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Abstract. An n-bit (cyclic) Gray code is a (cyclic) sequence of all n-bit
strings such that consecutive strings differ in a single bit. We describe
an algorithm which for every positive integer n constructs an n-bit cyclic
Gray code whose graph of transitions is the d-dimensional hypercube Qd

if n = 2d, or a subgraph of Qd if 2d−1 < n < 2d. This allows to compress
sequences that follow this code so that only Θ(log log n) bits per n-bit
string are needed.

1 Introduction

An n-bit (cyclic) Gray code Cn = (u1, u2, . . . , uN ) where N = 2n is a (cyclic)
sequence listing all n-bit strings, so that every two consecutive strings differ
in exactly one bit. This corresponds to a Hamiltonian path (cycle) in the n-
dimensional hypercube Qn. A well-known example of such a code [3] is the
reflected Gray code Γn which may be defined recursively by

Γ1 = (0, 1) Γn+1 = 0Γn, 1ΓR
n (1.1)

where bS denotes the sequence S with b ∈ {0, 1} prefixed to each string, and SR

denotes the sequence S in reverse order.
Gray codes are named after Frank Gray, who in 1953 patented the use of the

reflected code Γn for shaft encoders: a pattern representing the code, printed
on a shaft, determines the angle of shaft rotation. Since then, a considerable
attention has been paid to the research on Gray codes satisfying certain ad-
ditional properties, and applications have been found in such diverse areas as
graphics and image processing, information retrieval or signal encoding [8]. Here
we are particularly concerned with applications of Gray codes in the field of data
compression [7, Section 4.2.1].

The transitional sequence τ(Cn) = [t1, t2, . . . , tN ] of a code Cn lists the
positions (called transitions) ti ∈ [n] = {1, 2, . . . , n} for i ∈ [N ] in which ui and
ui+1 differ. For simplicity, the indices are always taken cyclically, thus uN+1 is
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identified with u1. A graph GCn
induced by Cn (sometimes called the graph of

transitions of Cn) is defined by

V (GCn
) = [n] and E(GCn

) = {titi+1 | i ∈ [N ]}.

See Figure 1 for an illustration. Slater [9, 10] and independently Bulbena and
Ruskey [1], motivated by applications of Gray codes, asked what graphs can be
induced by (cyclic) Gray codes. For example, the star K1,n−1 is induced by the
reflected Gray code Γn defined by (1.1).

The problem to characterize graphs which can be induced by (cyclic) Gray
codes is still widely open. By computational search, Bulbena and Ruskey [1]
catalogued these graphs for n ≤ 5, and Ernst and Wilmer [12] extended the
list to n ≤ 7. For general n, there are only some partial results, positive and
negative.

Bulbena and Ruskey [1] showed that every tree of diameter 4 can be induced
by a cyclic Gray code. On the other hand, no tree of diameter 3 can be induced
by such code. Also, they conjectured that all trees induced by cyclic Gray codes
have diameter 2 or 4. This was disproved by Ernst and Wilmer [12] who in-
troduced so called supercomposite Gray codes which induce trees of arbitrarily
large diameter. Moreover, they answered two questions from [1] by showing that
supercomposite Gray codes induce spanning trees of arbitrary 2-dimensional
grids, and for a directed version of the problem, that there are cyclic Gray codes
that induce digraphs with no bidirectional edge. Futhermore, Suparta and van
Zanten [11] showed that the complete graph can also be induced by cyclic Gray
codes, which solves a problem in [12]. Among many open problems posed in [1,
9–12], it is particularly interesting whether paths and cycles can be induced by
(cyclic) Gray codes.

C4 =




0 0 1 1 0 0 0 0 1
0 0 0 1 1 1 1 1 1
0 1 1 1 1 0 0 1 1
0, 0, 0, 0, 0, 0, 1, 1, 1,

1 0 0 1 1 1 1
0 0 0 0 1 1 0
1 1 0 0 0 0 0
1, 1, 1, 1, 1, 0, 0
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Fig. 1. The cyclic Gray code C4, the corresponding Hamiltonian cycle of Q4

and the graph GC4 induced by C4. The transitional sequence is τ(C4) =
[3, 1, 2, 1, 3, 4, 3, 1, 2, 1, 3, 1, 2, 4, 2, 1].



In this paper, for every positive integer n we construct an n-bit cyclic Gray
code Cn which induces the d-dimensional hypercube Qd if n = 2d, or a subgraph
of Qd if 2d−1 < n < 2d. More precisely, since the vertices of GCn

are labeled by
the elements of [n], we obtain the graph Q∗d defined by

V (Q∗
d) = [2d] and E(Q∗d) = {xy | where |x− y| = 2i for some 0 ≤ i < d}.

Clearly, Q∗d ∼= Qd by the isomorphism that maps x ∈ [2d] to the binary repre-
sentation of x− 1.

We conclude the introduction with an explanation of the title of this paper.
Note that every Gray code Cn = (u1, u2, . . . , uN ) is uniquely determined by its
first string u1 and the transitional sequence τ(Cn) = [t1, t2, . . . , tN ]. Since each
transition is an integer from [n], it may be encoded with d = dlog2 ne bits. This
provides a representation of Cn with Θ(log n) bits per one n-bit string.

However, in case that Cn induces a subgraph of Q∗d, we may further explore
the property that two consecutive transitions of τ(Cn) always form an edge of
Q∗d. Indeed, each transition ti+1, i ∈ [N−1], is then determined by the preceding
transition ti and by the edge titi+1 ∈ E(Q∗d), which may be represented by its
direction

d(titi+1) = j such that |ti − ti+1| = 2j .

Consequently, the code Cn may be represented by the sequence

u1, t1, d(t1t2), d(t2t3), . . . , d(tN−1tN ).

Since edges of Q∗d occur only in d directions, each d(titi+1) for i ∈ [N − 1] may
be encoded with dlog2 de bits. Hence we obtain a representation of Cn which
requires only Θ(log log n) bits on the average to represent one n-bit string of the
code, which outperforms the Θ(log n) bits obtained above.

2 Preliminaries

For the rest of the paper, all Gray codes are cyclic. Let Cn = (u1, u2, . . . , uN )
be a Gray code where n denotes the dimension of the code and N = 2n, and let
τ(Cn) = [t1, t2, . . . , tN ] be the transitional sequence of Cn. We deal with Cn as
with a Hamiltonian cycle of the n-dimensional hypercube Qn, which is the graph
with V (Qn) = {0, 1}n and uv ∈ E(Qn) if and only if u and v differ in exactly
one coordinate. For a vertex v ∈ V (Qn) let Qn − v denote the graph obtained
by removing v and incident edges from Qn.

Let ei denote the vertex of Qn with 1 exactly in the i-th coordinate for i ∈ [n].
Thus ui ⊕ ui+1 = eti for every i ∈ [N ] where ⊕ denotes the (coordinatewise)
addition modulo 2. Moreover, let eij = ei⊕ej for distinct i, j ∈ [n]. The elements
of [n] are called directions.

Let CR
n = (uN , . . . , u2, u1) denote the Gray code Cn in reverse order. Simi-

larly, for any path P = (v1, v2, . . . , vm) of Qn, let PR = (vm, . . . , v2, v1) denote
the reverse of P . The notion of transitional sequences and induced graphs can
be naturally extended to paths as follows. We define τ(P ) = [p1, p2, . . . , pm−1]



where pi for i ∈ [m − 1] is the coordinate in which vi and vi+1 differ, and the
graph GP induced by P by

V (GP ) = [n] and E(GP ) = {pipi+1 | i ∈ [m− 2]}.

Note that for cycles, the transitional sequence is considered to be cyclic, whereas
for paths it is not.

Let T = [t1, t2, . . . , tm] be a (cyclic) transitional sequence of a path
(u1, u2, . . . , um+1) (resp. of a cycle (u1, u2, . . . , um)). We say that T contains
a segment S = [s1, s2, . . . , sk] if there is j ∈ [m− k] (resp. j ∈ [m]) such that

si = ti+j−1 for all i ∈ [k].

Furthermore, if k is even, we say that S is centered at a vertex uj+k/2. For
example, τ(C4) on Figure 1 contains a segment [2, 1, 3, 1] centered at u1 = 0000.

We say that a direction t is repeating in a transitional sequence T , if T
contains a segment [t, x, t] for some x.

Let π : [n] → [n] be a permutation and w = (w1w2 · · ·wn) ∈ {0, 1}n be a
vector called translation. It is well known that the mapping % : V (Qn) → V (Qn)
given by

%(u1u2 · · ·un) = (v1v2 · · · vn) such that vi = uπ(i) ⊕ wi for every i ∈ [n] (2.1)

is an automorphism of Qn. Moreover, for every automorphism % of Qn there exist
unique π and w such that % is given by (2.1). That is, every hypercube automor-
phism is composed of a unique permutation of coordinates and a unique transla-
tion. The translation determines where the vertex 0 = (00 · · · 0) is mapped, i.e.
%(0) = w.

The hypercube Qn may be expressed as a Cartesian product Qn = Qk¤ Qn−k

for 1 ≤ k < n. Every vertex v ∈ V (Qn) is then represented as a pair v =
(v1, v2) where v1 ∈ V (Qk) and v2 ∈ V (Qn−k). The subgraph of Qn induced on
vertices (v1, v2) for all v1 ∈ V (Qk) and fixed v2 ∈ V (Qn−k) is called a subcube
and denoted by Qk(v2). Clearly, Qk(v2) is isomorphic to Qk. Thus, Qn may be
viewed as Qn−k in which every vertex v2 ∈ V (Qn−k) corresponds to the subcube
Qk(v2) and every edge v2v3 ∈ E(Qn−k) corresponds to the collection of edges
(v1, v2)(v1, v3) for all v1 ∈ V (Qk).

In particular, the graph Q∗d+1 defined in the previous section can be de-
composed into two subcubes denoted by QA

d and QB
d induced on the sets A =

{1, 2, . . . , n} and B = {n + 1, n + 2, . . . , 2n}. Note that by the definition, every
vertex i ∈ A of QA

d is joined in Q∗d+1 only with the vertex n + i ∈ B of QB
d .

Let GCn be the graph induced by the Gray code Cn. A transition tj where
j ∈ [N ] is critical for GCn if at least one of the edges tj−1tj , tjtj+1 ∈ E(GCn)
is induced by no other pair of consecutive transitions in τ(Cn), i.e. E(GCn) 6=
{titi+1 | i ∈ [N ] \ {j − 1, j}}. If we view the cycle Cn in Qn as a path Pn,
then τ(Cn) = [τ(Pn), tN ]. Thus, if tN is not critical for GCn , we obtain that
GPn = GCn .



3 Inducing the hypercube

In this section, we construct an n-bit Gray code Cn for n = 2d that induces the
hypercube Q∗d. The following lemma shows that under certain conditions, we
may modify a Gray code so that the induced Q∗

d is preserved, and at the same
time, a given segment of its transitional sequence is replaced by a new prescribed
one.

Lemma 3.1. Let C be an n-bit Gray code with GC = Q∗d such that τ(Cn)
contains two disjoint occurrences of a segment [a, b, a, c] where a, b, c are distinct
and n = 2d. Let S be a segment [x, y, x, z] or [z, x, y, x] where x, y, z are distinct
and xy, xz ∈ E(GC), and let v be a vertex of Qn. Then, there exists a Gray code
B such that GB = Q∗

d, each occurrence of [a, b, a, c] in τ(C) is replaced by S in
τ(B), and one of them is centered at the vertex v.

Proof. We assume that S = [x, y, x, z], otherwise we proceed with SR and obtain
BR, so by changing the direction we get B. Let one occurrence of [a, b, a, c] be
centered at a vertex u ∈ V (Qn). Since ab, ac ∈ E(GC) and GC = Q∗d, we can
extend the mapping π(a) = x, π(b) = y, π(c) = z to a permutation π : [n] → [n]
such that π is an automorphism of GC . Consider the automorphism % of Qn given
by (2.1) with the permutation π and a translation vector w = (w1w2 · · ·wn) ∈
{0, 1}n such that wi = uπ(i) ⊕ vi for all i ∈ [n].

It follows directly by (2.1) that %(u) = v, and furthermore, % maps the
subsequence (u⊕ eab, u⊕ eb, u, u⊕ ea, u⊕ eac) of the code C to

%(u⊕ eab, u⊕ eb, u, u⊕ ea, u⊕ eac) = (v ⊕ exy, v ⊕ ey, v, v ⊕ ex, v ⊕ exz).

Hence, for the n-bit Gray code B = %(C), each occurrence of [a, b, a, c] in
τ(C) is replaced by S in τ(B), and one of them is centered at the vertex v.
Moreover, for every p, q ∈ [n],

pq ∈ E(GB) if and only if π−1(p)π−1(q) ∈ E(GC) if and only if pq ∈ E(GC).

The first equivalence holds by the definition of %, the latter holds since π in an
automorphism of GC . It follows that also B induces GC = Q∗

d. This establishes
the lemma. ut

Now we state one of our main results. Note that the last part of the following
theorem (on repeating directions) is only needed in the next section for a general
dimension n.

Theorem 3.1. For every integer d, there exists an n-bit cyclic Gray code Cn,
n = 2d, such that GCn = Q∗

d. Moreover, for d > 1 and τ(Cn) = [T, tN ], the
transition tN is not critical for GCn , T contains two disjoint occurrences of
some segment [a, b, a, c], and every direction from [n− 1] is repeating in T .

Proof. We argue by induction on d. For d = 1 the statement is trivial. For d = 2
consider the 4-bit Gray code C4 given on Figure 1. Observe that GC4 = Q∗2 and



for τ(C4) = [T, tN ], the transition tN is not critical for GC4 , T contains two
disjoint occurrences of the segment [1, 2, 1, 3], and T contains segments [1, 2, 1],
[2, 4, 2], and [3, 4, 3], so the directions 1, 2, and 3 are repeating in T .

Now we assume that the statement holds for d > 1 and we prove it for d+1.
Let n = 2d and N = 2n.

The idea of the proof is as follows. We view Q2n as a Cartesian product
Q2n = Qn¤ Qn. First, we interconnect the copies (0n, u) of a vertex 0n in all
subcubes Qn(u) for u ∈ V (Qn) by a path P which induces QB

d on vertices B =
{n + 1, . . . , 2n}. Then, in each subcube Qn(u) we find a Hamiltonian path R(u)
of Qn(u) − (0n, u) which induces QA

d on vertices A = {1, . . . , n}. Moreover, by
Lemma 3.1 we can choose the path R(u) so that R(u) joins prescribed neighbors
of (0n, u), and its first and last edge are of prescribed directions. This assures
that we can interconnect these paths together into a Hamiltonian cycle of Q2n,
and when we do so, the newly induced edges are only between i ∈ V (QA

d ) and
n + i ∈ V (QB

d ). See Figure 2 for an illustration. Note that the bold green paths
R(u)’s are connected by dash-dotted red edges between the subcubes Qn(u)’s,
and the dashed blue path P is connected with R(u1) and R(uN ).

By the induction hypothesis, let Cn = (u1, u2, . . . , uN ) be an n-bit Gray
code such that GCn = Q∗

d and for τ(Cn) = [T, tN ], tN is not critical for GCn , T
contains two disjoint occurrences of some segment S = [a, b, a, c], one centered
at a vertex u, and every direction from [n− 1] is repeating in T .

First, we interconnect the copies of the vertex 0n in each subcube Qn(ui) by
a path

P = (0n, u1), (0n, u2), . . . , (0n, uN ). (3.1)

Since P will be a part of C2n, T contains two disjoint occurrences of S =
[a, b, a, c], and every direction of [n− 1] is repeating in T , it follows that τ(C2n)
will contain two disjoint occurrences of [a + n, b + n, a + n, c + n], and every
direction from {n + 1, n + 2, . . . , 2n− 1} will be repeating in τ(C2n).

Second, we claim that there exists a sequence σ(Cn) = [s1, s2, . . . , sN−1] such
that

(a) tisi ∈ E(GCn) for every 1 ≤ i < N , and
(b) either ti = si−1 or si = ti−1 for every 1 < i < N .

Such a sequence can be found as follows. Note that degGCn
(ti) = d ≥ 2 for every

i ∈ [n]. For i = 1, we choose si arbitrarily such that tisi ∈ E(GCn). Now assume
1 < i < N . If ti = si−1, then we choose si such that si 6= ti−1 and tisi ∈ E(GCn).
If ti 6= si−1, then we put si = ti−1 and observe that tisi ∈ E(GCn) since
ti−1ti ∈ E(GCn). Thus both (a) and (b) hold.

The sequence σ(Cn) determines the endvertices of paths R(ui) as described
below. Note that from (a) and (b) we have that si−1si ∈ E(GCn) for every
1 < i < N . In each subcube Qn(ui) we find a Hamiltonian path R(ui) of
Qn(ui)− (0n, ui) as follows:

(i) For i = 1 we apply Lemma 3.1 for a vertex v = 0n and a segment S =
[t1, s1, t1, z] where z 6= s1 such that t1z ∈ E(GCn). Let B be the obtained
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Fig. 2. The example for d = 2 illustrating the construction of the code C2n in Q2n. For
the transitional sequence τ(C4) = [3, 1, 2, 1, 3, 4, 3, 1, 2, 1, 3, 1, 2, 4, 2, 1] we may choose
σ(C4) = [1, 2, 4, 2, 1, 3, 1, 2, 4, 2, 1, 2, 4, 3, 4].



Gray code containing S centered at v. By removing v from B we get a
Hamiltonian path R(u1) of Qn(u1)− (0n, u1)

R(u1) = (et1 , u1), (et1z, u1), . . . , (et1s1 , u1), (es1 , u1). (3.2)

(ii) For 1 < i < N we proceed similarly, but we apply Lemma 3.1 for v = 0n

and S = [ti, si, si−1, ti−1]. Note that by (a) and (b), the conditions of the
lemma are satisfied. Again, let B be the obtained Gray code containing S
centered at v. By removing v from B we get a Hamiltonian path R(ui) of
Qn(ui)− (0n, ui)

R(ui) = (esi−1 , ui), (esi−1ti−1 , ui), . . . , (esiti
, ui), (esi

, ui). (3.3)

(iii) For i = N we apply Lemma 3.1 for v = 0n and S = [z, tN−1, sN−1, tN−1]
where z 6= sN−1 and tN−1z ∈ E(GCn

). Similarly as above, we get a Hamil-
tonian path R(uN ) of Qn(uN )− (0n, uN )

R(uN ) = (esN−1 , uN ), (esN−1tN−1 , uN ), . . . , (eztN−1 , uN ), (etN−1 , uN ). (3.4)

Recall that RR denotes the reverted R. Clearly, the following sequence is a 2n-bit
Gray code:

C2n = P, RR(uN ), RR(uN−1), . . . , RR(u2), RR(u1).

Next, we verify that C2n induces Q∗d+1. We have

τ(C2n) = [τ(P ), tN−1, τ(RR(uN )), tN−1 + n, τ(RR(uN−1)), tN−2 + n,

. . . , t2 + n, τ(RR(u2)), t1 + n, τ(RR(u1)), t1].

Since tN is not critical for GCn , we have by (3.1) that τ(P ) induces the subcube
QB

d
∼= Q∗

d of GC2n on vertices B = {n + 1, n + 2, . . . , 2n}. Furthermore, no
other edge is induced between two vertices of B since τ(C2n) contains no two
consecutive transitions from B other than those in τ(P ).

Moreover, we show that τ(RR(ui)) for every i ∈ [N ] induces the subcube
QA

d
∼= Q∗d of GC2n on vertices A = {1, 2, . . . , n}. This follows from the fact that

in each of the cases (i)–(iii) above, GB = Q∗
d and τ(B) contains two occurrences

of the segment S. In addition, no other edge is induced between two vertices of
A since τ(C2n) contains no two consecutive transitions from A other than those
in τ(RR(ui)) for some i ∈ [N ].

Finally, observe by (3.1)–(3.4) that the remaining edges of GC2n are joining
vertices i and n + i for some i ∈ [n], and for every i ∈ [n] there exists such edge
since τ(Cn) contains all i ∈ [n]. Altogether, we obtain that GC2n = Q∗

d+1.
To conclude the proof, it remains to verify the second part of the statement.

Let τ(C2n) = [t′1, . . . , t
′
N2 ] = [T ′, t′N2 ]. Since t′N2−1 = z, t′N2 = t1, and t′1 = t1+n,

observe that the transition t′N2 is not critical for GC2n , since the edge zt1 ∈
E(QB

d ) is induced by τ(RR(ui)) for any i ∈ [n], and the edge of GC2n joining t1
and t1 + n is induced also by transitions t′N2−N = t1 and t′N2−N+1 = t1 + n.



Furthermore, T ′ contains τ(P ). Consequently, T ′ contains two disjoint oc-
currences of a segment [a + n, b + n, a + n, c + n], and every direction from
{n+1, n+2, . . . , 2n−1} is repeating in T ′. In addition, T ′ contains the segments
[t1, t1 + n, t1], [t2, t2 + n, t2], . . . , [tN−1, tN−1 + n, tN−1]. Hence, the directions
D = {t1, . . . , tN−1} are repeating in T ′. Clearly D = [n] since every direction
from [n] appears at least twice in τ(Cn) = [t1, . . . , tN−1, tN ]. Therefore, every
direction from [2n− 1] is repeating in T ′. ut

4 General dimension

In this section, we generalize Theorem 3.1 for an arbitrary dimension n. More
precisely, we construct a Gray code inducing a subgraph of Q∗d for the smallest
d possible.

Theorem 4.1. For every integer n ≥ 1, there exists an n-bit cyclic Gray code
Cn such that GCn

⊆ Q∗dlog2 ne. Moreover, if n ≥ 4 and n = 2d + k where
0 ≤ k ≤ 2d − 2, then every direction from {k + 1, . . . , 2d − 1} is repeating in
τ(Cn).

Proof. We argue by induction on k. By Theorem 3.1, the statement holds if
n = 2d for some integer d. If n = 1 or n = 3, observe that the reflected codes
Γ1 = (0, 1) and Γ3 = (000, 001, 011, 010, 110, 111, 101, 100) from (1.1) induce a
subgraph of Q∗

0 and Q∗
2, respectively.

Now we have n = 2d + k where d > 1 and 1 < k < 2d, so dlog2 ne =
d + 1. By the induction hypothesis, there is an (n − 1)-bit Gray code Cn−1

inducing a subgraph of Q∗d+1 such that every direction from D = {k, . . . , 2d−1}
is repeating in τ(Cn−1). That is, for every t ∈ D the transitional sequence
τ(Cn−1) = [t1, . . . , tN/2] where N = 2n contains a segment [t, x, t] for some
x ∈ [n− 1]. We may assume that

tN/2−1 = k, tN/2 = x, t1 = k, (4.1)

otherwise we shift the code Cn−1 so that the segment [k, x, k] appears at this
position.

We define the Gray code Cn schematically as in (1.1),

Cn = 0Cn−1, 1CR
n−1. (4.2)

From (4.1) and (4.2) it follows that

τ(Cn) = [k = t1, . . . , tN/2−1 = k, n, tN/2−1 = k, . . . , t1 = k, n].

Hence, for the graph GCn induced by Cn we have that

E(GCn) ⊆ E(GCn−1) ∪ {kn}.
Consequently, GCn ⊆ Q∗d+1 since GCn−1 ⊆ Q∗d+1 and kn ∈ E(Q∗d+1) because
n− k = 2d.



It remains to verify the second part of the statement. Observe that if S =
[s, x, s] and T = [t, y, t] are segments of τ(Cn−1) for some x, y ∈ [n − 1] and
distinct repeating transitions s, t ∈ D, then S and T must be disjoint. Therefore,
since every direction from D is repeating in τ(Cn−1) and by (4.1), it follows that
every direction from D \{k} is repeating in [t1, . . . , tN/2−1], which is a segment
of τ(Cn). ut

5 Concluding remarks

In this paper we have described a construction of a cyclic n-bit Gray code whose
graph of transitions is a subgraph of the d-dimensional hypercube, d = dlog2 ne.
Note that the proofs of Theorem 3.1, which covers the case n = 2d, and of
Theorem 4.1, which covers the case 2d−1 < n < 2d, actually provide a description
of a recursive algorithm which, given a positive integer n, constructs an n-bit code
with the desired property. The running time of the algorithm may be bounded
by O(N log N) where N is the output size.

As mentioned in the introduction, our variant of Gray codes allows for a more
space-saving representation compared to Gray codes in general. This suggests
that it may be reasonable to inspect other data compression applications where
the reflected Gray code Γn is traditionally used.

In particular, consider the problem of compressing a set {s1, s2, . . . , sk} of
n-bit strings whose order is irrelevant, which arises in the context of compressing
bitmap indices of large databases. Efficient methods developed for this purpose
[13], which allow performing logical operations on uncompressed bitmaps and
therefore faster query processing, are based on a technique known as run length
encoding : putting strings into rows of a matrix, replace repeated runs of consec-
utive 0’s and 1’s in the columns by their lengths.

In order to improve the compression rate, one needs to minimize the number
of runs, which leads to the problem of finding a permutation π : [n] → [n] which
minimizes the sum

k−1∑

i=1

dH(sπ(i), sπ(i+1)) (5.1)

where dH stands for the Hamming distance. In the extremal case that k = 2n,
the optimal solution to (5.1) is provided by an n-bit Gray code. Unfortunately,
the problem (5.1) in the general case k < 2n is known to be NP-complete [2].
A popular heuristic that has been used to find an approximate solution [5, 6]
orders the strings in such a way that π(i) < π(j) if sπ(i) precedes sπ(j) in
the reflected Gray code Γn. However, in the experimental results performed
on real-life datasets [4], the Γn code reordering was outperformed by a simple
lexicographic order. We suggest that it is conceivable to replace Γn with our
variant of Gray code.
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