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Abstract

Let L(G) denote the set of all odd cycle lengths of a graph G. Gyárfás gave an
upper bound for χ(G) depending on the size of this set: if |L(G)| = k ≥ 1, then
χ(G) ≤ 2k+1 unless some block of G is a K2k+2, in which case χ(G) = 2k+2. This
bound is generally tight, but when investigating L(G) of special forms, better results
can be obtained. Wang completely analyzed the case L(G) = {3, 5}; Camacho
proved that if L(G) = {k, k+2}, k ≥ 5, then χ(G) ≤ 4. We show that L(G) = {5, 7}
implies χ(G) = 3.
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1 Introduction

Let L(G), shortly L, be the set of all odd cycle lengths of a graph G. One may investigate
the relation between this set, or its size, and the chromatic number χ(G) of G. For
example, it is well-known that |L(G)| = 0 precisely when χ(G) ≤ 2. The following result,
originally conjectured in a weaker form by Bollobás and Erdős and later, in the version
presented here, by Gallai, states that there is a general upper bound for χ(G) in terms of
|L(G)|.

Theorem 1.1 (Gyárfás [5, Corollary of Theorem 1]). If |L(G)| = k ≥ 1, then the
chromatic number of G is at most 2k + 1 unless some block of G is a K2k+2. (If there is
such a block, then the chromatic number of G is 2k + 2.)

This bound is globally tight for any k as seen by considering a K2k+1. However,
the following results demonstrate that it can be improved for particular cases. Wang [8]
proved that if L(G) = {3, 5}, then χ(G) = 3 unless there is a K4 or a wheel on six vertices
in G, in which case χ(G) = 4 unless G contains a K5. Camacho [1] showed that χ(G) ≤ 4
whenever L(G) = {k, k + 2}, k ≥ 5.

In this paper, we concentrate on a special class of graphs with L = {5, 7}, the main
result being the following theorem:
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Theorem 1.2. Every graph with L = {5, 7} is 3-colorable.

It definitively refines the Camacho’s result for this case. Although the last step of the
proof is closely tailored to the particular class of graphs examined, the rest of the argument
works for all graphs with L = {k, k + 2}, k ≥ 5.

The paper is organized as follows. Section 2 includes a few general, mutually unrelated
lemmas used at various places later on. The purpose of Section 3 is to state and prove
Theorem 3.1, a slight strengthening of Theorem 1.1 for graphs with |L| = 1 that is needed
in the subsequent argument. Finally, in Section 4 we first restrict the structure of 4-critical
graphs with L = {k, k+2}, k ≥ 5, and using that, we prove the main result, Theorem 1.2.

For the convenience of the reader, the text is accompanied by a number of figures, all
of which obey the following rules of style. Vertices are shown as small filled discs. Solid
lines, usually straight, stand for single edges; dashed lines, either curly or curved, are used
for paths and cycles. Subgraphs which are not depicted completely by showing all their
vertices and edges are typically represented by light or dark gray regions with thin dotted
line as their boundary. Next, boldface is sometimes used to distinguish (important)
objects. On the other hand, the possible nonexistence of a particular entity is always
indicated by dotting its standard representation, in the case of an edge or a path, or, for
a vertex, by replacing the ordinary disc with a circle. Lastly, labels not meaning names
of objects, i.e., those describing lengths of paths or colors of vertices, are enclosed in
brackets.

In the remainder of this section, we mention several notions and results that are
particularly important for the next discussion or are not so well-known. Besides these, we
use only standard graph theory concepts and notation, which can be found in Diestel’s
monograph [2] for example.

Due to the nature of the problem, we confine ourselves to simple graphs, i.e., (undi-
rected) graphs without multiple edges and loops. Let G be a graph with the set of vertices
V and the set of edges E; we also write G = (V, E) and refer to V , E as V (G), E(G)
respectively. Then by |G| we mean |V (G)|, that is, the number of vertices of G; ||G||
denotes |E(G)|, the number of edges of G. Hence, whenever P is a path, ||P || is the
length of P ; if C is a cycle, its length is equal to |C| = ||C||. The graph G is called
trivial if |G| ≤ 1. For the path P , an internal vertex is any of its vertices that is not an
end-vertex of P . Two paths P1 and P2 are internally disjoint if the sets of their internal
vertices are disjoint. A k-cycle is a cycle of length k. When two vertices x, y ∈ V (G)
are at distance k in G, i.e., k is the length of a shortest path joining x and y in G, we
write dG(x, y) = k. Next, the set notation is extended in the following manner. Let G1,
G2 be graphs. By G1 ⊆ G2 we mean that G1 is a subgraph of G2; G1 ∪G2 and G1 ∩G2

denote the graphs (V (G1)∪V (G2), E(G1)∪E(G2)) and (V (G1)∩V (G2), E(G1)∩E(G2))
respectively. If X is a set, G1\X stands for the graph with V (G1)\X as its set of vertices
and having all the edges of G1 not incident with any element of X as its edges. We put
G1 \G2 := G1 \ V (G2). For a vertex x, G1 \ {x} is written rather as G1 \ x unless there
is a risk of confusion.

We use the notation of Diestel [2] for describing subpaths of paths or cycles and
combinations of these. If P is a path, x and y its vertices, then xPy denotes the subpath
of P between x and y including these two vertices. Moreover, if x or y is an end-vertex
of P , we can optionally omit it writing Py or xP respectively. For the concatenation
of paths P1, P2, . . . , subpaths x1R1x2, x2R2x3, . . . , and single edges xnxn+1, xn+1xn+2, . . .
sharing their end-vertices in sequence, such that the resulting graph is a path or a cycle, we
write shortly P1P2 · · ·x1R1x2R2x3 · · ·xnxn+1xn+2 · · · . All this convention is extended in a
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respective manner also for cycles, provided that the resulting description is unambiguous.
For instance, to specify a single subpath of a cycle C delimited by vertices x and y, we
need to name a third vertex z lying on that path, writing xCzCy.

We adopt a few less common concepts used by, e.g., Diestel [2] and Voss [7]. Let G be
a graph, H and I its subgraphs. A nontrivial path in G is an H-path if it has precisely its
end-vertices in common with H; if this path is a single edge, then it is called a chord of
H. An H–I path is any (possibly trivial) path P = u · · · v in G for which V (P ∩H) = {u}
and V (P ∩I) = {v}. If H or I consists of a single vertex x or y respectively, we also write
x–I, H–y, or x–y path instead of H–I path. By an H-bridge we mean any subgraph M
of G which is either a chord of H or a component of G \ H together with all the edges
of G linking the component to the vertices of H. The vertices from V (M ∩ H) are the
attachment vertices of M to H. It is clear that any vertex or edge of G not in H belongs to
a unique H-bridge, that is, G is the union of all the H-bridges and the subgraph H itself,
and two different H-bridges intersect only in their common attachment vertices. Other
trivial properties of H-bridges, often used afterwards, we state in the following lemma.

Lemma 1.3. Let G be a graph, H its subgraph, M an H-bridge. Then:

(1) if M 6= K2, then no two of its attachment vertices are adjacent in M ;

(2) for every two vertices u, v of M there exists a path P = u · · · v ⊆ M such that
V (P ∩H) ⊆ {u, v}.

Now we recall the following notion concerning graph coloring, which is crucial in this
paper. A graph G is k-critical for k ≥ 2 if it is not (k−1)-colorable but each of its proper
subgraphs is (k−1)-colorable. Clearly, G is then k-chromatic. For example, the 3-critical
graphs are precisely the odd cycles. We will deal with 4-critical graphs, so we recollect
some of their basic properties here. Directly from the definition, every 4-critical graph
G is 2-connected and the minimum degree of G is at least 3. One can easily see that
G is even 3-edge-connected, which also follows from Theorem 1 of Dirac [4] as a special
case. However, simple examples show that G need not be 3-connected. Dirac [3, page 45,
statement (4)] and Toft [6, Theorem 2.1] discuss the presence of (k−1)-critical subgraphs
in k-critical graphs; we use part of their results formulated as the next lemma.

Lemma 1.4. Let G be a 4-critical graph. Then for every two distinct vertices x, y of G
there is an odd cycle C ⊆ G \ x containing y.

Regarding the graph connectivity, we will often exploit Menger’s theorem in the fol-
lowing form.

Theorem 1.5. Let G be a k-connected graph, A and B two sets of its vertices such that
A 6⊆ B and B 6⊆ A. Then there are k distinct internally disjoint A–B paths in G. If
|A| ≥ k, then these paths can be chosen such that they have pairwise different end-vertices
in A. If |B| ≥ k as well, then there are k pairwise disjoint A–B paths in G.

We remark that the assumption A 6⊆ B, B 6⊆ A is needed only for the case |A| < k,
|B| < k respectively.

Finally, let us recall several facts and notions related to 2-connected graphs. A cut-
vertex of a graph G is a vertex whose removal increases the number of components of G.
A block of G is a maximal connected subgraph of G without a cut-vertex; that is either
a maximal 2-connected subgraph, or a cut-edge, or an isolated vertex of G. Two blocks
intersect in at most one vertex, which is then a cut-vertex of G. The block graph of G,
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denoted by B(G), is the bipartite graph on the set of the cut-vertices of G and the set
of the blocks of G with xB being its edge if and only if x ∈ V (B). For any graph G, its
block graph is a forest having no cut-vertex of G as its leaf. Further, it is connected if
and only if G is connected.

2 Preliminary results

In this section, we accumulate basic and general lemmas used throughout the rest of the
paper. We start with a trivial statement.

Lemma 2.1. Let x, y be two distinct vertices of a bipartite graph G. Then any proper
coloring of the subgraph of G induced by {x, y} can be extended to a proper 3-coloring of
G.

Two ad hoc observations follow.

Lemma 2.2. Let u, v, w be three distinct vertices of a 2-connected graph G. Then there
exist a cycle C such that u, v ∈ V (C), and a w–C path (possibly trivial) whose end-vertex
on C is different from both u and v.

Proof. Since G is 2-connected, there is a cycle C containing u and v. If w ∈ V (C), the
assertion is true; otherwise we can apply Theorem 1.5 to {w} and V (C), obtaining two
internally disjoint w–C paths with distinct end-vertices w1, w2 on C. If either of these
vertices differs from both u and v, taking the respective path we are done. The remaining
case is that {w1, w2} = {u, v}, but then the union of both the w–C paths and either of
the two subpaths of C delimited by u, v is a cycle going through all of u, v, and w, a
desired configuration again.

Lemma 2.3. Let αi, βi, i ∈ Z3, be integers satisfying the following conditions:

(1) αi + αi+1 equals βi + βi+1 or βi+2, i ∈ Z3,

(2) αi 6= 0, i ∈ Z3, and

(3) β0 + β1 + β2 is odd.

Then αi = βi for all i.

Proof. Condition (1) yields a certain system of three equations for αi, βi. We consider all
its possible forms.

Assume first that an even number of the equations have their right side of the form
βi +βi+1. Then by summing all the three equations we obtain that 2(α0 +α1 +α2) equals
β0 + β1 + β2 or, without loss of generality, β0 + β1 + 3β2; this is in both cases impossible
by condition (3). If exactly one of the equations has the term βi + βi+1 as the right side,
one can infer that αi+2 = 0, a contradiction with assumption (2).

The only remaining possibility is that the right sides of all the equations are in the
form βi + βi+1. Then by solving the system we conclude αi = βi for all i.

The next lemma, concerning odd cycles and paths joining them in 2-connected graphs
with L ⊆ {k, k+2}, L 6= ∅, extends the results of Camacho [1, Lemma 3.1] and Gyárfás [5,
Lemma 1].
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(a) The notation of observation (2.1). One of the two other odd cycles, A0PB1Q, is shown in
bold.
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(b) The situation of statement (2c).
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(c) The proof of statement (2d): the case x3
1 ∈

P 1
1 . For clarity, the paths P 3, P 3

0 , and P 3
1 are

printed in bold.

Figure 2.1. Illustrations for Lemma 2.4.

Lemma 2.4. Let G be a 2-connected graph with L(G) ⊆ {k, k + 2}; let C0, C1 be two
odd cycles in G.

(1) If |C0| 6= |C1|, then the cycles are not disjoint. If |C0| = |C1| = max L(G), then
|C0 ∩ C1| ≥ 2.

(2) Suppose that C0 and C1 are disjoint. Then:

(a) L(G) = {k, k + 2}, and |C0| = |C1| = k;

(b) every two disjoint C0–C1 paths P 0, P 1 in G are both of length 1. Let xi, yi, i =
0, 1, be the end-vertex of P i lying on C0, C1 respectively. Then dC0(x

0, x1) =
dC1(y

0, y1);

(c) assume that there are three pairwise disjoint C0–C1 paths P j, j = 0, 1, 2, in G.
If P j

i , i = 0, 1, denote the three subpaths of Ci delimited by the end-vertices of
the paths P j in such a way that V (P j

i ∩ P j) = ∅, then ||P j
0 || = ||P j

1 ||;
(d) there are no four pairwise disjoint C0–C1 paths in G.

For the situation of part (2c), see Figure 2.1 (b).

Proof. For convenience, let ci, i = 0, 1, denote the length of Ci. We start with a general

5



observation, whose notation is depicted in Figure 2.1 (a).

Suppose that there is a pair of disjoint C0–C1 paths P and Q such that V (C0∩
C1) ⊆ V (P ∪ Q); let d := ||P || + ||Q||. Next, let Ai, Bi, i = 0, 1, be the
subpaths of Ci joining the end-vertices of P and Q, and let ai, bi refer to
their lengths. Then, without loss of generality, G contains two odd cycles of
lengths lj, j ∈ Z2, for which

lj = aj + bj+1 + d, j ∈ Z2, (2.1.1)

and
c0 + c1 + 2d = l0 + l1. (2.1.2)

(2.1)

We prove the observation. As Ci is odd, ai and bi have different parity. Hence, without
loss of generality, lj := aj+bj+1+d is odd for both j ∈ Z2, and since the paths Aj, Bj+1 are
internally disjoint, AjPBj+1Q is a cycle of length lj. Next, summing the equations (2.1.1)
and using ci = ai + bi, i = 0, 1, we obtain the formula (2.1.2).

Let us proceed to statement (1). If |C0∩C1| ≥ 2, there is nothing to show, so suppose
the contrary. As G is 2-connected, using Theorem 1.5 we can find paths P and Q satisfying
the assumptions of observation (2.1). Note that d > 0 by the condition on |C0 ∩ C1|. By
this, the equation (2.1.2) immediately excludes the possibility that c0 = c1 = max L(G).
Now, let c0 = k and c1 = k + 2 (or vice versa). Then, as the sum l0 + l1 is at most 2k + 4,
the formula (2.1.2) implies that d ≤ 1. In other words, at least one of the paths P , Q is
trivial; hence C0 and C1 are not disjoint.

We continue with part (2). Statement (2a) is implied directly by part (1); we focus
on statement (2b). As V (C0 ∩ C1) = ∅, we can put the paths P 0 and P 1 in place of P
and Q in observation (2.1). By assumption, d ≥ 2. Then the equation (2.1.2) is satisfied
only if d = 2 and lj = k + 2. Hence, both P 0 and P 1 are of length 1 and, further, the
formulas (2.1.1) turn into the equations aj +bj+1 = k, j ∈ Z2. As ai +bi = ci = k, i = 0, 1,
by part (2a), we easily derive the wanted equalities a0 = a1, b0 = b1.

Now suppose that the assumptions of statement (2c) hold; cf. Figure 2.1 (b). For
brevity, let αj, βj denote ||P j

0 ||, ||P
j
1 || respectively. Applying part (2b) to all the three

pairs of paths which can be chosen from {P 0, P 1, P 2}, we obtain that αk + αk+1 equals
either βk + βk+1 or βk+2 for all k ∈ Z3. As also αj 6= 0 for all j and β0 + β1 + β2 is odd,
Lemma 2.3 gives the desired conclusion.

We finish the proof by considering part (2d); what follows is depicted in Figure 2.1 (c).
Assume to the contrary that there are four pairwise disjoint C0–C1 paths in G. We adopt
all the notation of statement (2c) for the first three of them; let P 3 denote the fourth
path. Next, let xk

i , i = 0, 1, k = 2, 3, be the end-vertex of P k lying on Ci. Without loss of
generality, x3

0 belongs to P 0
0 ; we refer to the subpath of P 0

0 between x3
0 and an end-vertex

of P 1 as P 3
0 . Similarly, let P 3

1 be the part of C1 between x3
1 and an end-vertex of P 1 such

that it is disjoint from P 0.
Now we apply part (2c) twice, to the triples of paths {P 0, P 1, P 2} and {P 0, P 1, P 3}.

It yields
||P j

0 || = ||P j
1 ||, j = 0, 1, 2, (2.2)

in the first case,
||P 3

0 || = ||P 3
1 || (2.3)

in the second one. If x3
1 is contained in P 1

1 , then clearly ||P 0
1 || < ||P 3

1 ||, but as ||P 0
0 || > ||P 3

0 ||
by definition, we have a contradiction with the preceding equalities. By symmetry, one
could argue the same way that also x3

1 6∈ V (P 2
1 ).
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Thus x3
1 is on P 0

1 , and hence ||x2
0P

0
0 x3

0|| = ||x2
1P

0
1 x3

1|| by the equations (2.2), (2.3).
Further, all the four paths P i, i = 0, . . . , 3, are single edges, as asserted by statement (2b).
Therefore, there is a cycle P 0P 2

1 P 1P 3
0 P 3x3

1P
0
1 P 2P 1

0 of length k + 4 in G, a contradiction.

Finally, we include a useful condition on the lengths of C-paths in graphs with L ⊆
{k, k + 2}, L 6= ∅.

Lemma 2.5. Let C be an odd cycle in a graph G; let P = u · · · v be a C-path. Then:

(1) if |L(G)| = 1, then dC(u, v) = min {||P ||, |C| − ||P ||}. Thus, P is not a chord of
C;

(2) if L(G) = {k, k + 2} and |C| = k + 2, then dC(u, v) equals either min {||P ||, k +
2− ||P ||} or min {||P ||+ 2, k − ||P ||}. That implies:

(a) ||P || ≤ k + 1;

(b) if P is a chord of C, then dC(u, v) = min {3, k − 1}.

Proof. We consider the two subpaths of C delimited by u and v. As the cycle C is
odd, the length of one of these paths, say, P ′, must have parity distinct from that of
||P ||. Then P and P ′ together form another odd cycle in G; the rest of the argument is
straightforward.

3 Graphs with one odd cycle length

This section is devoted to the study of graphs with |L| = 1; we prove auxiliary Theorem 3.1
here, which strengthens Theorem 1.1 for this case.

Theorem 3.1. Let G be a graph with |L(G)| = 1 not containing a K4; let C be an odd
cycle in G. Then any proper 3-coloring of C can be extended to a proper 3-coloring of
G.

Proof. We may clearly assume that G is 2-connected. Most of the proof consists of
collecting structural information about G. To keep the argument transparent, we include
such observations as Claims 1–4. After restricting the structure of G sufficiently, we will
be able to find the desired 3-coloring directly.

At the beginning, we use Lemma 2.5 (1) to constrain the following configuration,
depicted in Figure 3.1.

Claim 1. Let Pi = xi · · · y, i ∈ Z3, be nontrivial paths in G such that V (Pi ∩ C) = {xi}
and V (Pi ∩ Pj) = {y} for any j ∈ Z3, j 6= i. Let P ′

i denote the subpath of C between
xi−1 and xi+1 not containing xi. Then ||Pi|| = ||P ′

i ||.

Proof. For brevity, let αi := ||Pi||, βi := ||P ′
i ||. We consider each of the three C-paths

PiPi+1. By Lemma 2.5 (1), its length αi + αi+1 must be equal to either βi + βi+1 or βi+2.
Next, αi 6= 0 by the nontriviality of Pi. Finally, β0 + β1 + β2 = |C|, therefore this sum
is odd. Hence αi, βi satisfy the assumptions of Lemma 2.3, which yields αi = βi for all
i. �

By Lemma 2.4 (1) we already know that odd cycles in G cannot be disjoint from C.
Further restrictions for the position of odd and also even cycles with respect to C are
expressed as the two subsequent claims.
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x2

x0

P ′
0

P0

x1

P ′
1 P ′

2

y
P1P2

C

Figure 3.1. The configuration of Claim 1.

C

D

D0

D1

[c0]

[c1]

x0

x1

[a0] [a1]

[b0] [b1]

P [d]
y0

y1

M

Figure 3.2. The proof of Claim 2. The lengths are enclosed in brackets.

Claim 2. Every cycle D in G with exactly two vertices x0, x1 in common with C, such
that D ⊆ M for some C-bridge M , is even. Moreover, ||D0|| = ||D1||, where D0 and D1

are the two subpaths of D joining x0 and x1.

Proof. Let c0, c1 denote the lengths of the two subpaths of C delimited by x0 and x1. As
D is a subgraph of the C-bridge M , by Lemma 1.3 (1), (2) each Di, i = 0, 1, has an inner
vertex, and there exists a path connecting these two vertices and avoiding both x0 and
x1. One can take its subpath P = y0 · · · y1 such that V (P ∩ Di) = {yi}. Note that P is
nontrivial. For brevity, let the lengths of the paths P , x0Diyi, and x1Diyi be denoted by
d, ai, and bi respectively. Consult Figure 3.2.

As C is odd, c0 and c1 have different parity. Suppose first that D is odd. Then ||D0||
and ||D1|| have different parity as well; by Lemma 2.5 (1) we obtain, without loss of
generality, that

ai + bi = ||Di|| = ci, i = 0, 1. (3.1)

We consider two other C-paths, x0D0y0Py1D1x1 and x0D1y1Py0D0x1. These must satisfy
Lemma 2.5 (1) too, i.e., the following holds:

a0 + b1 + d = cj0 and a1 + b0 + d = cj1

for some j0, j1 ∈ {0, 1}. Summing the formulas and using the equalities (3.1), we conclude
that

c0 + c1 + 2d = cj0 + cj1 . (3.2)
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D1 D2

P1P2

P0

C D

(a) The general situation.

C0

C1 C2

D0

D1 D2

P1P2

P0

C

D
M

(b) The proof of statement (2). The cycle
P0D2D0C1 is shown in bold.

Figure 3.3. Illustrations for Claim 3.

Now, if j0 6= j1, then d = 0; that is impossible since P is nontrivial. Hence j0 = j1, but
then the equation (3.2) turns into c0 + c1 = 2(cj0 − d), which is a parity contradiction.

Therefore, D is an even cycle. Then the paths D0 and D1 have lengths of the same
parity; as the parity of c0 and c1 is different, by using Lemma 2.5 (1) once again we obtain
||D0|| = ||D1|| = cj for some fixed j ∈ {0, 1}. �

Claim 3. Let D be a cycle in G; let P0, P1, and P2 be pairwise disjoint C–D paths such
that V (C ∩D) ⊆ V (P0 ∪ P1 ∪ P2). Then none of the following holds:

(1) at most one of P0, P1, and P2 is trivial,

(2) exactly two of P0, P1, and P2 are trivial, and D ⊆ M for some C-bridge M .

Proof. The appropriate end-vertices of P0, P1, and P2 split each of the cycles C and D
into three subpaths; let these be denoted by Ci, i = 0, 1, 2, and Di respectively in such a
way that V (Pi ∩ Ci) = ∅, V (Pi ∩Di) = ∅. Further, let ci := ||Ci||. See Figure 3.3 (a).

Assume first part (1) to be true. Then, say, P0 is the only trivial path if there is one
at all. We take the paths P0D1, P1D0, P2 and apply Claim 1, obtaining that ||P2|| = c2.
Doing the same for the paths P0D2, P2D0, P1 yields ||P2|| + ||D0|| = c2. It follows that
||D0|| = 0, a contradiction with the assumptions.

Now, suppose that assertion (2) holds. Without loss of generality, P0 is the only
nontrivial path; the situation is depicted in Figure 3.3 (b). Then by applying Claim 1 to
the paths P0, D1, and D2 we obtain that ||P0|| = c0, ||D1|| = c2, and ||D2|| = c1. Next,
by Claim 2 we have ||D0|| = ||D1||+ ||D2||. All this together means that there is a cycle
P0D2D0C1 of length c0 + 3c1 + c2 in G, an odd cycle longer than C. �

Now we are able to describe the structure of the C-bridges. We remark that every
attachment vertex of an arbitrary C-bridge M belongs to a unique block of M , since by
Lemma 1.3 (2) it is not a cut-vertex of M .

Claim 4. Let M be a C-bridge. Then:

(1) M is a bipartite graph;

(2) M has at most three attachment vertices;
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(b) The case z ∈ V (P1 \ y). The lengths are
written in brackets next to the respective path
labels.

Figure 3.4. The proof of Claim 4 (2). The paths P0, P1, and P2 are printed in bold
for clarity.

(3) if M has precisely three attachment vertices, then each of these vertices lies in a
different block of M .

Proof. We start by proving part (2). Assume to the contrary that M is a C-bridge with
more than three attachment vertices; take four of them, xi, i ∈ Z4, located on C in a
cyclic order. These vertices split C into four paths denoted by Ci in such a manner that
Ci = xi · · ·xi+1. Let ci := ||Ci||.

By Lemma 1.3 (1), (2) there exists a C-path P in M connecting x0 with x1 and
having an inner vertex. Further, Lemma 1.3 (2) asserts that this vertex is joined to x2

by a path not containing any vertex of C \ x2. Taking its part P2 := x2 · · · y such that
V (P2 ∩ P ) = {y} and putting Pi := xiPy, i = 0, 1, we get the situation of Claim 1.
However, there is one more attachment vertex x3. Once again, x3 must be connected
with y by a path avoiding all vertices of C \ x3; let P3 := x3 · · · z be its subpath such
that V (P3) ∩ V (P ∪ P2) = {z}. There are four possibilities regarding the position of z in
P ∪ P2: either z = y or z ∈ V (Pi \ y) for some i ∈ {0, 1, 2}.

Let z = y or z ∈ V (P2 \ y); the latter situation is depicted in Figure 3.4 (a). Applying
Claim 1 subsequently to the triples of paths {P0, P1, P2} and {P0, P1, P3zP2y}, we obtain
that ||P0|| = c1 and ||P0|| = c1 + c2 respectively. This implies that c2 = 0, a contradiction.
By symmetry, we can deal with the case z ∈ V (P0 \ y) similarly. Thus z lies on P1 \ y.
Let first ai, i = 0, . . . , 3, denote the lengths of the paths P0, P ′

1 := x1P1z, P2, and P3

respectively. See Figure 3.4 (b) for the notation. Now, using Claim 1 twice for the triples
of paths {P0P1z, P

′
1, P3} and {P2P1z, P

′
1, P3}, we obtain in particular that a1 = c3, a3 = c0,

a1 = c2, and a3 = c1; therefore c0 = c1, c2 = c3. By symmetry, one can show that also
c2 = c1, c0 = c3. All together this implies that c0 = c1 = c2 = c3; thereby |C| = 4c0. But
this is impossible as C is odd.

Let us focus on statement (3); we refer to the three attachment vertices of M as u, v,
and w. First observe that:

there is no cycle in M passing through two of the attachment vertices and
avoiding the third one.

(3.3)
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Figure 3.5. The proof of Claim 4 (3). The bold lines and edges represent the cycle
contradicting observation (3.3).

If there were such a cycle D with, say, w 6∈ V (D), then by Lemma 1.3 (2) we could find
a w–D path in M \ {u, v}, and thus obtain the configuration excluded by Claim 3 (2).

We proceed by contradiction now: let u, v belong to a single block B of M . By
Lemma 1.3 (1), u and v are not adjacent in M . Thus B is not a K2, it is 2-connected,
and there is a cycle D containing both u and v. Observation (3.3) implies that w ∈ V (D)
as well. Consider the graph M \ w and the path D \ w. By Lemma 1.3 (1), (2), u is not
an end-vertex of D \w nor a cut-vertex of M \w. Hence u belongs to a unique block Bu

of M \ w. Consult Figure 3.5.
It is easy to see that, in general, every block of an arbitrary graph H and any path

PH in H either are disjoint, or intersect in a path (possibly trivial) whose end-vertices
are either cut-vertices of H or end-vertices of PH . Applying this to the graph M \ w, its
block Bu, and the path D \w, we deduce that P := (D \w)∩Bu is a nontrivial path with
end-vertices u1, u2 distinct from u. Among other things, this means that Bu is not a K2;
thus it is 2-connected, and by Theorem 1.5 there is a path P ′ = u1 · · ·u2 in Bu avoiding
u.

Note now that v 6∈ V (Bu). Otherwise, as Bu is 2-connected, we would easily obtain
a contradiction with observation (3.3). So we can replace P with P ′ in the cycle D and
obtain a cycle passing through v and w but not u, a contradiction with observation (3.3)
again.

We prove assertion (1). So far we know by parts (2) and (3) that every block of M
contains at most two attachment vertices of M . Consequently, every cycle D in M has
at most two vertices in common with C. If |D ∩ C| = 2, Claim 2 implies that D is even;
if |D ∩ C| ≤ 1, it is even as well by Lemma 2.4 (1). Therefore M contains no odd cycle;
it is bipartite. �

We are finally ready to finish the proof of Theorem 3.1. Let cC denote a prescribed
proper 3-coloring of C. Clearly, it suffices to show that we can extend cC to the graph
C ∪M for every C-bridge M . By Claim 4 (1), (2) and the 2-connectedness of G, any such
M is bipartite, it has two or three attachment vertices, and these are pairwise nonadjacent
by Lemma 2.5 (1) and Lemma 1.3 (1). Thus, if M has exactly two attachment vertices,
then using Lemma 2.1 we are done. The other case is, when M has precisely three
attachment vertices xi, i = 0, 1, 2. We recall that none of these vertices is a cut-vertex of
M . Therefore, each xi lies in a unique block Bi of M ; by Claim 4 (3) these blocks are
pairwise different.

Consider the block graph B(M) of M . Observe that every leaf of B(M) contains xi
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(b) B(M) having three leaves.

Figure 3.6. The proof of Theorem 3.1. The configurations given by Lemma 2.2 are
depicted in bold.

for some i, otherwise G would have a cut-vertex. Hence, as B(M) is nontrivial, it has
two or three leaves. Assume first that the former case holds; what follows is depicted in
Figure 3.6 (a). Then B(M) is a path with, say, B0 and B1 as its end-vertices. The block
B2 contains exactly two cut-vertices of M , denoted by aj, j = 0, 1, in such a way that
aj lies on the path Bj · · ·B2 in B(M). Note that both a0 and a1 are distinct from x2.
Thus we can apply Lemma 2.2 to the vertices a0, a1, x2, in this order, and the block B2,
thereby obtaining a cycle D ⊆ B2 passing through both a0 and a1 along with an x2–D
path P2 in B2 (possibly trivial). Further, there clearly exists a nontrivial C–B2 path Pj,
j = 0, 1, connecting xj with aj in M . But then all the three paths Pi, i = 0, 1, 2, together
with the cycles C and D form the configuration excluded by Claim 3 (1).

Therefore B(M) has precisely three leaves; it consists of three (nontrivial) paths meet-
ing in a single vertex x. The following discussion is illustrated in Figure 3.6 (b). Suppose
that x is a block of M . Then it contains exactly three cut-vertices denoted by ai in such
a manner that ai lies on the path xi · · ·x in B(M). Applying Lemma 2.2 to a0, a1, a2,
and the block x, we get a cycle D containing a0 and a1 together with an a2–D path P ′

2,
both subgraphs of x. Next we can find three pairwise disjoint nontrivial C–x paths Pi,
each connecting xi with ai. Then Claim 3 (1) used for the paths P0, P1, P2P

′
2 and the

cycles C, D yields a contradiction again.
Hence x is a cut-vertex of M . Let Mi denote the subgraph of M corresponding to

the path xi · · ·x in B(M). If xix ∈ E(G) for all i, Claim 1 would force that C = K3;
thus there would be a K4 in G. That is excluded by assumption. Therefore, without loss
of generality, x0x is not an edge of G. But this means that we can extend properly the
3-coloring cC to the graph C ∪M by first coloring x with a color of cC distinct from both
cC(x1) and cC(x2), and then using Lemma 2.1 for all Mi.

4 Graphs with two odd cycle lengths

The aim of this section is to prove the main result, Theorem 1.2. As a preliminary step,
we focus on the class of 4-critical graphs with L = {k, k + 2}, k ≥ 5, obtaining useful
structural constraints in the form of Proposition 4.1 and Corollary 4.2.

Clearly, Lemma 2.4 (1) applies to the graphs in question. With the stronger assump-
tion of 4-criticality and the use of Theorem 3.1, we are able to strengthen it to the following
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of a C1–C2 path besides those of P1, P2, and
P3.

Figure 4.1. The proof of Proposition 4.1: finding the vertex x.

statement.

Proposition 4.1. Let G be a 4-critical graph with L(G) = {k, k + 2}, k ≥ 5. Then no
two odd cycles in G are disjoint.

Proof. Assume to the contrary that there are two such cycles C1, C2 in G. Then, by
Lemma 2.4 (2a), |C1| = |C2| = k. We show first that there is a vertex x of C1 which lies
on no C1–C2 path. For this, we discuss two cases.

If G contains three pairwise disjoint C1–C2 paths Pi, i = 1, 2, 3, we choose x as one
of the vertices in V (C1) \ {x1, x2, x3}, where xi := V (Pi ∩ C1). See Figure 4.1 (a). Let
us prove that x indeed has the desired property. Assume to the contrary that there is a
C1–C2 path P in G containing the vertex x. By Lemma 2.4 (2d), P is not disjoint from
all Pi. Note that each Pi is just an edge, as forced by Lemma 2.4 (2b). Consequently,
without loss of generality, P is disjoint from P2 and P3, and its other end-vertex lying
on C2 coincides with that of P1. Now we apply Lemma 2.4 (2c) subsequently to the
triples of paths {P1, P2, P3} and {P, P2, P3}; it implies that dC1(x2, x1) = dC1(x2, x) and
dC1(x3, x1) = dC1(x3, x). As C1 is odd, it follows that x = x1, a contradiction with the
choice of x.

On the other hand, let there be no three pairwise disjoint C1–C2 paths in G. As G is
4-critical, it is 2-connected; hence by Theorem 1.5 there are two disjoint C1–C2 paths P1

and P2. Let xi, i = 1, 2, denote the end-vertex of Pi lying on C1; let a be the distance of
the other end-vertices of Pi in C2. Consult Figure 4.1 (b). By Lemma 2.4 (2b), both Pi

have length 1, and dC1(x1, x2) = a. Consider now any C1–C2 path P3 with an end-vertex
y on C1 distinct from both xi. By assumption, P3 intersects, say, P1 in a vertex on C2,
and it is disjoint from P2. Then by Lemma 2.4 (2b) again, applied to P2 and P3, we
obtain that dC1(x2, y) = a as well. This reasoning implies that there are at most four
end-vertices of C1–C2 paths on C1, as shown in Figure 4.1 (b). But |C1| ≥ 5; we choose
x as any of the remaining vertices.

So, in either case, the vertex x exists. As G is 4-critical, the degree of x is at least
three. Hence there is an edge incident with x not belonging to C1 in G, thus contained in
some (C1 ∪ C2)-bridge H. By Lemma 1.3 (2) any two attachment vertices of H are joined
by a path in H. Therefore, since x lies on no C1–C2 path, all the attachment vertices of
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H G1

Figure 4.2. The proof of Proposition 4.1: considering the bridge H. The light,
dark gray region represents G1, H respectively; the bold dotted line bounds G2.

H are on C1.
We show that the existence of such a bridge leads to a contradiction. Take the graphs

G1, G2 such that V (G1) = (V (G) \ V (H)) ∪ V (C1), E(G1) = E(G) \ E(H), and G2 =
H ∪ C1. The notation is depicted in Figure 4.2. G1 is a proper subgraph of G; therefore,
by the 4-criticality of G, it has a proper 3-coloring c1. If G2 contained a cycle of length
k + 2, this cycle together with C2 would be a pair of disjoint odd cycles contradicting
Lemma 2.4 (1). Thus |L(G2)| = 1, and by Theorem 3.1 we can extend the coloring c1 of
C1 to a proper 3-coloring c2 of G2. Clearly, c1 ∪ c2 is then a proper 3-coloring of G.

By a combination of Proposition 4.1 and Lemma 1.4, we easily infer the next assertion.

Corollary 4.2. Every 4-critical graph with L = {k, k + 2}, k ≥ 5, is 3-connected.

Proof. Suppose that, on the contrary, there exists a graph G satisfying the assumptions
but containing a 2-cut {u, v}, which splits G into two graphs G1 and G2. Then Lemma 1.4
applied first to u and any of the vertices of G1, next to v and any of the vertices of G2

gives two odd cycles C1, C2 such that V (C1) ⊆ V (G1)∪{v}, V (C2) ⊆ V (G2)∪{u}. These
cycles are disjoint, which contradicts Proposition 4.1.

Now we are ready to prove the main result.

Proof of Theorem 1.2. We proceed by contradiction. Assuming that the theorem is false,
we take a minimal counterexample with respect to inclusion, which clearly is a 4-critical
graph G with L(G) = {5, 7}. Similarly to the proof of Theorem 3.1, we first investigate
the structure of G by establishing Claims 1–6. Using these results, we finish by showing
that G is in fact 3-colorable.

To start, fix C = v0v1 · · · v6 as one of the 7-cycles in G. For convenience, we define the
following notions. Let x be a vertex of G \ C. Then each of its neighbors lying on C is a
friend of x; the set of all friends of x is denoted by F (x). We make an easy observation
now.

Claim 1. The following holds:

(1) for any vertex x of G \ C, F (x) is an independent set in G;

(2) let x, y be two adjacent vertices of G \C. Then F (x)∩F (y) = ∅, and F (x)∪F (y)
is an independent set in C.

Proof. If x and y in part (2) have friends f1 and f2 respectively which are adjacent in
C, then there is a C-path f1xyf2 of length 3 with its end-vertices at distance 1 in C, a
contradiction with Lemma 2.5 (2). The rest is clear as there are no triangles in G. �
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Figure 4.3. The proof of Claim 2.

By Corollary 4.2, G is 3-connected. Using this and the fact that |C| = 7, we are able
to prove the following statement, crucial for the rest of the argument.

Claim 2. Every vertex of G \ C has at least one friend.

Proof. Suppose the contrary, i.e., there exists a vertex x of G at distance at least 2 from
C. As G is 3-connected, by Theorem 1.5 there are three internally disjoint x–C paths
Pi, i ∈ Z3, with distinct end-vertices xi on C. These paths constitute three C-paths
P ′

i := Pi+1Pi+2, all of which have length at most 6 by Lemma 2.5 (2a). By assumption,
||Pi|| ≥ 2; thereby also ||Pi|| ≤ 4.

We discuss all the possible forms of the multiset P = {||Pi||, i ∈ Z3}. First, without
loss of generality, let P0 be of length 4. It follows that ||P1|| = ||P2|| = 2, and P ′

i have
lengths 4, 6, and 6 respectively. But then Lemma 2.5 (2) applied to each of P ′

i forces
that dC(x0, x1) = dC(x0, x2) = 1 and dC(x1, x2) = 1 or 3, which is clearly not possible.
By similar reasoning we exclude the cases P = {3, 3, 3} and P = {3, 3, 2}; hence P must
equal either {3, 2, 2} or {2, 2, 2}. Thus we have proven the following assertion so far:

for any vertex y of G at distance at least 2 from C, there are at least two
internally disjoint y–C paths of length 2 in G.

(4.1)

We continue by showing that the two remaining cases for P cannot occur either. Most
of the time, the subsequent proof consists of applying Lemma 2.5 (2) or (2a) to various
C-paths; we omit explicit reference to these particular assertions for brevity.

Focus on the case P = {3, 2, 2}. Without loss of generality, let ||P0|| = 3, ||P1|| =
||P2|| = 2, and x0 = v0. Then, considering the C-paths P ′

1 and P ′
2, both of length 5, we

see that dC(x0, x1) = dC(x0, x2) = 2. Hence, say, x1 = v2, and x2 = v5. Let us label
the inner vertices of P0, P1, and P2 in such a way that P0 = v0uy0x, P1 = v2y1x, and
P2 = v5y2x. Figure 4.3 (a) depicts the following argument.

By the 4-criticality of G, the degree of u is greater than 2, and therefore there is at
least one neighbor v of u other than v0 and y0. This vertex is distinct from both x and v1,
otherwise there would be a triangle in G. Next, it does not equal v2, or else we would have
a C-path P2P0uv2 of length 5 with its end-vertices at distance 3 in C. If v = v3, there
would be a C-path P1P0uv3 of length 5 with its end-vertices at distance 1 in C. Finally,
v cannot be y1, otherwise the C-path P2P0uy1v2 would have length 6, but its end-vertices
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are not adjacent in C. As the vertices v4, v5, v6, and y2 can be treated in a corresponding
manner by symmetry, we conclude that v 6∈ V (C ∪ P0 ∪ P1 ∪ P2).

We analyze which vertices of C ∪P0 ∪P1 ∪P2 \ u can be adjacent to v. First we show
that v has no friends. Assume the contrary; without loss of generality, we can choose
a friend w of v different from v5. Hence, there is a C-path P2P0uvw of length 6 in G.
Consequently, w = v4, or w = v6. But then, considering the C-path P1P0uvw also of
length 6, we obtain a contradiction in both the cases. Next, vy1 6∈ E(G) as otherwise we
would get a C-path P2P0uvy1v2 of length 7. By symmetry, the vertex y2 is not adjacent
to v either. Finally, vy0 ∈ E(G) would create a triangle in G. Thus the only possible
neighbor of v in the set V (C ∪ P0 ∪ P1 ∪ P2) \ {u} is x.

That means, v is at distance 2 from C. Therefore we may use statement (4.1) and
obtain two internally disjoint v–C paths of length 2. At least one of them, P , does not
pass through u. It also avoids x because the distance between x and C is greater than
1 by assumption. Hence, P is disjoint from P0 ∪ P1 ∪ P2 \ C by the previous discussion.
Without loss of generality, its other end-vertex is distinct from v5. But then there is a
C-path P2P0uvP of length 7, a contradiction.

It remains to discuss the case P = {2, 2, 2}; we proceed similarly as above. Con-
sult Figure 4.3 (b) for the following. This time, the C-path P ′

i of length 4 forces that
dC(xi+1, xi+2) = 1 or 3 for every i. One can easily check that this implies, up to symmetry,
x0 = v0, x1 = v3, and x2 = v4. Let u, y1, and y2 denote the inner vertex of P0, P1, and P2

respectively.
Since the degree of u is at least 3, there is a neighbor v of u distinct from both v0

and x. It cannot equal v1 or y1 because there are no triangles in G. If uv2 ∈ E(G), then
P2xuv2 would be a C-path of length 4 with its end-vertices at distance 2 in C. Also,
v 6= v3; in such a case we would have a 9-cycle v4P2P1v3uv0v6v5v4 in G. By symmetry, we
can exclude also the vertices y2, v4, v5, and v6. Hence v 6∈ V (C ∪ P0 ∪ P1 ∪ P2).

We investigate which vertices of C ∪ P0 ∪ P1 ∪ P2 \ u can be neighbors of v. First, let
there be a friend w of v. Without loss of generality, w 6= v4. Then the path P2xuvw of
length 5 is a C-path; therefore dC(v4, w) = 2. It follows that dC(v3, w) = 1 or 3, which is
impossible due to the C-path P1xuvw also of length 5. Hence v has no friends. Next, if
vy1 ∈ E(G), we would have a C-path P2xy1vuv0 of length 6 with end-vertices not adjacent
in C. The vertex y2 is excluded as well by symmetry. Finally, vx ∈ E(G) would imply a
triangle in G. Thus, v has no neighbor in C ∪ P1 ∪ P2 ∪ P3 besides u.

As we have just shown, the distance between v and C is 2; hence statement (4.1) can
be applied to v. Using this and the preceding analysis, we see that there exists a v–C
path P = v · · ·w of length 2 which is disjoint from P1 ∪ P2 ∪ P3 \ C. We may assume
that w 6= v4. The C-path P2xuvP of length 6 then forces that w = v3 or w = v5. But
the latter case cannot occur, as seen by considering the C-path P1xuvP also of length 6.
Therefore w equals v3. Then v4P2P1Pvuv0v6v5v4 is a 11-cycle, a contradiction with the
assumption about L(G). �

Having established the preceding claim, we can restrict significantly the structure of
G \ C.

Claim 3. G \ C is a forest.

Proof. Assume that the claim is false; let D be a cycle in G \ C. We take two arbitrary
vertices w0, w1 consecutive on D. By Claim 2, both the vertices have friends; let g0, g1

be a friend of w0, w1 respectively. The vertices g0 and g1 are distinct by Claim 1 (2);
therefore the edges g0w0, g1w1 together with the nontrivial part of D between w0 and
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Figure 4.4. The proof of Claim 3.

w1 constitute a C-path P of length |D| + 1. Lemma 2.5 (2a) then implies that |D| ≤ 5.
Thus, by Lemma 2.4 (1) and the assumption about L(G), |D| = 4. Hence P is of length
5, and Lemma 2.5 (2) forces that

dC(g0, g1) = 2. (4.2)

Now, let ui, i ∈ Z4, denote the vertices of D in a cyclic order. Suppose first that
there are two vertices opposite on D, say, u0 and u2, with distinct friends f0 and f2

respectively; we pick a friend fj of uj, j = 1, 3. Then, by the equation (4.2), we see that
dC(fi, fi+1) = 2 for all i. Hence dC(f0, f2) = 3, and, consequently, the vertices f1 and f3

coincide. The situation is shown in Figure 4.4 (a). But then the cycle consisting of the
path f0u0u1f1u3u2f2 and the appropriate part of C has length 9, a contradiction.

Thus we must have the following arrangement: every ui has exactly one friend fi, it is
fj = fj+2, j = 0, 1, and dC(f0, f1) = 2. See Figure 4.4 (b). However, as G is 3-connected,
by Theorem 1.5 there exist three pairwise disjoint D–C paths in G. At least one of them,
P , has its end-vertex v on C distinct from both f0 and f1. We may assume that the
other end-vertex of P is u0 by symmetry. P is not a single edge; considering the C-path
P ′ := Pu0u1u2u3f1 and Lemma 2.5 (2a), we see that ||P || = 2. Then Lemma 2.5 (2)
applied subsequently to the C-paths P ′ of length 6 and Pu0u1u2f0 of length 5 asserts
that dC(v, f1) = 1 and dC(v, f0) = 2 respectively, which is impossible. �

We proceed to a detailed analysis of the possible structure and mutual position of the
C-bridges. Let us start with an auxiliary observation.

Claim 4. Let wi, i = 1, . . . , 4, be four consecutive vertices of C; let x, y be two distinct
vertices of G \ C. Then it cannot be w1, w3 ∈ F (x) and w2, w4 ∈ F (y).

Proof. If the contrary held, w1xw3w2yw4Cw1 would be a 9-cycle in G. �

Claim 1 (1) and the fact that |C| = 7 imply that any vertex x of G\C has at most three
friends. Moreover, if it has three friends f0, f1, and f2, the multiset {dC(fi, fi+1), i ∈ Z3}
equals {2, 2, 3}. Extending this, the subsequent claim describes completely the C-bridges
involving at least one vertex with three friends.

Claim 5. The following holds:

(1) every C-bridge containing at least one vertex with three friends is a K1,3;
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Figure 4.5. The proof of Claim 5 (2). The edges of M1 are distinguished with
boldface.

(2) there exists an i ∈ Z7 such that every C-bridge involving at least one vertex with
three friends intersects C in either {vi, vi+2, vi+5} or {vi, vi+3, vi+5}.

Proof. We begin with part (1). To the contrary, let M be a C-bridge which contains a ver-
tex x with three friends, and M 6= K1,3. Then |M \C| > 1, and hence, by Lemma 1.3 (2),
there is a vertex in M \C adjacent to x. This vertex has a friend f , as forced by Claim 2;
f together with the three friends of x constitute by Claim 1 (2) a 4-element independent
set in C, a contradiction.

We proceed to part (2). Combining statement (1) and the discussion immediately
preceding Claim 5, one easily obtains that every C-bridge involving a vertex with three
friends intersects C in {vi, vi+2, vi+5} for some i ∈ Z7. Thus, if all the C-bridges under
consideration have the same attachment vertices, we are done.

On the other hand, let there be two C-bridges M1 and M2, each with a vertex hav-
ing three friends, such that V (M1 ∩ C) 6= V (M2 ∩ C). Without loss of generality, the
attachment vertices of M1 are v0, v2, and v5. By assumption, the attachment vertices of
M2 must be vi, vi+2, and vi+5 for some i ∈ Z7 \ {0}. Now, if i ∈ {1, 3, 4, 6}, we would
get a configuration forbidden by Claim 4. Hence there remain two cases, i = 2 or i = 5,
identical up to rotation; say, i = 5. The situation is shown in Figure 4.5.

Consider a C-bridge M involving a vertex with three friends such that V (M ∩ C) 6=
V (Mj ∩ C) for both j = 1, 2. The preceding analysis repeated for M and Mj, j fixed,
implies that M has exactly two attachment vertices in common with Mj, and these are
at distance 2 in C. But that obviously cannot occur for both j at the same time, as seen
in Figure 4.5; this is a contradiction. Therefore, all the C-bridges in question have the
same attachment vertices as either of Mj, and the claim is proven. �

Now we characterize the other C-bridges.

Claim 6. Every C-bridge containing no vertex with three friends is a K2.

Proof. Assume to the contrary that there is a C-bridge M without vertices having three
friends, such that the graph M ′ := M \C is nonempty. By Claim 3 and the connectedness
of a C-bridge, M ′ is a tree. Next, every vertex of M ′ has degree at least 3 in M by the
4-criticality of G; since it has at most two friends by assumption, its degree in M ′ is
nonzero. Therefore, M ′ is not trivial, and hence has at least two leaves. Note that all
leaves of M ′ have precisely two friends.

We take an arbitrary pair of distinct leaves l1, l2 of M ′; let F (l1) = {f 1, f2}, F (l2) =
{g1, g2}. The leaves are joined by a unique path P in M ′; we refer to its length as
d. Further, let f := dC(f 1, f2), g := dC(g1, g2), and D be the set {dC(f i, gj), i, j =
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Figure 4.6. Illustrations for the proof of Claim 6.

1, 2}. Without loss of generality, we may assume that f 1 = v0 and f 2 = vf . Consult
Figure 4.6 (a) for the situation and notation.

Considering Claim 1 (1) and the fact that |C| = 7, we see that f, g ∈ {2, 3}. Next,
observe the basic properties of the set D:

0 ∈ D ⇒ {f, g} ⊆ D, (4.3)

|D| ≥ 2. (4.4)

Statement (4.3) is obvious. To prove assertion (4.4), suppose the contrary, D = {k}.
Clearly, k 6= 0 by statement (4.3), and hence the friends of l1 and l2 are pairwise distinct.
But then both g1 and g2 must be at distance k from both f 1 and f 2 in C, which cannot
occur as there is at most one vertex with this property.

Now, every two distinct friends f i and gj are joined by a C-path P ij of length d + 2
consisting of the edges f il1, gjl2, and the path P . Thus, first, Lemma 2.5 (2) lists the
possible nonzero elements of D when d is known; for brevity, we use this fact without
explicit reference in the following. Second, since by statement (4.3) such a pair of distinct
friends indeed exists, it follows that d ≤ 4 by Lemma 2.5 (2a). Let us consider all the
possible values of d.

First, assume that d = 4. Then D ⊆ {0, 1}. Hence, f /∈ D and, by assertion (4.3),
D = {1}. That, however, contradicts statement (4.4).

If d = 3, D ⊆ {0, 2}; thus D = {0, 2} by statement (4.4). Claim (4.3) then forces
that f = g = 2. As 0 ∈ D, it is, say, f 1 = g1. If f 2 and g2 were distinct, the vertex
g2 would coincide with v5, but then dC(f 2, g2) = 3, a contradiction. Thus f 2 = g2.
Now, we consider the inner vertex w of P adjacent to l1. By Claim 2, this vertex has a
friend h; Claim 1 (2) applied to l1 and w implies that, without loss of generality, h = v5.
Consequently, there is a C-path f 1l2Pwh of length 4 with its end-vertices at distance 2
on C, which contradicts Lemma 2.5 (2).

Obviously, d 6= 1. Otherwise, by Claim 1 (2), the friends of l1 and l2 would form a set
of four independent vertices in C, a contradiction.

Therefore d equals 2, and hence D ⊆ {0, 1, 3}. Focus on the unique inner vertex w of
P ; it has a friend h by Claim 2. As w is adjacent to both l1 and l2, we can use Claim 1 (2)
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Figure 4.7. The proof of Theorem 1.2: the 3-colorability of G when S1 6= ∅. The
colors are enclosed in brackets; the dotted edges and white vertices represent the
possibly nonexistent parts of G.

twice to see that h is the unique friend of w, it is distinct from the friends of l1 and l2,
and the sets F1 := {f 1, f2, h}, F2 := {g1, g2, h} are both independent in C. Suppose
first that either of l1, l2 has its friends at distance 2 in C, say, it is f = 2. Then, by
statement (4.3), D ⊆ {1, 3}, which means that {g1, g2} ⊆ {v1, v3, v6}. Claim 4 forces in
turn that {g1, g2} = {v3, v6}, but then there is no vertex on C satisfying the conditions
imposed on h, a contradiction. Thus f = g = 3. By the independence of F1 and F2 in C
again, it follows that {f 1, f2} = {g1, g2} = {v0, v3} and h = v5.

We sum up all the facts inferred so far. Every two leaves of M ′ are at distance 2 in M ′,
which means that M ′ is a star. Next, any two, hence all, leaves of M ′ have the same (two)
friends, and these are at distance 3 in C; without loss of generality, they coincide with v0

and v3. Finally, the central vertex w of M ′ has a unique friend v5. See Figure 4.6 (b).
But the structure of M then contradicts the 4-criticality of G because any proper

3-coloring c of G \ M ′ can be extended to G as follows. We color all the leaves of M ′

with a color c1 of c distinct from both c(v0) and c(v3), and assign a color c2 of c equal to
neither c1 nor c(v5) to w. �

We can finally derive a contradiction by proving that G is 3-colorable. Without loss
of generality, by Claims 5 and 6 we can partition all the C-bridges into three sets S1, S2,
and K such that S1 and S2 contain only K1,3’s intersecting C in {v1, v3, v6}, {v1, v4, v6},
respectively, and K consists of single edges. Next, we take a proper coloring c of C
with colors 1, 2, and 3 such that the color classes are {v0, v5}, {v2, v4}, and {v1, v3, v6}
respectively. Consult Figure 4.7. The coloring c has the property that there is only
one pair of equally colored vertices at distance 3 in C, the vertices v3 and v6; using
Lemma 2.5 (2b) one observes that:

if v3v6 6∈ K, then c is a proper coloring of C ∪
⋃
K. (4.5)

Now we discuss several cases. If S1 6= ∅, then the assumption of statement (4.5) is
satisfied, otherwise there would be a triangle in G. As c can be easily extended to any
element of S1 ∪ S2 by coloring its central vertex with 1, we conclude that G is indeed
3-colorable. The case S2 6= ∅ is handled analogously by symmetry. Finally, there remains
the possibility that both S1 and S2 are empty sets. If K is empty as well, there is nothing
to prove. Otherwise, without loss of generality, v2v6 ∈ K. Then v3v6 6∈ K clearly, and we
are done by observation (4.5) again.
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