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Abstract

We prove that every cubic bridgeless graph G contains a 2-factor which
intersects all (minimal) edge-cuts of size 3 or 4. This generalizes an earlier
result of the authors, namely that such a 2-factor exists provided that G is
planar. As a further extension, we show that every graph contains a cycle
(a union of edge-disjoint circuits) that intersects all edge-cuts of size 3 or
4. Motivated by this result, we introduce the concept of a coverable set of
integers and discuss a number of questions, some of which are related to
classical problems of graph theory such as Tutte’s 4-flow conjecture or the
Dominating cycle conjecture.

1 Introduction

We study the existence of cycles intersecting all edge-cuts of prescribed sizes
in a graph. Throughout this paper, a cycle in a graph G is a union of edge-
disjoint circuits and an edge-cut (in short, a cut) is an inclusionwise minimal set
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of edges whose removal increases the number of components of G. Our graphs
are undirected and contain no loops, but they may contain parallel edges.

Our starting point is the main result of [7]:

Theorem 1.1 For any planar graph G, there exists a (not necessarily proper)
2-coloring of V (G) such that there is no monochromatic circuit of length 3 or 4.

In an equivalent dual form, Theorem 1.1 states that every bridgeless planar
cubic graph has a 2-factor intersecting all cuts of size 3 or 4. (A graph is bridgeless
if it is connected and has no bridges.) In the present paper, we extend the
latter result to all bridgeless cubic graphs. Furthermore, we lift the regularity
assumption, proving the following:

Theorem 1.2 Every graph G has a cycle intersecting all cuts of size 3 or 4.

Motivated by this, we introduce the following concept. Let N be the set of
positive integers and A ⊆ N. We say that a cycle C in a graph G is A-covering if
it intersects all cuts T with |T | ∈ A. If Q is a class of graphs, then A is coverable
in Q if every graph from Q contains an A-covering cycle. A set that is coverable
in the class of all graphs is just said to be coverable.

Thus, an equivalent version of Theorem 1.2 is that the set {3, 4} is coverable.
Which other sets are coverable? N itself is not; clearly, a graph has an N-covering
cycle if and only if it has a spanning Eulerian subgraph (spanning closed trail),
which is not the case, for instance, for the graph K2,3 (or for any graph with a
bridge). In fact, K2,3 shows that even the set {2} is not coverable.

For a less trivial example of a non-coverable set, consider A = {3, 5} and the
Petersen graph P10. For any vertex v of P10, the edges incident with v constitute
a cut as P10 is 3-edge-connected. Since 3 ∈ A, any A-covering cycle is a 2-factor.
Every 2-factor F of P10 is formed by two circuits of length 5. The complement
of F is a cut of size 5 that is not intersected by F . It follows that P10 has no
A-covering cycle.

On the other hand, it may well be that the presence of P10 in a graph G (as
a minor) is the only obstruction to the existence of a {3, 5}-covering cycle in G.
Recall that a graph H is a minor of a graph G if H can be obtained from G by
a sequence of edge contractions and edge deletions. The graph G is Petersen-
minor-free (or P10-free) if P10 is not a minor of G. Petersen-minor-free graphs
are the subject of the famous 4-flow conjecture of Tutte [13]. Since we will not
need to go into the details of integer flows (which can be found in [14]), let us
state Tutte’s conjecture in a form that does not refer to 4-flows:

Conjecture 1.1 The edges of any P10-free bridgeless graph can be covered by two
cycles.
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Observe that if E(G) is covered by two cycles C1 and C2, then C1 is (2N+ 1)-
covering, where 2N+ 1 = {3, 5, 7, . . .}. Indeed, any odd cut not intersected by C1

cannot be covered by C2, for the intersection of a cycle and a cut has even size.
Conversely, it is not difficult to prove that if G has a (2N + 1)-covering cycle,
then E(G) can be covered by two cycles. Thus, Conjecture 1.1 can equivalently
be stated in terms of coverability:

Conjecture 1.2 The set 2N+1 = {3, 5, 7, . . .} is coverable in the class of P10-free
graphs.

Observe that Conjecture 1.2 is not restricted to bridgeless graphs. The reason
is that any set A ⊆ N with 1 /∈ A is coverable in the class of bridgeless graphs if
and only if it is coverable in the class of all graphs.

Conjecture 1.1 is well known to be true for planar graphs. Indeed, this special
case is equivalent to the Four Color Theorem (see, e.g., [14]). It follows that 2N+1
is coverable in the class of planar graphs.

To conclude this section, we point out a relation to another long-standing
conjecture. A dominating cycle in G is a circuit C such that each edge of G is
incident with a vertex of C. (Note that in our terminology, ‘dominating circuit’
would be a more appropriate term.) The Dominating cycle conjecture has several
equivalent forms [3, 8, 11]; we state the one due to Fleischner and Jackson [5]
(see Section 2 for a definition of cyclically k-connected graphs):

Conjecture 1.3 Every cyclically 4-edge-connected cubic graph has a dominating
cycle.

By Tutte’s theorem [12], Conjecture 1.3 is true for planar graphs. Note that
if G is a cyclically 4-edge-connected cubic graph, then a circuit is a dominating
cycle in G if and only if it is (N+ 3)-covering, where N+ 3 = {4, 5, 6, . . .}. Thus,
the following is a generalization of the Dominating cycle conjecture:

Conjecture 1.4 The set N+ 3 is coverable.

A result of Thomassen [10, Theorem 4.1] implies that N + 3 is coverable in
the class of planar graphs. Further questions related to coverable sets are asked
in Section 6.

2 Notation and definitions

Let us review a few definitions. As mentioned above, all the graphs we consider
are loopless multigraphs. The vertex set and the edge set of a graph G are denoted
by V (G) and E(G), respectively. If E = E(G), we write E(v) for the set of edges
incident with the vertex v. For a subset X ⊆ V (G), let G[X] denote the subgraph
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of G induced by the vertices of X. If V1, V2 are vertex-disjoint subsets of V (G),
let [V1, V2] denote the set of edges of G with one endvertex in V1 and the other
endvertex in V2. Recall that a cut in a connected graph G is a subset C ⊆ E(G)
such that G−C is disconnected and C is minimal with this property. Note that
G − C has two components, say, G1 and G2, and that C = [V (G1), V (G2)]. If
any of the graphs Gi consists of a single vertex, then C is a trivial cut; otherwise
C is called non-trivial. Similarly, if any of the graphs Gi is a tree, then C is an
acyclic cut; otherwise C is cyclic.

We write G1(C) (G2(C), respectively) for the graph obtained from G by con-
tracting all of X2 (X1, respectively) into a new vertex and removing any loops
which arise. Note that in both graphs thus constructed, C corresponds to a trivial
cut.

Let v be a vertex of degree 2 in a graph. Suppressing v consists in removing
v along with the incident edges, and joining the former neighbors of v by an
edge if they are distinct. Note that if v is incident with two parallel edges, then
suppressing v is the same as removing it. To contract an edge means to identify
its endvertices and remove all the resulting loops. By definition, the contraction
of a subgraph is the contraction of all of its edges.

A graph G is cyclically k-edge-connected if |E(G)| > k and G has no cyclic cut
of size at most k − 1. A cycle H is spanning in G if each vertex of G is incident
with an edge of H.

We refer to edge cuts of size k as k-cuts. Similarly, a set of size n is referred
to as an n-set. A set of even size is an even set. The terms n-subset and even
subset are defined in an analogous way.

3 Interlaced cuts

Before proving Theorem 1.2 (in Sections 4 and 5), we need to obtain some infor-
mation on the possible configurations of cuts of size 3 and 4. Throughout this
section, C1 = [X1, X2] and C2 = [Y1, Y2] are two cuts in a connected graph G.
For i, j ∈ {1, 2}, set Aij = Xi ∩ Yj. (See Figure 1 for an illustration.) The sets
Aij are called the regions corresponding to C1 and C2. We say that C1 interlaces
C2 if each of G[X1] and G[X2] contains an edge of C2. In this section, we study
the interlacement relation for small cuts.

Proposition 3.1 With the above definitions,

C1 ∩ C2 = [A11, A22] ∪ [A12, A21].

Proof. An edge of C1 joins a vertex of X1 to a vertex of X2, and an edge of C2

joins a vertex of Y1 to a vertex of Y2. Thus, if e ∈ C1 ∩C2, then either e has one
endvertex in X1 ∩ Y1 = A11 and the other one in X2 ∩ Y2 = A22, or else e has one
endvertex in X1 ∩ Y2 = A12 and the other one in X2 ∩ Y1 = A21. 2
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A11 A21

A12 A22

Y1

Y2

X1 X2

Figure 1: The regions Aij corresponding to cuts C1 = [X1, X2] and C2 = [Y1, Y2].

By the following proposition, C1 interlaces C2 if and only if C2 interlaces C1.
If these equivalent conditions hold, then we say that C1 and C2 are interlaced or
that they form an interlacing pair.

Proposition 3.2 The following three claims are equivalent:

(a) C1 interlaces C2,

(b) C2 interlaces C1,

(c) all the sets Aij (i, j ∈ {1, 2}) are non-empty.

Proof. By symmetry, it is enough to prove that (a) ⇒ (c) ⇒ (b).
We first show that (a) ⇒ (c). Since C1 interlaces C2, there exists an edge of

C2 with both endvertices in X1. Notice that one of these two endvertices is in
X1 ∩ Y1 and the other one is in X1 ∩ Y2. Thus, A11 6= ∅ and A12 6= ∅. Similarly,
one can show that A21 6= ∅ and A22 6= ∅.

It remains to show that (c) ⇒ (b). The graph G has an edge e1 with one
endvertex in A11 and the other one in A21. Otherwise, the assumptions A11 6= ∅
and A21 6= ∅ imply that the set C∗ = [A11, V (G) \ A11] is non-empty and that
it is a proper subset of C2. Thus, C∗ contradicts the minimality of C2. Since
e1 ∈ [A11, A21] belongs to Y1, it follows that e1 ∈ C1 and e1 ∈ G[Y1]. Similarly,
one can show that C1 has an edge e2 in G[Y2]. Thus, C2 interlaces C1. 2

From the above two propositions, we easily obtain the following:

Proposition 3.3 Suppose that the cuts C1 and C2 are interlaced. Then there
exist edges e1, e2 ∈ C1 \ C2 and f1, f2 ∈ C2 \ C1 such that for each i ∈ {1, 2}, it
holds that ei ∈ [A1i, A2i] and fi ∈ [Ai1, Ai2]. 2

Proposition 3.4 Suppose that G is a bridgeless graph, C1 is a 2-cut, C2 is a cut
of size 3 or 4, and the cuts C1 and C2 are interlaced. Then C1 ∩ C2 = ∅.
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C1

C2

(a)

C1

C2

(b)

C1

C2

(c)

Figure 2: A 2-cut C1 (vertical edges) interlaced with a cut C2 of size 3 or 4
(horizontal edges).

Proof. Apply Propositions 3.1 and 3.3. 2

Observe that by Propositions 3.1–3.3, all the possible mutual positions of the
cuts C1, C2 from Proposition 3.4 are as shown in Figure 2.

Proposition 3.5 If G is a 3-edge-connected graph, then it has no interlacing
pair of 3-cuts.

Proof. Suppose that C1 and C2 are two such cuts. Propositions 3.1–3.3 imply
that one of the sets A11, A12, A21, A22 is connected to the rest of G by at most 2
edges. This contradicts the 3-edge-connectedness of G. 2

Propositions 3.1 and 3.3 imply the following:

Proposition 3.6 Suppose that G is a 3-edge-connected graph, C1 is a 3-cut, C2

is a 4-cut, and the cuts C1 and C2 are interlaced. Then C1 ∩ C2 = ∅. 2

The structure of G with respect to the cuts C1, C2 from Proposition 3.6 is
necessarily the one shown in Figure 3.

C1

C2

Figure 3: A 3-cut C1 interlaced with a 4-cut C2.
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Proposition 3.7 Suppose that G is a cyclically 4-edge-connected graph and C1,
C2 are interlaced cyclic 4-cuts. Then C1 ∩ C2 = ∅.

Proof. Suppose that C1 ∩ C2 6= ∅. If the set [A11, A22] contains at least two
edges, then Proposition 3.3 implies that one of the sets A12, A21 is connected to the
rest of G by at most 2 edges; this contradicts the edge-connectivity assumption
of G. Thus, [A11, A22] and (by a symmetric argument) [A12, A21] contain at most
one edge each.

Suppose now that the set [A12, A21] is empty. Then [A11, A22] contains pre-
cisely one edge. Using the assumption that all 3-cuts are trivial, one can easily
show that either one of the sets Aij (i, j ∈ {1, 2}) is connected to the rest of
the graph by at most 2 edges, or one of the subgraphs G[Xi], G[Yi] (i ∈ {1, 2}),
is isomorphic to K2. The former possibility contradicts the edge-connectivity
assumption on G, while the latter one contradicts the assumption that the cuts
C1, C2 are cyclic.

By the above, each of the sets [A11, A22] and [A12, A21] contains precisely one
edge. Proposition 3.3 implies that each Aij is connected to the rest of the graph
by exactly 3 edges. Since G is cyclically 4-edge-connected, it follows that each
Aij consists of a single vertex, and so G is isomorphic to K4. Hence, the cuts
C1, C2 are acyclic, a contradiction. 2

The structure of G with respect to the cuts C1, C2 from Proposition 3.7 is as
depicted in Figure 4.

C1

C2

Figure 4: Two interlaced 4-cuts.

Proposition 3.8 If C1 and C2 are distinct non-interlaced cuts with C1∩C2 6= ∅,
then precisely one of the sets A11, A12, A21, A22 is empty.

Proof. Note that by Proposition 3.2, at least one of the sets Aij is empty. Since
the cuts are distinct, no more than one of these sets can be empty. 2

The structure of two distinct non-interlaced cuts with non-empty intersection
is shown in Figure 5. Note that between any two of the 3 parts, there must be
at least one edge.
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C1 C2

Figure 5: Non-interlaced cuts C1 and C2 with common edges.

4 Graphs with small degrees

By a well-known theorem of Petersen, every bridgeless cubic graph G has a 2-
factor. In this section, we prove a result which implies that in fact, G has a
2-factor which is a {3, 4}-covering cycle. To this end, we shall make use of the
following extension of the Petersen theorem, due to Schönberger [9]:

Theorem 4.1 Let G be a cubic bridgeless multigraph and e, f ∈ E(G). Then G
has a 2-factor containing both e and f .

Let v be a vertex of degree 4 in a graph G = (V,E). Let Y ⊂ E(v) be a 2-set
and let X ⊆ E(v) be an even set. Note that if |X| 6= 2, then X = E(v). We
say that X crosses Y if X ∩ Y 6= ∅ and Y 6= X. Thus, E(v) crosses each of its
2-subsets. For example, if E(v) = {a, b, c, d} and Y = {a, b}, then the even sets
which cross Y are {a, c}, {a, d}, {b, c}, {b, d} and {a, b, c, d}.

Let w ∈ V (G). We say that a subgraph H ⊆ G extends a set X ⊆ E(w) if
E(H) ∩ E(w) = X.

For a partition E1, E2 of E(w), let G(w,E1, E2) denote the graph constructed
from G by splitting w into two new adjacent vertices w1 and w2 so that E(w1) =
E1 ∪ {w1w2} and E(w2) = E2 ∪ {w1w2}. Notice that G can be obtained from
G(w,E1, E2) by contracting the edge w1w2. Furthermore, any cut in G is a cut
in G(w,E1, E2). Thus, a good cycle in G(w,E1, E2) gives rise to a good cycle in
G.

If C is a cut in a graph G, then we identify C with the corresponding edge-sets
in G1(C) and G2(C). We say that a subgraph F1 of G1(C) and a subgraph F2 of
G2(C) agree on C if they contain precisely the same edges of C (with respect to
this identification). For such a pair of subgraphs, F1 ∪ F2 denotes the subgraph
of G consisting of all edges corresponding to those in F1 or in F2. For brevity, we
call a cycle good if it is {3, 4}-covering.

Lemma 4.2 Let C be a cut of size at most 3 in a bridgeless graph G. If each
graph Gi(C) (i = 1, 2) has a good cycle Fi such that F1 and F2 agree on C, then
F1 ∪ F2 is a good cycle of G.
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Proof. Clearly, F1 ∪ F2 is a spanning cycle of G. We need to verify that it
intersects each cut of size 3 or 4 in G. Let D be such a cut. Let Aij (i, j ∈ {1, 2})
be the regions corresponding to the cuts C1 = C and C2 = D in G as defined at
the beginning of this section. If C and D are not interlaced, then D corresponds
to a cut D′ of the same size in some Gi(C) (in G1(C), say). Since F1 is a good
cycle, it intersects D′, which implies that F1 ∪ F2 intersects D.

We can thus assume that C and D are interlaced. The structure of G with
respect to C and D is shown in Figure 2 or 3. Observe that in each of the possible
cases, there is a region (say, A11) incident with a single edge of C and 2 or 3 edges
of D. Let R be the set of edges of G1(C) with exactly one endvertex in A11. Since
R is a cut of size 3 or 4 in G1(C), it is intersected by F1. As |R ∩ C| = 1, F1

must use at least one edge of D. It follows that F1 ∪ F2 intersects D. 2

The following theorem deals with {3, 4}-covering cycles in graphs with maxi-
mum degree at most 4, the focus being on cubic graphs where any such cycle is
a 2-factor.

Theorem 4.3 Let G be a 2-connected graph and let v be a vertex of G. Assume
that v is of degree at most 4 and all the other vertices of G are of degree at most
3.

(a) If v is of degree at most 3, then each 2-set Y ⊂ E(v) can be extended to a
good cycle of G.

(b) If v is of degree 4, then there exists a 2-set X ⊂ E(v) such that every even
set Y ⊆ E(v) which crosses X can be extended to a good cycle of G.

Before proving Theorem 4.3, let us consider an example. Let v be a vertex of
degree 4 and write E(v) = {a, b, c, d} and Y = {a, b}. Part (b) of the theorem
claims that each of the sets {a, c}, {a, d}, {b, c}, {b, d}, and {a, b, c, d} can be
extended to a {3, 4}-covering cycle of G.

Proof of Theorem 4.3. Suppose that the theorem is false and G is a counterex-
ample with the minimum number of vertices. Since G is 2-connected, |V (G)| > 2
and G has no vertices of degree 1. In a series of claims, we show that G is
cyclically 5-edge-connected.

Whenever we consider a cut C = [X1, X2] and the graphs G1(C) and G2(C),
we write v1 for the vertex of G2(C) obtained by contracting X1. Similarly, we let
v2 denote the vertex of G1(C) obtained by contracting X2.

Claim 1 The graph G contains no vertex of degree 2.

If w 6= v is a vertex of degree 2, then use the induction hypothesis to find a good
cycle in the graph obtained by suppressing w and note that this yields a suitable
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good cycle in G. We may thus assume that the only vertex of degree 2 is v. Let
z be a neighbor of v. Since G is 2-connected, v and z are joined by a single edge.
Consider the graph G′ obtained by suppressing v and let e be the newly created
edge. The degree of z in G′ is 3. Let Y ⊂ E(G′) be a set consisting of e and one
other edge incident with z. Use the induction hypothesis to find a good cycle of
G′ extending Y . This yields a suitable good cycle of G.

Claim 2 The degree of v is 4.

Assume that v has degree 3. Let Y = {a1, a2} ⊂ E(v) be the given 2-set, and let
b be the edge in E(v) \ Y . Let w be the endvertex of a1 distinct from v. If the
edges a1, a2 are parallel, then since G is bridgeless, |V (G)| > 2 and the degree of
w is 3, there is a unique edge c ∈ E(w) \ Y . This implies that {b, c} is a 2-cut.
Let G′ be the graph obtained from G \ {v, w} by adding an edge e′ joining the
endvertex v′ 6= v of b to the endvertex w′ 6= w of c. The edge e′ is not a loop as
otherwise G would contain a bridge incident with v′.

Note that the degree of v′ in G′ is 3. Let Y ′ be the set of edges incident with
v′ distinct from e′. By the induction hypothesis (in which v′ plays the role of v),
G′ has a good cycle F ′ that extends Y ′ and, therefore, does not contain e′. Since
any cut of size 3 or 4 in G corresponds to a cut of size 3 or 4 in G′ (although not
necessarily a cut of the same size), it follows that adding the edges a1 and a2 to
F ′, we obtain a good cycle of G extending Y .

It remains to consider the case that a1 and a2 are not parallel. Let G′′ be
the graph obtained by contracting a1. Note that G′′ contains a unique vertex v′′

of degree 4. Write E ′′ for the set of edges incident with v′′. By the induction
hypothesis (applied to v′′), find a 2-set X ′′ ⊂ E ′′ with the property stated in the
theorem. Since a subset of E ′′ crosses X ′′ if and only if it crosses its complement
in E ′′, we may assume that a2 ∈ X ′′. Observe that there are exactly two 2-subsets
of E ′′ containing a2 and crossing X ′′. It follows that one of them, call it Y ′′, is
different from {a2, b}. By the assumption, Y ′′ can be extended to a good cycle
F ′′ of G′′. The corresponding edges in G, together with a1, comprise a good cycle
of G.

Claim 3 The graph G is cyclically 4-edge-connected (hence, 3-edge-connected).

Assume the claim false. Since G is bridgeless, there is a cut C that is either a
2-cut or a cyclic 3-cut. Consider the graphs G1(C) and G2(C). We may assume
that v ∈ V (G1(C)). Let E1 be the set of edges of G1(C) incident with v. By the
minimality of G, there is a 2-set X ⊂ E1 such that any even set Y ⊂ E1 crossing
X can be extended to a good cycle of G1(C). We assert that X, as a subset of
E(G), has the property stated in the theorem.
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Indeed, let Y ⊂ E(v) ⊂ E(G) be an even set crossing X. In G1(C), Y can be
extended to a good cycle F1. Let Y2 be the set of edges of F1 ⊂ G1(C) containing
the vertex v2 of G1(C) (recall that this is the vertex representing a contracted
component of G− C). Since |Y2| = 2, we can use the minimality of G to extend
Y2 to a good cycle F2 of G2(C). The cycles F1 and F2 agree on C. By Lemma 4.2,
F1 ∪ F2 is a good cycle of G.

Claim 4 Every cyclic 4-cut is interlaced with some other 4-cut.

Suppose that the claim is false. We may thus assume that a cyclic 4-cut C =
{a, b, c, d} is not interlaced with any other 4-cut. It follows that every cyclic 4-
cut corresponds to a 4-cut in either G1(C) or G2(C). Clearly, a trivial cut in G
corresponds to a cut of the same size in G1 or G2. Since, by Claim 3, G has no
nontrivial 3-cuts, we conclude that

(*) Each cut in G of size 3 or 4 corresponds to a cut of the same
size in G1 or G2.

Note that G1(C) and G2(C) are bridgeless and v2 and v1 are vertices of degree 4.
We may assume that v ∈ V (G1). Let Ei = E(Gi) (i = 1, 2). By the min-

imality of G, there is a 2-set X2 ⊂ E2(v1) such that any even subset of E2(v1)
crossing X2 can be extended to a good cycle of G2.

Let G∗1 = G1(v2, X2, C \X2) be the result of the splitting operation defined at
the beginning of this section. Thus, v2 is split into two adjacent vertices. Let us
write v1

2 for the vertex incident with the edges in X2 and v2
2 for the other vertex.

Furthermore, we let E∗1 denote the set E(G∗1). Note that G∗1 has fewer vertices
than G. By the minimality of G, G∗1 contains a 2-set X1 ⊂ E∗1(v) such that any
even set Y1 ⊂ E∗1(v) crossing X1 can be extended to a good cycle of G1. We
claim that X = X1 satisfies the analogous condition for G in place of G1. Let
Y ⊂ E(v) be an even set. Extend the corresponding set of edges of G∗1 to a good
cycle F ∗1 of G∗1. This determines a good cycle F1 of G1. Consider the set Y2 of
edges of E2(v1) corresponding to the edges in F1 ∩ C.

Due to the way we split v2, the even set Y2 crosses X2, for otherwise F ∗1 would
not pass through either v1

2 or v2
2. By the choice of X2, Y2 can be extended to a

good cycle F2 of G2. The good cycles F1 and F2 agree on C. By (*), F1 ∪ F2 is
a good cycle of G.

Claim 5 The graph G is cyclically 5-edge-connected.

Assume, to the contrary, that G contains a cyclic 4-cut C. By Claim 4, C is
interlaced with a 4-cut C ′. The structure of G with respect to C and C ′ is shown
in Figure 4. Let E = (E0, E1, . . . , Ek−1) be an inclusion-maximal collection of
pairwise disjoint 2-subsets of E(G) with the following properties:
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(1) C = Er ∪ Es and C ′ = Er′ ∪ Es′ for some r, s, r′, s′ ∈ {0, 1 . . . , k − 1},
(2) Ei ∪ Ej is a 4-cut for all distinct i, j ∈ {0, 1 . . . , k − 1}.

Notice that k ≥ 4 (since r, s, r′ and s′ are all distinct). Let E∗ be the union of all
the sets Ei. We may assume that E0, E1, . . . Ek−1 are enumerated in such a way
that for each j ∈ {0, 1, . . . , k − 1}, the graph G − (Ej ∪ Ej+1) has a component
Aj containing no edge from E∗ (the indices being taken modulo k). Clearly, the
structure of G with respect to the sets Ei is “cyclic” as shown in Figure 6.

A0

A1

A2

A3

A4

Ak−1

. . .

E0

E1 E2

E3

E4

E5

Ek−1

Figure 6: The structure of G with respect to the sets Ei.

We claim that for each j, Ej ∪ Ej+1 is an acyclic 4-cut. Assume not. By
Claim 4, Ej ∪ Ej+1 is interlaced with a 4-cut C∗. From Figure 4, one sees that
the subgraph Aj contains a 2-cut E ′ = C∗∩E(Ai) such that E ′∪Ej and E ′∪Ej+1

are 4-cuts. Since the collection (E ′, E0, . . . , Ek−1) satisfies (1) and (2) above, we
obtain a contradiction with the maximality of k.

Since each Ej ∪ Ej+1 is an acyclic cut, each Aj is either a single vertex or
a copy of K2. If Aj is a single vertex, then this vertex is v and it is adjacent
to each of the four vertices of Aj−1 ∪ Aj. In the other case, each of the two
vertices {aj, a′j} of Aj is adjacent to a vertex from Aj−1 and a vertex from Aj+1.
Finally, aj and a′j have no common neighbor except possibly for v. Thus, we have
completely determined the structure of G. It can be described as follows. Let
Bk be the k-prism (the Cartesian product of a cycle Ck with K2). There are two
copies of Ck in Bk; let a0, . . . , ak−1 be the vertices of one copy and b0, . . . , bk−1

be the vertices of the other copy, with ai adjacent to bi in Bk for each i. By the
above, G is (up to isomorphism) the graph obtained from Bk by contracting the
edge a0b0 (see Figure 7).

Let us determine which even subsets of E(v) can be extended to a good cycle.
Let Y ⊆ E(v) be an even subset. Firstly, if Y = E(v), then the cycle consisting
of all the edges aiai+1 and bibi+1 (indices modulo k) is good and extends Y . A
good cycle extending {va1, vb1} is va1a2 . . . ak−1bk−1bk . . . b1v, while a good cycle
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Figure 7: The prism C72K2 with a contracted edge.

extending {vak−1, vbk−1} is obtained in a symmetric manner. The remaining
cases depend on the parity of k.

Assume that k is odd and Y = {va1, vak−1}. A good cycle extending Y
is va1b1b2a2 . . . bk−1ak−1v. The case Y = {vb1, vbk−1} is symmetric. Thus, if
we define X = {va1, vbk−1}, then any even subset of E(v) crossing X can be
extended to a good cycle.

If k is even, then Y = {va1, vbk−1} extends to the good cycle va1b1b2a2 . . .
ak−1bk−1v, and the case Y = {vb1, vak−1} is symmetric again. We put X =
{vb1, vbk−1} and observe that, as above, every even subset of E(v) that crosses
X extends to a good cycle. This contradiction with the assumption that G is a
counterexample establishes Claim 5.

By Claim 5, each cut C of size 3 or 4 in G is acyclic. Thus, one component
of G− C is a copy of K2 (if |C| = 4) or a single vertex (if |C| = 3).

Let E(v) = {a, b, c, d}. If every even subset Y ′ of E(v) can be extended to a
good cycle of G, then we are done. Therefore, suppose that for some Y ′, this is
not the case.

If Y ′ = E(v), then consider the cubic bridgeless graph G(v, {a, b}, {c, d}). By
Theorem 4.1, {a, b} can be extended to a 2-factor F of G(v, {a, b}, {c, d}). Note
that F contains c and d. Thus, F corresponds to a good cycle of G that contains
all the edges of Y ′, a contradiction.

We may therefore assume that Y ′ is a 2-subset of E(v), say Y ′ = {a, b}, and
define X = Y ′. Let Y be an even subset of E(v) which crosses X. Since we have
already observed that E(v) extends to a good cycle of G, it may be assumed that
|Y | = 2, say (without loss) Y = {a, d}. Consider the graph G(v, {a, c}, {b, d}).
Let v1, v2 be the adjacent vertices into which v is split. Using Theorem 4.1, extend
{a, v1v2} to a 2-factor F of G(v, {a, c}, {b, d}). Notice that F contains precisely
one of the edges b, d. It cannot be b, for otherwise we obtain a good cycle of G
with F (v) = X, and this contradicts the choice of X. Thus, F must contain d.
Since F (v) = {a, d} and F is a good cycle of G, we obtain the right extension of
Y . This establishes the theorem. 2
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Corollary 4.4 Every bridgeless graph with maximum degree at most 3 has a
{3, 4}-covering cycle.

Theorem 4.3 implies the following strengthening of Theorem 4.1:

Corollary 4.5 Every cubic bridgeless graph has a 2-factor which intersects all
cuts of size 3 and 4. Moreover, any two incident edges can be extended to such a
2-factor.

5 {3, 4}-covering cycles in arbitrary graphs

In this section, we generalize Corollary 4.4 to graphs with unrestricted degrees
which, moreover, do not need to be bridgeless.

Let v be a vertex of a connected graph G and let E1, E2 be a partition of E(v).
Recall that the graph G(v, E1, E2) was defined at the beginning of Section 4. The
following is an easy consequence of Fleischner’s Splitting Lemma [4].

Lemma 5.1 Let G be a bridgeless graph and let v ∈ V (G) be of degree ≥ 4. Then
there is a partition E1, E2 of E(v) with |E1| , |E2| ≥ 2 such that G(v, E1, E2) is
bridgeless. 2

With this lemma at hand, we proceed to prove Theorem 1.2.

Proof of Theorem 1.2. For a graph H, let ∆(H) denote the maximum
degree of H and let V∆(H) be the set of vertices of degree ∆(H). Let G be a
counterexample to Theorem 1.2 chosen so that the triple (∆(G), |V∆(G)| , |V (G)|)
is minimal in the lexicographic ordering.

If G contains a bridge e, then let G1 and G2 be the components of G − e.
By the minimality of G, each Gi has a {3, 4}-covering cycle Ci. Since {e} is the
only cut in G containing e, every cut in G, except for {e}, is a cut in some Gi.
It follows that the cycle C1 ∪ C2 is {3, 4}-covering in G. Thus, G is bridgeless.

By Corollary 4.4, G contains a vertex v of degree at least 4. Using Lemma 5.1,
split v into two vertices to obtain a bridgeless graph G∗. Every cut of G, apart
from E(v), corresponds to a cut (of the same size) in G∗. Thus, a {3, 4}-covering
cycle in G∗ (which exists by the minimality of G) induces a {3, 4}-covering cycle
in G, a contradiction. 2

6 Concluding remarks

By Theorem 1.2, both the sets {3} and {4} are coverable. On the other hand,
{1} and {2} are not. How about the other single-element sets?
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Question 6.1 Is it true that for all k ≥ 3, {k} is coverable?

We are unable to say anything for k ≥ 5, except that Conjecture 1.4 clearly
implies an affirmative answer to this question. On the other hand, since (as
we noted in Section 1) the conjecture is true for planar graphs, any set {k} is
coverable in the class of planar graphs (which will be denoted by P throughout
this section).

Having determined which sets of size 1 are coverable in P , we may attempt
the same for sets of size 2. Let A = {a, b} be a pair of positive integers with
a < b. If a ≤ 2 then A is not coverable in P , and if a ≥ 4, then the planar case
of Conjecture 1.4 implies that A is coverable in P . Thus, we may assume that
a = 3. Since the set 2N + 1 = {3, 5, 7, . . .} is coverable in P (by the Four Color
Theorem), we may assume that b is even and b ≥ 6.

Question 6.2 Let k ≥ 3. Is {3, 2k} coverable in P?

In fact, this is an equivalent form of a question posed by Broersma et al. [2]
in connection with Theorem 1.1: For which k ≥ 3 can one 2-color the vertices
of every planar graph in such a way that there is no monochromatic circuit of
length 3 or 2k? To our knowledge, the question is open. It may even be that
{3, 2k} (k ≥ 3) is coverable in the class of all graphs.

One might speculate that even the set consisting of 3 and all the numbers 2k
(k ≥ 2) is coverable. We show that this is not the case:

Proposition 6.1 The set A = {3, 4, 6, 8, 10, . . .} is not coverable.

Proof. Let G be a 3-connected, non-hamiltonian, cubic bipartite graph (which
exists by a result of J. D. Horton, see [1]). Let C be an A-covering cycle in G.
As 3 ∈ A, C is a 2-factor. Since C has more than one component, there exists a
cut K contained in the complement of C. Let G1 denote a component of G \K.
The size of K must be odd since |K| 6= 2 and C is A-covering. Thus, the number
of vertices of G1 is odd. However, C covers the vertices of G1 by disjoint circuits
of even length, a contradiction. 2

We remark that in the class P , the above argument does not apply, for there
is no known example of a 3-connected planar cubic bipartite graph which is
not hamiltonian. Indeed, a well-known conjecture of D. Barnette [6, Section
2.12] states that there is no such graph. Thus, we conclude our paper with the
following question:

Question 6.3 Is {3, 4, 6, 8, 10, . . .} coverable in P?
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