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Abstract

Two ordered Hamiltonian paths in the n-dimensional hypercube Qn are said
to be independent if i-th vertices of the paths are distinct for every 1 ≤ i ≤ 2n.
Similarly, two s-starting Hamiltonian cycles are independent if i-th vertices of the
cycle are distinct for every 2 ≤ i ≤ 2n. A set S of Hamiltonian paths and s-
starting Hamiltonian cycles are mutually independent if every two paths or cycles,
respectively, from S are independent. We show that for every set F of f edges and
n − f pairs of adjacent vertices wi and bi, there are n − f mutually independent
Hamiltonian paths with endvertices wi, bi and avoiding edges of F in Qn. We also
show that Qn contains n− f fault-free mutually independent s-starting Hamiltonian
cycles, for every set of f ≤ n−2 faulty edges in Qn and every vertex s. This improves
previously known results on the numbers of mutually independent Hamiltonian paths
and cycles in the hypercube with faulty edges.

Keywords: hypercube, Hamiltonian path, Hamiltonian cycle, faulty edges, interconnection
network
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2 March 26, 2011

1 Introduction

A parallel computer network is often modeled as an undirected graph in which the vertices
correspond to processors and the edges correspond to communication links between the
processors. Graphs which represent topological structure of parallel computer networks are
required to posses elegant properties such as small degree and diameter, high connectivity,
recursive structure, symmetry, etc. Moreover, one of the major concerns of the parallel
network design is its robustness, i.e. tolerance to the occurence of faults. Failures could
happen in hardware, software or even because of missing transmitted packet. In this paper
we study a fault tolerance of the hypercube, one of the most popular architectures which
has all above mentioned properties.

The n-dimensional hypercube Qn is a (bipartite) graph with all binary vectors of length n
as vertices, and with edges between every two vertices that differ in exactly one coordinate.
Connection failures in computer network correspond to faulty edges in the underlying
graph. It is important that network stays highly connected even if several connection
failures appear. For this reason, mutually independent Hamiltonian paths/cycles of Qn

with arbitrarily chosen f faulty edges are studied.
In this paper, n always denotes a positive integer and [n] denotes the set {1, 2, . . . , n}.

A path in the graph G is a sequence P = (v1, v2, . . . , vk) of distinct vertices such that every
two consecutive vertices are adjacent. For a path P = (v1, v2, . . . , vk) we say that v1 and vk

are the endvertices of P , and that P is a v1vk-path, which is denoted by P [v1, vk]. A path
in G is Hamiltonian if it contains all vertices of G. Let V (G) and E(G) denote the vertex
set and the edge set of a graph G, respectively, and let m = |V (G)|. Two Hamiltonian
paths P1 = (u1, u2, . . . , um) and P2 = (v1, v2, . . . , vm) of G are independent if ui 6= vi for all
i ∈ [m]. A set S of Hamiltonian paths of G is mutually independent if every two paths from
S are independent. A study of such paths is motivated by the problem of simultaneous
transmitting packets along these path such that they never meet in the same vertex.

A cycle is a sequence C = (v1, v2, . . . , vk) of k ≥ 3 distinct vertices such that every two
consecutive vertices, including the first and the last vertex of the sequence are adjacent.
We say that the cycle C = (v1, v2, . . . , vk) is v1-starting to emphasize the first vertex v1

and we denote it by C[v1]. A cycle C in a graph G is Hamiltonian, if it contains all vertices
of G. Two v-starting Hamiltonian cycles C1 = (v, u2, . . . , um) and C2 = (v, v2, . . . , vm) are
independent if vi 6= ui for all 2 ≤ i ≤ m. A set S of v-starting Hamiltonian cycles of G
is mutually independent if every two cycles from S are independent. A study of mutually
independent v-starting Hamiltonian cycles is motivated by the problem of transferring
different pieces of a given message from one node to all recipients simultaneously such that
they never meet in the same node.

In 2005, Sun, Lin, Huang and Hsu [10] proved that for any vertex s, the n-dimensional
hypercube Qn contains n−1 mutually independent s-starting Hamiltonian cycles if n = 2, 3;
and n mutually independent s-starting Hamiltonian cycles if n ≥ 4. They also proved
that for any set of n − 1 distinct pairs of adjacent vertices, Qn contains n − 1 mutually
independent Hamiltonian paths with these pairs of vertices as endvertices. In 2006, Hsieh
and Yu [4] claimed that the n-dimensional hypercube Qn with at most f ≤ n − 2 faulty
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3

edges contains a set of n − 1 − f mutually independent Hamiltonian paths and a set of
n− 1− f mutually independent s-starting Hamiltonian cycles for any vertex s. However,
in 2007, Kueng, Lin, Liang, Tan and Hsu [6] noticed a flaw in their proof and published
the correction. In 2009 Hsieh and Weng [3] proved that for n ≥ 3, Qn with at most
f ≤ n − 2 faulty edges contains a set of n − 1 − f mutually independent Hamiltonian
paths between any two vertices of different parity. In 2010 Shih, Tan and Hsu [9] studied
mutually independent paths of different length in Qn.

In this paper, we improve previous known results by showing that Qn contains a set of
n − f mutually independent Hamiltonian paths, see Theorem 13. We also prove that Qn

with at most f ≤ n−2 faulty edges contains a set of n−f mutually independent s-starting
Hamiltonian cycles for any vertex s, see Theorem 15. This is the optimal result since s
may be incident with f faulty edges.

2 Preliminaries

In this section we define notations and summarize previously known results that we use.

The distance of two edges e1, e2 ∈ E(G) is the minimal distance between a vertex of
e1 and a vertex of e2. Let us say that the edge vivj ∈ E(G) is directed, if we fix the order
of its vertices by (vi, vj). We say that a cycle C = (v1, v2, . . . , vk) is directed if vivi+1 are
directed edges in C for all i ∈ [k] (where vk+1 = v1).

Let Qn be the n-dimensional hypercube. For a vertex v ∈ V (Qn), let vi be the neighbor
of v that differs from v exactly in the i-th coordinate. We say that the edge vvi is i-
directional. Furthermore, for an edge e = uv we denote ei = uivi. The antipodal vertex to
a vertex v differs from v in all coordinates, and is denoted by v. Note that the hypercube
Qn is an n-regular graph with 2n vertices.

Two vertices of Qn are of the same parity if both of them have even (odd) number
of 1’s. We say the vertex is white (black) if it has even (odd) number of 1’s. Note that
vertices of each parity form bipartite classes of Qn. Consequently, u and v have the same
parity if and only if d(u, v) is even. We say that the edges uiui+1 and ujuj+1 of a directed
path or cycle (u1, u2, . . . , un) have the same parity if ui and uj are of the same parity; that
is, i− j ≡ 0 (mod 2).

For d ∈ [n] and i ∈ {0, 1} let Qd;i
n−1 be the subgraph of Qn induced by the vertices

with i on the d-th coordinate. Notice that Qd;i
n−1 is isomorphic to Qn−1. In other words, by

removing all edges of the direction d, the hypercube Qn splits into two (induced) subgraphs
Qd;0

n−1, Qd;1
n−1 isomorphic to Qn−1. We say that Qn is split along the direction d into subcubes

Qd;0
n−1 and Qd;1

n−1. Let us write Qi
n−1 instead of Qd;i

n−1 if the direction d is clear from the
context. Furthermore, we generalize this concept as follows. For {d1, d2, . . . , dp} ⊆ [n] and

(i1, i2, . . . , ip) ∈ {0, 1}p let Q
(d1,d2,...,dp);(i1,i2,...,ip)
n−p be the subgraph of Qn induced by all the

vertices whose d1-th, d2-th, . . . , dp-th coordinate equals to i1, i2, . . . , ip, respectively. Let us

write simply Q
i1i2···ip
n−p for Q

(d1,d2,...,dp);(i1,i2,...,ip)
n−p when (d1, d2, . . . , dp) is clear from the context.
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4 March 26, 2011

The cartesian product G ¤ H of two graphs G and H is the graph with the vertex set

V (G ¤ H) = {(u, v); u ∈ V (G), v ∈ V (H)},
and the edge set

E(G ¤ H) = {(u1, v1)(u2, v2); u1u2 ∈ E(G) and v1 = v2, or u1 = u2 and v1v2 ∈ E(H)}.
Note that Qn ¤Qm is isomorphic to Qn+m. For u ∈ V (Qn) and v ∈ V (Qm) let (u, v) repre-
sent the vertex of Qn+m with u on the first n coordinates and v on the last m coordinates.

u1
u2
u3

u2n−1 ud2n−1

ud1
ud2
ud3

Z(R, d)

R

ud4
Q

d;0
n−1 Q

d;1
n−1

ud2n−1
−1

u1
u2
u3

u2n−1 ud2n−1

ud1
ud2
ud3

W (R, d)

R

Q
d;0
n−1 Q

d;1
n−1

u2n−1
−1

u4

Figure 1: The directed zigzag Hamiltonian cycle Z(R, d) and the directed zigzag Hamilto-
nian cycle W (R, d) of Qn.

Now we define a useful concept of zigzag paths and cycles. Let R = (u1, u2, . . . , u2n−1)
be a directed Hamiltonian path (cycle) in Qd;i

n−1 for some i ∈ {0, 1} and d ∈ [n]. Then, we
say that

Z(R, d) = (u1, u
d
1, u

d
2, u2, . . . , u

d
2n−1 , u2n−1)

and
W (R, d) = (ud

1, u1, u2, u
d
2, . . . , u2n−1 , ud

2n−1)

are directed zigzag Hamiltonian paths (cycles) in Qn. See Figure 1 for an illustration.
Zigzag cycles have the following property.

Proposition 1. Let R = (u1, . . . , u2n−1) be a Hamiltonian cycle in Qd:i
n−1 for some d ∈ [n]

and b ∈ {0, 1}. Then for every distinct 0 ≤ i, j < 2n−2, the subpaths P1[u2i+1, u2i] and
P2[u2j+1, u

d
2j+1] of Z(R, d) and W (R, d), respectively, are independent Hamiltonian paths

in Qn.

Proof. By the definition of Z(R, d) and W (R, d), we have

P1[u2i+1, u2i] = (u2i+1, u
d
2i+1, u

d
2i+2, u2i+2, u2i+3, . . . , u

d
2i, u2i),

P2[u2j+1, u
d
2j+1] = (u2j+1, u2j+2, u

d
2j+2, u

d
2j+3, u2j+3, . . . , u

d
2j, u

d
2j+1),
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5

where the indices are taken cyclically; that is, u2n−1+1 = u1. Observe that the k-th vertices,
1 ≤ k ≤ 2n, of P1 and P2 are in distinct subcubes if k is even. If k ≡ 1 (mod 3), they are
in the form of u2i+s and u2j+s for some s. If k ≡ 3 (mod 3), they are in the form ud

2i+s

and ud
2j+s for some s. Thus, since i and j are distinct, the k-th vertices of P1 and P2 are

distinct for every 1 ≤ k ≤ 2n.

Now, we list the results that we need. It is well known that the hypercube Qn is
Hamiltonian for every n ≥ 2. It is also Hamiltonian laceable [2]; that is, there is a
Hamiltonian path between every two vertices of opposite parity. Even if some faulty edges
appear in Qn, the hypercube Qn stays Hamiltonian laceable.

Proposition 2 (Tsai et al. [11]). Let F ⊆ E(Qn), n ≥ 2 and |F | ≤ n − 2. Then, there
exists a Hamiltonian path in Qn − F between every two vertices of opposite parity.

We also need several basic results on Hamiltonian cycles and paths in the hypercube
with some removed vertices. The following proposition describes the case of one removed
vertex.

Proposition 3 (Lewinter and Widulski [7]). For n ≥ 2 and every three distinct vertices
u1, u2, v ∈ V (Qn) such that u1, u2 have the same parity opposite to the parity of v ∈ V (Qn),
the graph Qn − {v} has a Hamiltonian u1u2-path P .

A similar result holds for the case of two removed vertices.

Proposition 4 (Sun et al. [10]). The graph Qn−{u, v}, n ≥ 4 is Hamiltonian laceable for
every two vertices u and v of opposite parity.

A set M ⊆ E(G) of pairwise non-adjacent edges is called a matching. A matching
M is perfect if every vertex of G is covered by M . Kreweras [5] conjectured that every
perfect matching of the hypercube Qn, where n ≥ 2, can be extended to a Hamiltonian
cycle. Fink [1] affirmatively answered this conjecture by proving a stronger result for the
complete graph on the vertices of Qn, denoted by K(Qn).

Theorem 5 (Fink [1]). For every perfect matching M of K(Qn) where n ≥ 2, there exists
a perfect matching N of Qn such that M ∪N forms a Hamiltonian cycle of K(Qn).

We say that k edges e1, e2, . . . , ek ∈ E(Qn) are rigid if they have distinct directions.
Note that necessarily k ≤ n. For a set S of edges of Qn, we say that S saturates a vertex
v if some edge of S is incident with the vertex v. Otherwise, v is said to be unsaturated
by S. Furthermore, we say that a vertex v of Qn is blocked by S if all neighbors of v are
saturated by S and v is not saturated by S.

Theorem 6 (Limaye and Sarvate [8]). If a matching M ⊆ E(Qn) of size n ≥ 2 does not ex-
tend to a perfect matching in Qn, then there is an unsaturated vertex v whose neighborhood
is saturated by M .
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6 March 26, 2011

The previous results on mutually independent Hamiltonian paths and cycles in the
hypercube are as follows.

Theorem 7 (Sun et al. [10]). For any s ∈ V (Qn), the hypercube Qn contains n−1 mutually
independent s-starting Hamiltonian cycles if 2 ≤ n ≤ 3, and n mutually independent s-
starting Hamiltonian cycles if n ≥ 4.

Lemma 8 (Sun et al. [10]). Let w1, w2, . . . , wn−1 be vertices of the same parity in Qn, n ≥ 2
and let {w1b1, w2b2, . . . , wn−1bn−1} ⊆ E(Qn) be a matching in Qn. Then, Qn contains n−1
mutually independent Hamiltonian paths P1[w1, b1], P2[w2, b2], . . . , Pn−1[wn−1, bn−1].

Lemma 9 (Kueng et al. [6]). Let F ⊆ E(Qn), n ≥ 3, f = |F | ≤ n− 2 and w1, w2, . . . , wk

be vertices of the same parity in Qn, k ≤ n − 1 − f . Let {w1b1, w2b2, . . . , wkbk} ⊆ E(Qn)
be a matching in Qn. Then, Qn − F contains k mutually independent Hamiltonian paths
P1[w1, b1], P2[w2, b2], . . . , Pk[wk, bk].

We use Theorem 6, Theorem 7 and Lemma 8 to improve the result by Kueng, Lin,
Liang, Tan and Hsu stated in Theorem 10. In the next section, we prove Theorem 13
which is improvement of Lemma 8 then we apply it in Section 4 (Theorem 15) to improve
the following result.

Theorem 10 (Kueng et al. [6]). Let F ⊆ E(Qn), n ≥ 4, f = |F | ≤ n− 2, and s ∈ V (Qn).
Then, Qn − F has n− 1− f mutually independent s-starting Hamiltonian cycles.

3 Independent Hamiltonian paths in hypercubes

We start with an improvement in a special case that follows from Theorem 5.

Lemma 11. Let w1, w2, . . . , wk be vertices of the same parity in Qn, n ≥ 2. If w1b1, w2b2, . . . , wkbk

are edges of a perfect matching M of Qn, then Qn has k mutually independent Hamiltonian
paths P1[w1, b1], P2[w2, b2], . . . , Pk[wk, bk].

Proof. By Theorem 5, there is a Hamiltonian cycle C containing the edges w1b1, w2b2, . . . , wkbk.
Moreover, edges w1b1, w2b2, . . . , wkbk have the same parity on C as they are included in the
perfect matching M . If we disconnect the cycle C between vertices wi and bi, we obtain
a Hamiltonian path Pi[wi, bi] of Qn. As P1, P2, . . . , Pk ⊂ C and w1b1, w2b2, . . . , wkbk have
the same parity on C, Pi and Pj are independent for every distinct i, j ∈ [k].

We need the next proposition to prove Theorem 13.

Proposition 12. Let Pi be a set of mutually independent Hamiltonian paths in Qd;i
n−1 for

i = 0, 1 and some direction d. Then, the set {Z(P, d); P ∈ P0 ∪ P1} is a set of mutually
independent Hamiltonian paths in Qn.
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7

Proof. Let P1, P2 ∈ P0. Then, observe that Z(P1, d), Z(P2, d) are mutually independent
Hamiltonian paths in Qn. Indeed, since every t-th vertex v of P1 and t-th vertex u of P2 are
distinct, we infer that vd and ud are distinct and so Z(P1, d) and Z(P2, d) are independent
in Qn. A similar argument holds if P1, P2 ∈ P1.

Now, let Pi ∈ Pi for i = 0, 1. Then, the claim obviously holds as t-th vertices of Z(P0, d)
and Z(P1, d) are in distinct parts Qd;0

n−1 and Qd;1
n−1 for all t ∈ [2n].

The following theorem improves Lemma 8 by one additional independent Hamiltonian
path.

Theorem 13. Let w1, w2, . . . , wn be vertices of the same parity in Qn and let M =
{w1b1, w2b2, . . . , wnbn} ⊆ E(Qn) be a matching of Qn (n ≥ 2). Then, Qn has n mutu-
ally independent Hamiltonian paths P1[w1, b1], P2[w2, b2], . . . , Pn[wn, bn].

Proof. We prove that Qn contains n mutually independent Hamiltonian paths Pi[wi, bi] for
i ∈ [n] by induction on the dimension n. The base of induction for Q2 trivially holds since
Q2 contains two mutually independent Hamiltonian paths whose first and last vertices are
vertices of two independent edges of M , respectively. Now, we assume that the statement
holds for Qn−1 and we prove it for Qn, n ≥ 3. We consider three cases regarding M .

Case 1: The matching M extends to a perfect matching. Then, Qn has n mutually
independent Hamiltonian paths by Lemma 11.

In the remaining two cases, we assume due to Theorem 6 that some vertex v is blocked
by M .

Case 2: M is not rigid. We proceed similarly as in the proof of Lemma 8 from Sun
et. al. [10]. Since M is not rigid, there exists a direction d such that M contains no d-
directional edge. We split Qn along the direction d and we obtain two subcubes Q0

n−1

and Q1
n−1. Since there exists v ∈ V (Qn) blocked by M , for some i ∈ {0, 1} the subcube

Qi
n−1 contains one edge wkbk of M where k ∈ [n] and the subcube Q1−i

n−1 contains all the
other edges of M . By induction, there is one Hamiltonian path Pk[wk, bk] in Qi

n−1 and
n − 1 mutually independent Hamiltonian paths Pl[wl, bl] in Q1−i

n−1 for l ∈ [n] \ {k}. We
extend all these Hamiltonian paths Pj to Hamiltonian zigzag paths Z(Pj, d) in Qn, which
are mutually independent by Proposition 12.

Case 3: M is rigid. First, in case n = 3, there is only one possibility up to isomorphism
that the vertex v is blocked by a set of three rigid edges. In this case the example of
mutually independent Hamiltonian paths are

P1[w1, b1] = (w1, b, w3, b3, v, b2, w2, b1),
P2[w2, b2] = (w2, b1, w1, b, w3, b3, v, b2),
P3[w3, b3] = (w3, b2, v, b1, w2, b, w1, b3).

as illustrated in Figure 2.
Suppose now n ≥ 4. We can assume bi = wi

i for every i ∈ [n] as M is a set of n
rigid edges. Our aim is the following: We split Qn along an arbitrary direction k ∈ [n]
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8 March 26, 2011

w1

w3

w2

b1

b3

b2

b

v

(1, 3, 7) (8, 2, 4)

(4, 6, 8) (5, 7, 3)

(3, 5, 1) (6, 8, 2)

(2, 4, 6) (7, 1, 5)

Figure 2: Q3 with three mutually independent Hamiltonian paths. Each vertex u of Q3

is associated with a triple (k1, k2, k3) which says that u is the ki-th vertex in the i-th
Hamiltonian path Pi[wi, bi].

into subcubes Q0
n−1 and Q1

n−1. Notice that one of the subcubes Q0
n−1, Q1

n−1 contains one
edge of the matching M and the other subcube contains all the remaining edges except
the one which is of direction k. Without loss of generality, we may assume that the vertex
v is black and v ∈ V (Q0

n−1). Then, Q0
n−1 contains n − 2 edges of M , and Q1

n−1 contains
ej = wjbj ∈ M for some j ∈ [n] \ {k} such that wj = vk. Notice that bk is adjacent to wj.
The vertices of the edges ej, wjbk in Q1

n−1 are neighbors of the vertices of edges ek
j , vwk in

Q0
n−1, respectively. Note that the edge wk

j wk is incident with v, as v = wk
j . See Figure 3

for an illustration.
In the rest of the proof we proceed as follows: We find an v-starting Hamiltonian

cycle C0 = (v, v2, . . . , v2n−1) of Q0
n−1 such that C0 contains M \ {ej, ek} ∪ {ek

j}, the edges
of M \ {ej, ek} have the same parity on C0 and v2 = wk, v2n−1 = wi. Then, the cycle
C = Z(C0, k) is a Hamiltonian cycle of Qn containing M . Furthermore, the edges of

M \ {ek} = {w1b1, . . . , wk−1bk−1, wk+1bk+1, . . . , wnbn}

have the same parity on C. Then, the paths

P1[w1, b1], . . . , Pk−1[wk−1, bk−1], Pk+1[wk+1, bk+1], . . . , Pn[wn, bn]

on C are mutually independent Hamiltonian paths of Qn. Finally, for the differently
directed edge ek = wkbk on the cycle C we find a Hamiltonian path Pk[wk, bk] that is
mutually independent with all the other already constructed Hamiltonian paths of Qn.

Now, let us find an v-starting Hamiltonian cycle C0 of Q0
n−1 such that C0 contains

M \ {ej, ek} ∪ {ek
j} and the edges of M \ {ej, ek} have the same parity on C0. Note that

ek
j = wk

j b
k
j is an j-directional edge in Q0

n−1 and it is incident with ei for some i ∈ [n]\{j, k}.
We split Q0

n−1 along the direction j into subcubes Q00
n−2 and Q01

n−2. One of the subcubes
Q00

n−2 and Q01
n−2 contains the edges of

M ′ = M \ {ei, ej, ek}
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v
wk

j

bk
j

wi

ek
j

w
j

l

bi

bl wl

bk

bj

ej

wj

wk

ek

S

C00Q00

n−2

Q01

n−2
Q11

n−2

Q10

n−2

v
wk

j

bk
j

wi

ek
j

bi

bl wl

bk

bj

ej

wj

wk

ek

S

C00Q00

n−2

Q01

n−2

Q11

n−2

Q10

n−2

b
w

bj

wj

(a) (b)

Figure 3: (a) The construction of a Hamiltonian cycle C0 of Q0
n−1 if wj

l 6= bi. (b) The

construction of a Hamiltonian cycle C0 of Q0
n−1 if wj

l = bi. The edges of M are bold.

and the other contains the edge ei. Without loss of generality we assume Q00
n−2 contains M ′

and therefore it also contains the vertex v, see Figure 3. The set of edges M ′ is a matching
of Q00

n−2 such that Q00
n−2 has no vertex u with neighborhood saturated by M ′ since Q00

n−2

contains n− 3 edges of M ′. We extend M ′ to a perfect matching R of Q00
n−2 by Theorem 6.

Note that R contains the edge vwk. Then, we apply Theorem 5 and find a Hamiltonian
cycle C00 of Q00

n−2 containing M ′ as edges of the same parity.

Let wl be the neighbor of the vertex v on the Hamiltonian cycle C00 other than wk.
Now, we find a Hamiltonian cycle C0 of Q0

n−1. To do so, we distinguish the following two

cases regarding whether wj
l and bi coincide.

Subcase 3.1: wj
l 6= bi. See Figure 3(a) for an illustration. By Proposition 3, Q01

n−2 − {wi}
contains a Hamiltonian path S[wj

l , bi]. Let P [wk, wl] be the path from wk to wl on the
Hamiltonian cycle C00 in Q00

n−2. Then, the desired v-starting Hamiltonian cycle C0 of Q0
n−1

is

C0 = (v, P , S, wi).

Subcase 3.2: wj
l = bi. See Figure 3(b) for an illustration. We choose two adjacent vertices

w and b on the Hamiltonian cycle C00 of Q00
n−2 such that wb /∈ M and b is a black vertex

distinct from v. Observe that we can always choose such w and b since n ≥ 4. Note
that {wj, bj} ∩ {wi, bi} = ∅. Let P [wk, wl] be the directed path from wk to wl on the
Hamiltonian cycle C00, and without loss of generality we may assume that the vertex b
follows the vertex w on the path P . Let R1[wk, w], R2[b, wl] be the subpaths of the path
P .
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10 March 26, 2011

Subcase 3.2.1: n = 4. The v-starting Hamiltonian cycle C0 of Q0
3 is

C0 = (v, R1, w
j, bj, R2, bi, wi).

Subcase 3.2.2: n = 5. Note that we could choose wb among four edges of C00 that are not
part of the matching M and are not incident with v. Observe that only one configuration
of two pairs of adjacent vertices wjbj and wibi in Q01

3 up to isomorphism is possible so that
there is no Hamiltonian path S[wj, bj] in Q01

3 −{wi, bi}. Thus, we choose wb such that this
configuration is avoided. Then, the desired v-starting Hamiltonian cycle C0 of Q0

n−1 is

C0 = (v,R1, S, R2, bi, wi).

Subcase 3.2.3: n > 5. We find a Hamiltonian path S[wj, bj] in Q01
n−2 − {wi, bi} by

Proposition 4 and the desired v-starting Hamiltonian cycle C0 of Q0
n−1 is

C0 = (v,R1, S, R2, bi, wi).

This establishes Subcase 3.2.

Finally, it remains to find a Hamiltonian path Pk[wk, bk] of Qn that is mutually inde-
pendent with already constructed Hamiltonian paths P1, . . . , Pk−1, Pk+1, . . . , Pn of Qn. So,
let Pk be the Hamiltonian path of Qn induced by Hamiltonian cycle W (C0, k) of Qn. The
Hamiltonian path Pr and Pk are independent for every r ∈ [n] \ {k} by Proposition 1, as
Pr are Hamiltonian paths induced by Z(C0, k) and bk, wk and wr, br are consecutive pairs
of vertices on Z(C0, k).

4 Independent Hamiltonian cycles in faulty Qn

The following lemma is used as a base of induction in the proof of Theorem 15.

Lemma 14. Let F ⊆ E(Q4), f = |F | ≤ 2, s ∈ V (Q4). Then, Q4 − F has 4− f mutually
independent s-starting Hamiltonian cycles.

Proof. Let s = 0 be the starting vertex. We distinguish three cases regarding the number
of faulty edges f .

Case 1: F = ∅. It holds by Theorem 7.

Case 2: F = {e}. The proof of this case is straightforward. For a given vertex s = 0 and
any faulty edge e, we show that there exist three s-starting mutually independent Hamilto-
nian cycles. Automorphisms which preserve the vertex s, are called s-preserving. They can
be presented as permutations between dimensions. Clearly, s-preserving automorphisms
preserve distances to s. Furthermore, note that for every two edges e, g with the same
distance to s there exists an s-preserving automorphism that maps e to g. Observe on
Figure 4 that the edges sv9, v5v13, v4v12, v8v16 are at distance 0, 1, 2, 3 from the vertex s,
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v12v11

v15 v16

v14v13

v9 v10

(7, 5, 11)

v3v4

v8 v7

v5v6

v2 s = v1

(2, 6, 16)

(16, 2, 12)

(3, 7, 15)(6, 4, 14)

(5, 3, 13) (4, 16, 2)

(1, 1, 1)

(9, 13, 5) (8, 12, 10)

(10, 14, 4)

(13, 9, 7)(12, 8, 6)

(11, 15, 3) (14, 10, 8)

(15, 11, 9)

Figure 4: Three mutually independent s-starting Hamiltonian cycles C1, C2, C3 of Q4. Each
vertex u of Q4 is associated with a triple (k1, k2, k3) which says that u is the ki-th vertex
in the Hamiltonian cycle Ci.

respectively. Thus, there exists an s-preserving automorphism of Q4 such that the faulty
edge e is mapped to one of the these edges. After applying such automorphism in Q4, the
s-starting mutually independent cycles are

C1 = (s, v5, v7, v3, v4, v8, v6, v14, v13, v9, v11, v15, v16, v12, v10, v2),
C2 = (s, v2, v4, v8, v6, v5, v7, v15, v16, v12, v10, v14, v13, v9, v11, v3),
C3 = (s, v3, v11, v9, v13, v15, v16, v12, v10, v14, v6, v2, v4, v8, v7, v5).

(1)

Note that they are all avoiding the edges sv9, v5v13, v4v12, v8v16. For an illustration see
Figure 4.

Case 3: F = {e1, e2}. First consider the following remark for Q3. There is a Hamiltonian
cycle that contains the first edge and avoids the second edge for any two edges of Q3 by
Proposition 2. Furthermore, Q3 has two independent Hamiltonian cycles

C1 = (s, x1, y1, x2, y3, t, y2, x3),
C2 = (s, x3, y3, t, y2, x1, y1, x2)

as on Figure 5 and they are unique up to isomorphism. Notice that the edge y1x2 has the
same direction on both cycles. By some s-preserving automorphism of Q3, the edge y1x2

can move to any yixj edge for i, j = 1, 2, 3. Similarly, y3t can move to y1t or y2t by some
s-preserving automorphism of Q3.
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12 March 26, 2011

sx1

y1 x2

y3t

x3y2

(2, 6) (1, 1)

(3, 7) (4, 8)

(6, 4) (5, 3)

(7, 5) (8, 2)

Figure 5: Two independent s-starting Hamiltonian cycles C1 = (s, x1, y1, x2, y3, t, y2, x3)
and C2 = (s, x3, y3, t, y2, x1, y1, x2) of Q0

3. Each vertex u of Q0
3 is associated with a tuple

(k1, k2) which says that u is the k1-th vertex in C1 and k2-th vertex in C2.

We split Q4 along some direction d into Q0
3 and Q1

3. We assume that s ∈ V (Q0
3) and

vertices of Q0
3 are denoted as in Figure 5. Now, we distinguish the following cases regarding

the position of e1 and e2:

Subcase 3.1: Both e1, e2 are incident with s. Then, we may assume that e1 = sx1

and e2 = sx2. In Q1
3 we find Hamiltonian paths P [sd, xd

1] and R[xd
2, s

d]. Observe that
H1 = (s, P, C1 \ {s}) and H2 = (C2 \ {sx2}, R) are s-starting Hamiltonian cycles of Q4.
Furthermore, all except the 9-th vertices of H1, H2 are in distinct subcubes C0

3 , C1
3 and

the 9-th vertices of H1, H2 are xd
2, xd

1, respectively. Hence H1, H2 are independent.

For the purpose of clarity in the following cases we denote e1 = a1b1 and e2 = a2b2.

Subcase 3.2: e1, e2 ∈ E(Q1
3). If both e1 and e2 are incident with sd, then we may

assume e1 = sdxd
1 and e2 = sdxd

2. In Q1
3 we find Hamiltonian paths P [sd, xd

1] R[xd
2, s

d]
which avoids e1 and e2 by Proposition 2. Then, we can argue as in the previous case that
H1 = (s, P, C1 \ {s}) and H2 = (C2 \ {sx2}, R) are independent s-starting Hamiltonian
cycles of Q4.

So, we can assume that e2 is not incident with sd and hence, we can assume that
e2 = yd

1x
d
2 or e2 = tdyd

3 . Let H be a Hamiltonian cycle in Q1
3 that contains e2 and avoids

e1. Then, (P1, H \ {e2}, P2) and (R1, H \ {e2}, R2) are independent s-starting Hamiltonian
cycles in Q4, where P1[s, a

d
2], P2[b

d
2, x3] are subpaths of C1 and R1[s, a

d
2], R2[b

d
2, x2] are

subpaths of C2.

Subcase 3.3: Either e1 or e2 is incident with s. We can assume e1 is incident with s.
Let d be the direction of e1, then e2 can be in Qd;0

3 , Qd;1
3 or it can be of direction d. If

e2 is in Q0
3, then we can assume e2 = y1x2 or e2 = ty3. In Q1

3 we take a Hamiltonian
cycle H that contains ed

2. Then, observe that (P1, H \ {ed
2}, P2) and (R1, H \ {ed

2}, R2) are
independent s-starting Hamiltonian cycles, where P1[s, a2], P2[b2, x3] are subpaths of C1

and R1[s, a2], R2[b2, x2] are subpaths of C2. If e2 ∈ E(Q1
3), we take a Hamiltonian cycle H

of Q1
3 that avoids e2 and contains an edge (y1x2)

d, or (ty3)
d. Then, (P1, H \ {(ty3)

d}, P2)
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13

and (R1, H \ {(ty3)
d}, R2) are independent s-starting Hamiltonian cycles, where P1[s, t],

P2[y3, x3] are subpaths of C1 and R1[s, t], R2[y3, x2] are subpaths of C2. Finally, if e2 is of
direction d, then y1x2 or ty3 is not incident with e2. Let us assume ty3 is not incident with
e2. We take a Hamiltonian cycle H that contains (ty3)

d in Q1
3. Then, (P1, H \ {(ty3)

d}, P2)
and (R1, H \ {(ty3)

d}, R2) are independent s-starting Hamiltonian cycles, where P1[s, t],
P2[y3, x3] are subpaths of C1, R1[s, t] and R2[y3, x2] are subpaths of C2.

Subcase 3.4: Finally, excluding the previous cases, the direction d keeps e1 in Q0
3 and e2

in Q1
3. As e1 is not incident with s, we can assume e1 = y1x2 or e1 = ty3. Again, we take a

Hamiltonian cycle H in Q1
3 that contains ed

1. We may assume H avoids e2 unless ed
1 = e2.

Now (P1, H\{ed
1}, P2) and (R1, H\{ed

1}, R2) are independent s-starting Hamiltonian cycles,
where P1[s, a1], P2[b1, x3] are subpaths of C1 and R1[s, a1], R2[b1, x2] are subpaths of C2.

The following theorem improves Theorem 10 by one additional Hamiltonian cycle. For
simplicity, let us denote 0 = {0}n and 1 = {1}n in Qn.

Theorem 15. Let F ⊆ E(Qn), n ≥ 4, f = |F | ≤ n − 2, and s ∈ V (Qn). Then, Qn − F
has n− f mutually independent s-starting Hamiltonian cycles.

Proof. If Qn has no faulty edges, i.e. f = 0, then Qn has n mutually independent s-starting
Hamiltonian cycles by Theorem 7. So, we assume f ≥ 1.

We proceed by induction on n. For n = 4 the statement holds by Lemma 14. Let us
assume that the statement holds for n− 1, and we will prove it for n ≥ 5. By symmetry,
we may assume s = 0 ∈ V (Qn). Furthermore, let DF = {d ∈ [n]; ∃vvd ∈ F} be the set of
directions of faulty edges in Qn. In the following we need one additional definition. Assume
that C1, C2, . . . , Cn−f are mutually independent vi,1-starting Hamiltonian cycles in Qm for
n− f ≤ m < n and Ci = (vi,1, vi,2, . . . , vi,2m). Then, for u = (u1, u2, . . . , un−m) ∈ V (Qn−m)

let Cu
1 , Cu

2 , . . . , Cu
n−f be the Hamiltonian cycles in Q

(d1,d2,...,dn−m);u
m , where d1 < · · · < dn−m

and d1, . . . , dn−m ∈ DF . Let us denote

Su
k = {(vi,k, u) ∈ V (Qu

m); i ∈ [n− f ]};

that is, Su
k is the set of k-th vertices of Cu

1 , Cu
2 , . . . , Cu

n−f .
First, we consider the case of one faulty edge. See Figure 6(a) for an illustration. We

split Qn along the direction d of the faulty edge into subcubes Q0
n−1, Q

1
n−1. By induction,

there are n − 1 mutually independent s-starting Hamiltonian cycles C0
1 , C

0
2 , . . . , C

0
n−1 in

Q0
n−1−F . As 2n−1− 2− 2(n− 1) > 0 for n ≥ 5, we can find an integer 1 < k < 2n−1 such

that none of the vertices of S0
k ∪ S0

k+1 is incident with the faulty edge.
We map the vertices of S0

k , S
0
k+1 along the direction d into Q1

n−1 and obtain S1
k , S

1
k+1;

which are sets of distinct n− 1 pairs of adjacent vertices vd
i,k, vd

i,k+1 in Q1
n−1. In Q1

n−1 there
are no faulty edges, so by Theorem 13, in Q1

n−1 − F there are n− 1 mutually independent
Hamiltonian paths

U1[v
d
1,k, v

d
1,k+1], U2[v

d
2,k, v

d
2,k+1], . . . , Un−1[v

d
n−1,k, v

d
n−1,k+1].
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14 March 26, 2011

Qn Qn Qn

Q0

n−1
Q0

n−1
Q0

n−1
Q1

n−1
Q1

n−1
Q1

n−1

s

(a) (b) (c)

C0

i

C0

j

Rj
Tj

Ti

Ri

Ui

Uj

vi,k

vi,k+1

s

C0

i

C0

j

Rj
Tj

Ti

Ri

Ui

Uj s

C0

i

C0

j

Rj

Tj

Ti

Ri

Ui

Uj

vj,k+1

vj,k
vd

j,k

vd
j,k+1

vd
i,k

vd
i,k+1

vi,k

vi,k+1

vd
i,k

vd
i,k+1

vj,k+1

vj,k vd
j,k

vd
j,k+1

vj,k+1

vj,k vd
j,k

vd
j,k+1

vi,k

vi,k+1

vd
i,k

vd
i,k+1

Figure 6: The construction of a set of s-starting mutually independent Hamiltonian cycles
in Qn with: (a) one faulty edge, (b) at least two faulty edges of the same direction d, (c)
a faulty edge of direction d and at least one faulty edge in Qd;0

n−1.

Then, for every i ∈ [n− f ],
Ci = (Ti, Ui, Ri)

is an s-starting Hamiltonian cycle in Qn where Ti[s, vi,k], Ri[vi,k+1, vi,2n−1 ] are subpaths of
the cycle C0

i . Moreover, the cycles C1, C2, . . . , Cn−1 are mutually independent.
Next, if there are two or more faulty edges (i.e. f ≥ 2), we distinguish three cases.

Case 1: F is not rigid. Then, there exists a direction d ∈ DF containing at least two faulty
edges. We split Qn along the direction d into Q0

n−1, Q1
n−1. Let f2 be the number of faulty

edges of direction d, and let f0, f1 be the number of faulty edges in Q0
n−1, Q1

n−1, respectively;
so f0+f1+f2 = f . By induction, we can find n−1−f0 mutually independent Hamiltonian
cycles C0

1 , C
0
2 , . . . , C

0
n−1−f0

in Q0
n−1 − F . We take the first n − f cycles C0

1 , C
0
2 , . . . , C

0
n−f .

We choose k such that 1 < k < 2n−1 and none of the vertices of S0
k , S

0
k+1 is incident with

any faulty edge of direction d. Such k exists as 2n−1 − 2− 2f2(n− f) > 0 for all n ≥ 5.
We map the vertices of S0

k , S
0
k+1 along the direction d into Q1

n−1 and we obtain S1
k , S

1
k+1;

which are sets of n−f pairs of adjacent vertices vd
i,k, vd

i,k+1 in Q1
n−1. Since n−f ≤ n−2−f1,

there exist n− f mutually independent Hamiltonian paths

U1[v
d
1,k, v

d
1,k+1], U2[v

d
2,k, v

d
2,k+1], . . . , Un−f [v

d
n−f,k, v

d
n−f,k+1]

of Q1
n−1 − F by Lemma 9. Then, for every i ∈ [n− f ],

Ci = (Ti, Ui, Ri)

is an s-starting Hamiltonian cycle in Qn − F where Ti[s, vi,k], Ri[vi,k+1, vi,2n−1 ] are the
subpaths of the cycle C0

i . Moreover, the cycles C1, C2, . . . , Cn−f are mutually independent.
See Figure 6(b) for an illustration.

Case 2: F is rigid and there exists a direction d ∈ DF such that the subcube Qd;0
n−1 contains

at least one faulty edge. We split Qn along the direction d into Q0
n−1, Q1

n−1. Let f0, f1 be
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the number of faulty edges in Q0
n−1, Q1

n−1, respectively; so 0 < f0 < f and f0 + f1 + 1 =
f . We proceed similarly as in Case 1. By induction, there are n − 1 − f0 mutually
independent Hamiltonian cycles C0

1 , C
0
2 , . . . , C

0
n−1−f0

in Q0
n−1 − F . We take the first n− f

cycles C0
1 , C

0
2 , . . . , C

0
n−f and choose k such that 1 < k < 2n−1 and none of the vertices

of S0
k ∪ S0

k+1 is incident with the faulty edge of direction d. We always find such k as
2n−1 − 2− 2(n− f) > 0 for n ≥ 5.

We map the vertices of S0
k , S

0
k+1 along the direction d into Q1

n−1 and we obtain S1
k , S

1
k+1;

which are sets of n−f pairs of adjacent vertices vd
i,k, vd

i,k+1 in Q1
n−1. Since n−f ≤ n−2−f1,

we can find n− f mutually independent Hamiltonian paths

U1[v
d
1,k, v

d
1,k+1], U2[v

d
2,k, v

d
2,k+1], . . . , Un−f [v

d
n−f,k, v

d
n−f,k+1]

of Q1
n−1 − F by Lemma 9. Then, for every i ∈ [n− f ],

Ci = (Ti, Ui, Ri),

is an s-starting Hamiltonian cycle in Qn−F where Ti[s, vi,k], Ri[vi,k+1, vi,2n−1 ] are subpaths
of the cycle C0

i . Moreover, the cycles C1, C2, . . . , Cn−f are mutually independent. See
Figure 6(c) for an illustration.

Case 3: F is rigid and for every d ∈ DF , the subcube Qd;0
n−1 has no faulty edge. We can

consider Qn as a Cartesian product Qn = Qn−f+1 ¤ Qf−1 such that the coordinates of
Qf−1 are obtained by projection of the coordinates of Qn on DF \ {z} for some z ∈ DF .
Let ez denote the faulty edge of direction z. Let us define ZF = (d1, d2, . . . , df−1) for
d1, . . . , df−1 ∈ DF \ {z} and d1 < · · · < df−1. For the purpose of clarity let us denote r =
2f−1 and q = 2n−f+1. Furthermore, let H = (u1, u2, . . . , ur) be an arbitrary Hamiltonian
cycle of Qf−1 such that u1 = 0. Let tj denote the direction of the edge ujuj+1. Recall that

Q
ZF ;uj

n−f+1 are subcubes of Qn for every j ∈ [r] and s ∈ V (Q0
n−f+1). Since there exists no

direction d ∈ DF such that Qd;0
n−1 has a faulty edge, one faulty edge is in Q1

n−f+1 and all
the others are incident with precisely one vertex from Q1

n−f+1. By Theorem 7, we can find
n−f mutually independent s-starting Hamiltonian cycles C0

1 , C0
2 , . . . , C0

n−f in Q0
n−f+1. Let

C0
i = (vi,1, vi,2, . . . , vi,q).

Regarding the number of faulty edges, we distinguish two cases.

Subcase 3.1: f ≥ 3. See Figure 7 for an illustration of case, when f = 3. Since f ≥ 3,
the vertex u2 is never antipodal to the vertex u1 = 0 in Qf−1, i.e. u2 6= 1. Hence Qu2

n−f+1

has no faulty edge and there is no faulty edge of direction t1 incident with a vertex from
Qu1

n−f+1.
We choose k such that 1 < k < q and map the vertices S0

k , S0
k+1 along the direction t1

into Qu2
n−f+1. We obtain vertices Su2

k , Su2
k+1 which are sets of n−f distinct pairs of adjacent

vertices vt1
i,k, vt1

i,k+1 in Qu2
n−f+1. The subcube Qu2

n−f+1 is of dimension n− f +1 and has a set

of n− f edges N = {vt1
i,kv

t1
i,k+1; i ∈ [n− f ]}. We extend N into the perfect matching M of

Qu2
n−f+1 and find a Hamiltonian cycle G2 = (w1, w2, . . . , wq) containing the edges of M by

Theorem 5. Note that the edges of N have the same parity on G2 as they are included in
the perfect matching M .
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Q0

n−2 Qu2

n−2

Qu4

n−2

s

ez

a2b2

at33

bt33

vi,k+1

vi,k

vt1
i,k+1

vt1
i,k

vj,k

Cj

Ci

G2

vj,k+1

vi,q

Q1

n−2

at22bt22

b3

a3

Ri
2

T i
2

R3

T3

S

T i
1

Ri
1

R
j

1

T
j

1

vt1
j,k+1

vt1
j,k

Figure 7: The construction of n − 3 mutually independent Hamiltonian cycles in Qn for
n ≥ 5, when the faulty edges are rigid and for every direction, d ∈ DF , the subcube Qd;0

n−1

has no faulty edge (The example of Subcase 3.1).

Now, we choose an edge a2b2 on G2 such that a2b2 is not incident with the faulty edge
of direction t2 (if such faulty edge exists) and distinct from N . Note that we can always
choose such a2b2 as n − f + 2 < 2n for f ≥ 3 and n ≥ 5. Let us assume that a2b2 and
vt1

i,kv
t1
i,k+1 have different parity on G2. We map a2 and b2 along the direction t2 into Qu3

n−f+1.

By Proposition 2 we find a Hamiltonian path G3[a
t2
2 , bt2

2 ] in Qu3
n−f+1 which avoids ez (if

ez ∈ E(Qu3
n−f+1)). We proceed similarly for every j = 3, 4, . . . , r. We choose consecutive

vertices aj, bj on Gj such that aj, bj, a
tj−1

j−1 , b
tj−1

j−1 are distinct. We map aj and bj along the

direction tj into Q
uj+1

n−f+1 and by Proposition 2 we find a Hamiltonian path Gj+1[a
tj−1

j−1 , b
tj−1

j−1 ]

in Q
uj+1

n−f+1 that avoids ez (if ez ∈ E(Q
uj+1

n−f+1)). Then, for all i ∈ [n− f ]

Ci = (Ri
1, R

i
2, R3, . . . , Rr−1, S, Tr−1, . . . , T3, T

i
2, T

i
1)

are mutually independent Hamiltonian cycles, where Ri
1[s, vi,k], T i

1[vi,k+1, vi,q] are subpaths
of C0

i , Ri
2[v

t1
i,k, a2], T i

2[b2, v
t1
i,k+1] are subpaths of G2, S[a

tr−1

r−1 , b
tr−1

r−1 ] is a subpath of Gr and

Rj[a
tj−1

j−1 , aj], Tj[bj, b
tj−1

j−1 ] are subpaths of Gj for every j = 3, 4, . . . , r − 1.

Subcase 3.2: f = 2. We further distinguish this case regarding the dimension of the
hypercube Qn.

Subcase 3.2.1: n ≥ 6. Let d1, d2 be the directions of faulty edges e1, e2, respectively
and let us denote q = 2n−2. We split Qn along d1 and d2 into Q

(d1,d2);00
n−2 , Q

(d1,d2);10
n−2 ,
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Q00
n−2 Q01

n−2

Q10
n−2

s

ui,k+1

ui,k
ud2
i,k+1

ud2
i,k

uj,k

C00
j

C00
i

vi,q

Q11
n−2

uj,k+1

vi,l+1
vi,l

vd2
i,l+1

vd1
i,l

wi,t+1

wi,t

wd2
i,t+1

wd2
i,t

e1

e2

Pi,1

Pi,2

Ri,1

Ri,2

Vi

Ti

Ui

ud2
j,k+1

ud2
j,k

vj,l+1
vj,l

vd1
j,l+1

vd1
j,l

wj,t+1

wj,t

wd2
j,t+1

wd2
j,t

Vj
Rj,2

Rj,1

Pj,2

Pj,1
Tj

Uj

Figure 8: The construction of n − 2 mutually independent Hamiltonian cycles in Qn for
n ≥ 6, when the faulty edges f1, f2 are rigid and for every direction, d ∈ {d1, d2}, the
subcube Qd;0

n−1 has no faulty edge.

Q
(d1,d2);11
n−2 , Q

(d1,d2);01
n−2 . We find n − 2 mutually independent s-starting Hamiltonian cycles

C00
i = (ui,1, ui,2, . . . , ui,q) in Q00

n−2 by Theorem 7. See Figure 8 for an illustration. We
choose k such that 1 < k < q and map the vertices of S00

k , S00
k+1 along d2 into Q01

n−2. We

obtain S01
k , S01

k+1; which are sets of n− 2 pairs of adjacent vertices ud2
i,k, ud2

i,k+1 in Q01
n−2. We

can find n− 2 mutually independent Hamiltonian paths

P1[u
d2
1,k, u

d2
1,k+1], . . . , Pn−2[u

d2
n−2,k, u

d2
n−2,k+1]

of Q01
n−2 by Theorem 13. Then, C01

i = Pi ∪ {ud2
i,ku

d2
i,k+1} is a Hamiltonian cycle of Q01

n−2 for
every i ∈ [n− 2]. Let us denote C01

i = (vi,1, vi,2, . . . , vi,q). We choose l such that 1 ≤ l < q
and none of the vertices S01

l ∪ S01
l+1 is incident with the faulty edge e1. We can always find

such l as 2n−2− 1− 2(n− 2) > 0 for n ≥ 6. We map the vertices of S01
l , S01

l+1 along d1 into

Q11
n−2 and obtain S11

l , S11
l+1; which are sets of n − 2 pairs of adjacent vertices vd1

i,l , vd1
i,l+1 in

Q11
n−2. We can find n− 2 mutually independent Hamiltonian paths

R1[v
d1
1,l, v

d1
1,l+1], . . . , Rn−2[v

d1
n−2,l, v

d1
n−2,l+1]

of Q11
n−2 by Theorem 13. Then, C11

i = Ri ∪ {vd1
i,l v

d1
i,l+1} is a Hamiltonian cycle of Q11

n−2 for
every i ∈ [n−2]. Let us denote C11

i = (wi,1, wi,2, . . . , wi,q). We choose t such that 1 ≤ t < q
and and none of the vertices S11

t ∪ S11
t+1 is incident with the faulty edge e2. We can always
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find such t as 2n−2 − 1 − 2(n − 2) > 0 for n ≥ 6. We map the vertices of S11
t , S11

t+1 along

d2 into Q10
n−2 and obtain S10

t , S10
t+1; which are sets of n − 2 pairs of adjacent vertices wd2

i,t ,

wd2
i,t+1 in Q10

n−2. We can find n− 2 mutually independent Hamiltonian paths

V1[w
d2
1,t, w

d2
1,t+1], . . . , Vn−2[w

d2
n−2,t, w

d2
n−2,t+1]

of Q10
n−2 by Theorem 13. Then, for every i ∈ [n− 2],

Ci = (Ti, Pi,1, Ri,1, Vi, Ri,2, Pi,2, Ui)

is an s-starting Hamiltonian cycle in Qn − {e1, e2} where Ti[s, ui,k], Ui[ui,k+1, ui,q] are sub-
paths of C00

i , Pi,1[vi,1, vi,l], Pi,2[vi,l+1, vi,q] are subpaths of Pi and Ri,1[wi,1, wi,t], Ri,2[wi,t+1, wi,q]
are subpaths of Ri. Moreover, the cycles C1, C2, . . . , Cn−2 are mutually independent.

Subcase 3.2.2: n = 5. Let us denote F = {e1, e2}. We split Q5 along the direction d of
the faulty edge e1. Then, Q0

4 contains the vertex s and Q1
4 contains e2. In Q0

4 we choose
three mutually independent s-starting Hamiltonian cycles C1, C2, C3 defined by (1), see
Figure 4. From independent directed edges v4v8, v15v16, v12v10 of C1, C2, C3, we choose the
edge e = ab such that e is not incident with e1. In Q1

4 we find a hamiltonian path P [ad, bd]
which avoids e2. We obtain three mutually independent s-starting fault-free Hamiltonian
cycles

C1 = (R1, P, P1),

C2 = (R2, P, P2),

C3 = (R3, P, P3),

where R1[s, a], P1[b, v2] are subpaths of C1, R2[s, a], P2[b, v3] are subpaths of C2 and R3[s, a],
P3[b, v5] are subpaths of C3.

5 Conclusion

In this paper we study the problem of mutually independent Hamiltonian paths and s-
starting Hamiltonian cycles of n-dimensional hypercube Qn. We prove that there are
k ≤ 2n−1 mutually independent Hamiltonian paths P1[w1, b1], P2[w2, b2], . . . , Pk[wk, bk] for
a matching M = {w1b1, w2b2, . . . , wkbk} ⊆ E(Qn) if M is extendable to a perfect match-
ing. We prove that there are n mutually independent Hamiltonian paths Pi[wi, bi] for any
matching M = {w1b1, w2b2, . . . , wnbn} ⊆ E(Qn) in Qn which improves previously known
result by one additional Hamiltonian path. We also prove that there are n − f mutually
independent s-starting Hamiltonian cycles in Qn − F , where F is a set of f ≤ n− 2 arbi-
trary faulty edges and s is an arbitrary vertex. This improves previously known result by
one additional s-starting Hamiltonian cycle. Moreover, it is the optimal result as faulty
edges may be all incident with the vertex s.
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