See Figure 6(a) for an illustration. We split Q_{n} along the direction d of the faulty edge into subcubes Q_{n-1}^{0}, Q_{n-1}^{1}. By induction, there are $n-1$ mutually independent s-starting Hamiltonian cycles $C_{1}^{0}, C_{2}^{0}, \ldots, C_{n-1}^{0}$ in $Q_{n-1}^{0}-F$. As $2^{n-1}-2-2(n-1)>0$ for $n \geq 5$, we can find an integer $1<k<2^{n-1}$ such that none of the vertices of $S_{k}^{0} \cup S_{k+1}^{0}$ is incident with the faulty edge.

We map the vertices of S_{k}^{0}, S_{k+1}^{0} along the direction d into Q_{n-1}^{1} and obtain S_{k}^{1}, S_{k+1}^{1}; which are sets of distinct $n-1$ pairs of adjacent vertices $v_{i, k}^{d}, v_{i, k+1}^{d}$ in Q_{n-1}^{1}. In Q_{n-1}^{1} there are no faulty edges, so by Theorem 13, in $Q_{n-1}^{1}-F$ there are $n-1$ mutually independent Hamiltonian paths

$$
U_{1}\left[v_{1, k}^{d}, v_{1, k+1}^{d}\right], U_{2}\left[v_{2, k}^{d}, v_{2, k+1}^{d}\right], \ldots, U_{n-1}\left[v_{n-1, k}^{d}, v_{n-1, k+1}^{d}\right] .
$$

Figure 6: The construction of a set of s-starting mutually independent Hamiltonian cycles in Q_{n} with: (a) one faulty edge, (b) at least two faulty edges of the same direction d, (c) a faulty edge of direction d and at least one faulty edge in $Q_{n-1}^{d ; 0}$.

Then, for every $i \in[n-f]$,

$$
C_{i}=\left(T_{i}, U_{i}, R_{i}\right)
$$

is an s-starting Hamiltonian cycle in Q_{n} where $T_{i}\left[s, v_{i, k}\right], R_{i}\left[v_{i, k+1}, v_{i, 2^{n-1}}\right]$ are subpaths of the cycle C_{i}^{0}. Moreover, the cycles $C_{1}, C_{2}, \ldots, C_{n-1}$ are mutually independent.

Next, if there are two or more faulty edges (i.e. $f \geq 2$), we distinguish three cases.
Case 1: F is not rigid. Then, there exists a direction $d \in D_{F}$ containing at least two faulty edges. We split Q_{n} along the direction d into Q_{n-1}^{0}, Q_{n-1}^{1}. Let f_{2} be the number of faulty edges of direction d, and let f_{0}, f_{1} be the number of faulty edges in Q_{n-1}^{0}, Q_{n-1}^{1}, respectively; so $f_{0}+f_{1}+f_{2}=f$. By induction, we can find $n-1-f_{0}$ mutually independent Hamiltonian cycles $C_{1}^{0}, C_{2}^{0}, \ldots, C_{n-1-f_{0}}^{0}$ in $Q_{n-1}^{0}-F$. We take the first $n-f$ cycles $C_{1}^{0}, C_{2}^{0}, \ldots, C_{n-f}^{0}$. We choose k such that $1<k<2^{n-1}$ and none of the vertices of S_{k}^{0}, S_{k+1}^{0} is incident with any faulty edge of direction d. Such k exists as $2^{n-1}-2-2 f_{2}(n-f)>0$ for all $n \geq 5$.

We map the vertices of S_{k}^{0}, S_{k+1}^{0} along the direction d into Q_{n-1}^{1} and we obtain S_{k}^{1}, S_{k+1}^{1}; which are sets of $n-f$ pairs of adjacent vertices $v_{i, k}^{d}, v_{i, k+1}^{d}$ in Q_{n-1}^{1}. Since $n-f \leq n-2-f_{1}$, there exist $n-f$ mutually independent Hamiltonian paths

$$
U_{1}\left[v_{1, k}^{d}, v_{1, k+1}^{d}\right], U_{2}\left[v_{2, k}^{d}, v_{2, k+1}^{d}\right], \ldots, U_{n-f}\left[v_{n-f, k}^{d}, v_{n-f, k+1}^{d}\right]
$$

of $Q_{n-1}^{1}-F$ by Lemma 9. Then, for every $i \in[n-f]$,

$$
C_{i}=\left(T_{i}, U_{i}, R_{i}\right)
$$

is an s-starting Hamiltonian cycle in $Q_{n}-F$ where $T_{i}\left[s, v_{i, k}\right], R_{i}\left[v_{i, k+1}, v_{i, 2^{n-1}}\right]$ are the subpaths of the cycle C_{i}^{0}. Moreover, the cycles $C_{1}, C_{2}, \ldots, C_{n-f}$ are mutually independent. See Figure 6(b) for an illustration.
Case 2: F is rigid and there exists a direction $d \in D_{F}$ such that the subcube $Q_{n-1}^{d ; 0}$ contains at least one faulty edge. We split Q_{n} along the direction d into Q_{n-1}^{0}, Q_{n-1}^{1}. Let f_{0}, f_{1} be
the number of faulty edges in Q_{n-1}^{0}, Q_{n-1}^{1}, respectively; so $0<f_{0}<f$ and $f_{0}+f_{1}+1=$ f. We proceed similarly as in Case 1. By induction, there are $n-1-f_{0}$ mutually independent Hamiltonian cycles $C_{1}^{0}, C_{2}^{0}, \ldots, C_{n-1-f_{0}}^{0}$ in $Q_{n-1}^{0}-F$. We take the first $n-f$ cycles $C_{1}^{0}, C_{2}^{0}, \ldots, C_{n-f}^{0}$ and choose k such that $1<k<2^{n-1}$ and none of the vertices of $S_{k}^{0} \cup S_{k+1}^{0}$ is incident with the faulty edge of direction d. We always find such k as $2^{n-1}-2-2(n-f)>0$ for $n \geq 5$.

We map the vertices of S_{k}^{0}, S_{k+1}^{0} along the direction d into Q_{n-1}^{1} and we obtain S_{k}^{1}, S_{k+1}^{1}; which are sets of $n-f$ pairs of adjacent vertices $v_{i, k}^{d}, v_{i, k+1}^{d}$ in Q_{n-1}^{1}. Since $n-f \leq n-2-f_{1}$, we can find $n-f$ mutually independent Hamiltonian paths

$$
U_{1}\left[v_{1, k}^{d}, v_{1, k+1}^{d}\right], U_{2}\left[v_{2, k}^{d}, v_{2, k+1}^{d}\right], \ldots, U_{n-f}\left[v_{n-f, k}^{d}, v_{n-f, k+1}^{d}\right]
$$

of $Q_{n-1}^{1}-F$ by Lemma 9. Then, for every $i \in[n-f]$,

$$
C_{i}=\left(T_{i}, U_{i}, R_{i}\right),
$$

is an s-starting Hamiltonian cycle in $Q_{n}-F$ where $T_{i}\left[s, v_{i, k}\right], R_{i}\left[v_{i, k+1}, v_{i, 2^{n-1}}\right]$ are subpaths of the cycle C_{i}^{0}. Moreover, the cycles $C_{1}, C_{2}, \ldots, C_{n-f}$ are mutually independent. See Figure 6(c) for an illustration.
Case 3: F is rigid and for every $d \in D_{F}$, the subcube $Q_{n-1}^{d ; 0}$ has no faulty edge. We can consider Q_{n} as a Cartesian product $Q_{n}=Q_{n-f+1} \square Q_{f-1}$ such that the coordinates of Q_{f-1} are obtained by projection of the coordinates of Q_{n} on $D_{F} \backslash\{z\}$ for some $z \in D_{F}$. Let e_{z} denote the faulty edge of direction z. Let us define $Z_{F}=\left(d_{1}, d_{2}, \ldots, d_{f-1}\right)$ for $d_{1}, \ldots, d_{f-1} \in D_{F} \backslash\{z\}$ and $d_{1}<\cdots<d_{f-1}$. For the purpose of clarity let us denote $r=$ 2^{f-1} and $q=2^{n-f+1}$. Furthermore, let $H=\left(u_{1}, u_{2}, \ldots, u_{r}\right)$ be an arbitrary Hamiltonian cycle of Q_{f-1} such that $u_{1}=\mathbf{0}$. Let t_{j} denote the direction of the edge $u_{j} u_{j+1}$. Recall that $Q_{n-f+1}^{Z_{F} ; u_{j}}$ are subcubes of Q_{n} for every $j \in[r]$ and $s \in V\left(Q_{n-f+1}^{0}\right)$. Since there exists no direction $d \in D_{F}$ such that $Q_{n-1}^{d ; 0}$ has a faulty edge, one faulty edge is in Q_{n-f+1}^{1} and all the others are incident with precisely one vertex from Q_{n-f+1}^{1}. By Theorem 7, we can find $n-f$ mutually independent s-starting Hamiltonian cycles $C_{1}^{\mathbf{0}}, C_{2}^{\mathbf{0}}, \ldots, C_{n-f}^{\mathbf{0}}$ in $Q_{n-f+1}^{\mathbf{0}}$. Let $C_{i}^{0}=\left(v_{i, 1}, v_{i, 2}, \ldots, v_{i, q}\right)$.

Regarding the number of faulty edges, we distinguish two cases.
Subcase 3.1: $f \geq 3$. See Figure 7 for an illustration of case, when $f=3$. Since $f \geq 3$, the vertex u_{2} is never antipodal to the vertex $u_{1}=\mathbf{0}$ in Q_{f-1}, i.e. $u_{2} \neq \mathbf{1}$. Hence $Q_{n-f+1}^{u_{2}}$ has no faulty edge and there is no faulty edge of direction t_{1} incident with a vertex from $Q_{n-f+1}^{u_{1}}$.

We choose k such that $1<k<q$ and map the vertices S_{k}^{0}, S_{k+1}^{0} along the direction t_{1} into $Q_{n-f+1}^{u_{2}}$. We obtain vertices $S_{k}^{u_{2}}, S_{k+1}^{u_{2}}$ which are sets of $n-f$ distinct pairs of adjacent vertices $v_{i, k}^{t_{1}}, v_{i, k+1}^{t_{1}}$ in $Q_{n-f+1}^{u_{2}}$. The subcube $Q_{n-f+1}^{u_{2}}$ is of dimension $n-f+1$ and has a set of $n-f$ edges $N=\left\{v_{i, k}^{t_{1}} v_{i, k+1}^{t_{1}} ; i \in[n-f]\right\}$. We extend N into the perfect matching M of $Q_{n-f+1}^{u_{2}}$ and find a Hamiltonian cycle $G_{2}=\left(w_{1}, w_{2}, \ldots, w_{q}\right)$ containing the edges of M by Theorem 5. Note that the edges of N have the same parity on G_{2} as they are included in the perfect matching M.

Figure 7: The construction of $n-3$ mutually independent Hamiltonian cycles in Q_{n} for $n \geq 5$, when the faulty edges are rigid and for every direction, $d \in D_{F}$, the subcube $Q_{n-1}^{d ; 0}$ has no faulty edge (The example of Subcase 3.1).

Now, we choose an edge $a_{2} b_{2}$ on G_{2} such that $a_{2} b_{2}$ is not incident with the faulty edge of direction t_{2} (if such faulty edge exists) and distinct from N. Note that we can always choose such $a_{2} b_{2}$ as $n-f+2<2^{n}$ for $f \geq 3$ and $n \geq 5$. Let us assume that $a_{2} b_{2}$ and $v_{i, k}^{t_{1}} v_{i, k+1}^{t_{1}}$ have different parity on G_{2}. We map a_{2} and b_{2} along the direction t_{2} into $Q_{n-f+1}^{u_{3}}$. By Proposition 2 we find a Hamiltonian path $G_{3}\left[a_{2}^{t_{2}}, b_{2}^{t_{2}}\right]$ in $Q_{n-f+1}^{u_{3}}$ which avoids e_{z} (if $\left.e_{z} \in E\left(Q_{n-f+1}^{u_{3}}\right)\right)$. We proceed similarly for every $j=3,4, \ldots, r$. We choose consecutive vertices a_{j}, b_{j} on G_{j} such that $a_{j}, b_{j}, a_{j-1}^{t_{j-1}}, b_{j-1}^{t_{j-1}}$ are distinct. We map a_{j} and b_{j} along the direction t_{j} into $Q_{n-f+1}^{u_{j+1}}$ and by Proposition 2 we find a Hamiltonian path $G_{j+1}\left[a_{j-1}^{\left.t_{j-1}, b_{j-1}^{t_{j-1}}\right]}\right.$ in $Q_{n-f+1}^{u_{j+1}}$ that avoids e_{z} (if $e_{z} \in E\left(Q_{n-f+1}^{u_{j+1}}\right)$). Then, for all $i \in[n-f]$

$$
C_{i}=\left(R_{1}^{i}, R_{2}^{i}, R_{3}, \ldots, R_{r-1}, S, T_{r-1}, \ldots, T_{3}, T_{2}^{i}, T_{1}^{i}\right)
$$

are mutually independent Hamiltonian cycles, where $R_{1}^{i}\left[s, v_{i, k}\right], T_{1}^{i}\left[v_{i, k+1}, v_{i, q}\right]$ are subpaths of $C_{i}^{0}, R_{2}^{i}\left[v_{i, k}^{t_{1}}, a_{2}\right], T_{2}^{i}\left[b_{2}, v_{i, k+1}^{t_{1}}\right]$ are subpaths of $G_{2}, S\left[a_{r-1}^{t_{r-1}}, b_{r-1}^{t_{r-1}}\right]$ is a subpath of G_{r} and $R_{j}\left[a_{j-1}^{t_{j-1}}, a_{j}\right], T_{j}\left[b_{j}, b_{j-1}^{t_{j-1}}\right]$ are subpaths of G_{j} for every $j=3,4, \ldots, r-1$.
Subcase 3.2: $f=2$. We further distinguish this case regarding the dimension of the hypercube Q_{n}.
Subcase 3.2.1: $n \geq 6$. Let d_{1}, d_{2} be the directions of faulty edges e_{1}, e_{2}, respectively and let us denote $\bar{q}=2^{n-2}$. We split Q_{n} along d_{1} and d_{2} into $Q_{n-2}^{\left(d_{1}, d_{2}\right) ; 00}, Q_{n-2}^{\left(d_{1}, d_{2}\right) ; 10}$,

Figure 8: The construction of $n-2$ mutually independent Hamiltonian cycles in Q_{n} for $n \geq 6$, when the faulty edges f_{1}, f_{2} are rigid and for every direction, $d \in\left\{d_{1}, d_{2}\right\}$, the subcube $Q_{n-1}^{d ; 0}$ has no faulty edge.
$Q_{n-2}^{\left(d_{1}, d_{2}\right) ; 11}, Q_{n-2}^{\left(d_{1}, d_{2}\right) ; 01}$. We find $n-2$ mutually independent s-starting Hamiltonian cycles $C_{i}^{00}=\left(u_{i, 1}, u_{i, 2}, \ldots, u_{i, q}\right)$ in Q_{n-2}^{00} by Theorem 7. See Figure 8 for an illustration. We choose k such that $1<k<q$ and map the vertices of S_{k}^{00}, S_{k+1}^{00} along d_{2} into Q_{n-2}^{01}. We obtain S_{k}^{01}, S_{k+1}^{01}; which are sets of $n-2$ pairs of adjacent vertices $u_{i, k}^{d_{2}}, u_{i, k+1}^{d_{2}}$ in Q_{n-2}^{01}. We can find $n-2$ mutually independent Hamiltonian paths

$$
P_{1}\left[u_{1, k}^{d_{2}}, u_{1, k+1}^{d_{2}}\right], \ldots, P_{n-2}\left[u_{n-2, k}^{d_{2}}, u_{n-2, k+1}^{d_{2}}\right]
$$

of Q_{n-2}^{01} by Theorem 13. Then, $C_{i}^{01}=P_{i} \cup\left\{u_{i, k}^{d_{2}} u_{i, k+1}^{d_{2}}\right\}$ is a Hamiltonian cycle of Q_{n-2}^{01} for every $i \in[n-2]$. Let us denote $C_{i}^{01}=\left(v_{i, 1}, v_{i, 2}, \ldots, v_{i, q}\right)$. We choose l such that $1 \leq l<q$ and none of the vertices $S_{l}^{01} \cup S_{l+1}^{01}$ is incident with the faulty edge e_{1}. We can always find such l as $2^{n-2}-1-2(n-2)>0$ for $n \geq 6$. We map the vertices of S_{l}^{01}, S_{l+1}^{01} along d_{1} into Q_{n-2}^{11} and obtain S_{l}^{11}, S_{l+1}^{11}; which are sets of $n-2$ pairs of adjacent vertices $v_{i, l}^{d_{1}}, v_{i, l+1}^{d_{1}}$ in Q_{n-2}^{11}. We can find $n-2$ mutually independent Hamiltonian paths

$$
R_{1}\left[v_{1, l}^{d_{1}}, v_{1, l+1}^{d_{1}}\right], \ldots, R_{n-2}\left[v_{n-2, l}^{d_{1}}, v_{n-2, l+1}^{d_{1}}\right]
$$

of Q_{n-2}^{11} by Theorem 13. Then, $C_{i}^{11}=R_{i} \cup\left\{v_{i, l}^{d_{1}} v_{i, l+1}^{d_{1}}\right\}$ is a Hamiltonian cycle of Q_{n-2}^{11} for every $i \in[n-2]$. Let us denote $C_{i}^{11}=\left(w_{i, 1}, w_{i, 2}, \ldots, w_{i, q}\right)$. We choose t such that $1 \leq t<q$ and and none of the vertices $S_{t}^{11} \cup S_{t+1}^{11}$ is incident with the faulty edge e_{2}. We can always
find such t as $2^{n-2}-1-2(n-2)>0$ for $n \geq 6$. We map the vertices of S_{t}^{11}, S_{t+1}^{11} along d_{2} into Q_{n-2}^{10} and obtain S_{t}^{10}, S_{t+1}^{10}; which are sets of $n-2$ pairs of adjacent vertices $w_{i, t}^{d_{2}}$, $w_{i, t+1}^{d_{2}}$ in Q_{n-2}^{10}. We can find $n-2$ mutually independent Hamiltonian paths

$$
V_{1}\left[w_{1, t}^{d_{2}}, w_{1, t+1}^{d_{2}}\right], \ldots, V_{n-2}\left[w_{n-2, t}^{d_{2}}, w_{n-2, t+1}^{d_{2}}\right]
$$

of Q_{n-2}^{10} by Theorem 13. Then, for every $i \in[n-2]$,

$$
C_{i}=\left(T_{i}, P_{i, 1}, R_{i, 1}, V_{i}, R_{i, 2}, P_{i, 2}, U_{i}\right)
$$

is an s-starting Hamiltonian cycle in $Q_{n}-\left\{e_{1}, e_{2}\right\}$ where $T_{i}\left[s, u_{i, k}\right], U_{i}\left[u_{i, k+1}, u_{i, q}\right]$ are subpaths of $C_{i}^{00}, P_{i, 1}\left[v_{i, 1}, v_{i, l}\right], P_{i, 2}\left[v_{i, l+1}, v_{i, q}\right]$ are subpaths of P_{i} and $R_{i, 1}\left[w_{i, 1}, w_{i, t}\right], R_{i, 2}\left[w_{i, t+1}, w_{i, q}\right]$ are subpaths of R_{i}. Moreover, the cycles $C_{1}, C_{2}, \ldots, C_{n-2}$ are mutually independent.

Subcase 3.2.2: $n=5$. Let us denote $F=\left\{e_{1}, e_{2}\right\}$. We split Q_{5} along the direction d of the faulty edge e_{1}. Then, Q_{4}^{0} contains the vertex s and Q_{4}^{1} contains e_{2}. In Q_{4}^{0} we choose three mutually independent s-starting Hamiltonian cycles C_{1}, C_{2}, C_{3} defined by (1), see Figure 4. From independent directed edges $v_{4} v_{8}, v_{15} v_{16}, v_{12} v_{10}$ of C_{1}, C_{2}, C_{3}, we choose the edge $e=a b$ such that e is not incident with e_{1}. In Q_{4}^{1} we find a hamiltonian path $P\left[a^{d}, b^{d}\right]$ which avoids e_{2}. We obtain three mutually independent s-starting fault-free Hamiltonian cycles

$$
\begin{aligned}
& C_{1}=\left(R_{1}, P, P_{1}\right), \\
& C_{2}=\left(R_{2}, P, P_{2}\right), \\
& C_{3}=\left(R_{3}, P, P_{3}\right),
\end{aligned}
$$

where $R_{1}[s, a], P_{1}\left[b, v_{2}\right]$ are subpaths of $C_{1}, R_{2}[s, a], P_{2}\left[b, v_{3}\right]$ are subpaths of C_{2} and $R_{3}[s, a]$, $P_{3}\left[b, v_{5}\right]$ are subpaths of C_{3}.

5 Conclusion

In this paper we study the problem of mutually independent Hamiltonian paths and s starting Hamiltonian cycles of n-dimensional hypercube Q_{n}. We prove that there are $k \leq 2^{n-1}$ mutually independent Hamiltonian paths $P_{1}\left[w_{1}, b_{1}\right], P_{2}\left[w_{2}, b_{2}\right], \ldots, P_{k}\left[w_{k}, b_{k}\right]$ for a matching $M=\left\{w_{1} b_{1}, w_{2} b_{2}, \ldots, w_{k} b_{k}\right\} \subseteq E\left(Q_{n}\right)$ if M is extendable to a perfect matching. We prove that there are n mutually independent Hamiltonian paths $P_{i}\left[w_{i}, b_{i}\right]$ for any matching $M=\left\{w_{1} b_{1}, w_{2} b_{2}, \ldots, w_{n} b_{n}\right\} \subseteq E\left(Q_{n}\right)$ in Q_{n} which improves previously known result by one additional Hamiltonian path. We also prove that there are $n-f$ mutually independent s-starting Hamiltonian cycles in $Q_{n}-F$, where F is a set of $f \leq n-2$ arbitrary faulty edges and s is an arbitrary vertex. This improves previously known result by one additional s-starting Hamiltonian cycle. Moreover, it is the optimal result as faulty edges may be all incident with the vertex s.

References

[1] J. Fink, Perfect Matchings Extend to Hamilton Cycles in Hypercubes, J. Combin. Theory Ser. B 97 (2007) 1074-1076.
[2] I. Havel, On Hamiltonian circuits and spanning trees of hypercube, Čas. Pèst. Mat. 109 (1984) 135-192.
[3] S. Y. Hsieh, Y. F. Weng, Fault-Tolerant Embedding of Pairwise Independent Hamiltonian Paths on a Faulty Hypercube with Edge Faults, Theor. Comp. Sys. 45 (2009) 407-425.
[4] S. Y. Hsieh, P. Y. Yu, Faulty-free Mutually Independent Hamiltonian Cycles in Hypercubes with Faulty Edges, J. Comb. Optim. 13 (2007) 153-162.
[5] G. Kreweras, Matchings and Hamiltonian cycles on hypercubes, Bull. Inst. Combin. Appl. 16 (1996) 87-91.
[6] T. Z. Kueng, C. K. Lin, T. Liang, J. J.M. Tan, L. H. Hsu, A Note on Faulty-free Mutually Independent Hamiltonian Cycles in Hypercubes with Faulty Edges, J. Comb. Optim. 17 (2009) 312-322.
[7] M. Lewinter, W. Widulski, Hyper-Hamilton laceable and caterpillar-spannable product graphs, Computer Math. Applic. 34 (1997) 99-104.
[8] N. B. Limaye, D. G. Sarvate, On r-Extendability of the Hypercube Q_{n}, Math. Bohemica 122 (1997) 249-255.
[9] Y. K. Shih, J. J. M. Tan, L. H. Hsu, Mutually independent bipanconnected property of hypercube, Appl. Math. Comput. 217 (2010) 4017-4023.
[10] C. M. Sun, C. K. Lin, H. M. Huang, L. H. Hsu, Mutually Independent Hamiltonian Cycles in Hypercubes, Proc. 8th Sympos. on Parallel Architectures, Algorithms and Networks (2005).
[11] C. H. Tsai, J. J. M. Tan, T. Liang, L. H. Hsu, Fault-tolerant hamiltonian laceability of hypercubes, Info. Proc. Letters 83 (2002) 301-306.

[^0]: *This research was supported by the Czech-Slovenian bilateral grant MEB 090805 and BI-CZ/08-09-005, by the Czech Science Foundation Grant 201/08/P298, and by ARRS Research Program P1-0297.

