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Abstract

We proved that every planar triangle-free graph with n vertices has a subset of
vertices that induces a forest of size at least (71n + 72)/128. This improves the
earlier work of Salavatipour [10]. We also pose some questions regarding planar
graphs of higher girth.

1 Introduction

The maximum size of acyclic induced subgraphs is studied in several different ways. If
only connected subgraphs are considered, the problem is to find the order of maximum
induced tree of a graph G, denoted by ¢(G). The problem was initiated by Erdés, Saks,
and S6s in 1986 [5]. Some latest results are due to Matousek and Samal [8], and also due
to Fox, Loh, and Sudakov [6].

On the other hand, if the maximum induced subgraph is not necessarily connected,
the task is to find the maximum induced forest. There are two equivalent approaches to
obtain the maximum forest of a graph. The former is determining the decycling number
V(G) of a graph G, which is the least number of vertices whose deletion results in an
induced forest. In [7] it was shown that determining this invariant is NP-hard even for
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planar graphs. An interested reader can find more results on the decycling number in a
survey of Punnim [9].

The latter approach is finding a maximum set S of vertices of graph G such that the
graph G[S] induced on S is a forest. The size of such a set S is denoted by a(G) and it
is referred to as a forest number. Note that a(G) + V(G) = |[V(G)|. We call the ratio
between the forest number and the order of a graph a forest ratio and denote it by v(G).
Large induced forests in graphs recently attracted attention in various graph classes. In
1979, Albertson and Berman [2] raised a conjecture regarding planar graphs and initiated
the study of this topic:

Conjecture 1 (Albertson & Berman) FEuvery planar graph has an induced forest on
at least half of its vertices.

Notice that the conjecture implies that every planar graph of order n has an indepen-
dent set of size at least 7. This fact which is known to be true only as a consequence of
the Four Color Theorem. In 1987, Akiyama and Watanabe [1] posed a similar conjecture
on bipartite planar graphs:

Conjecture 2 (Akiyama & Watanabe) Every bipartite planar graph has an induced
forest with at least g of its vertices.

Note that Conjectures 1 and 2, if true, are sharp by K4 and ()3. Motivated by
Conjecture 2, Alon [3] proved the following result for sparse bipartite graphs:

Theorem 1 There exists an absolute positive constant b such that for every bipartite
graph G of order n and average degree at most d holds the inequality

1
a(G) = (5 + e ") p
Additionally, Alon proved that the exponential dependence on d cannot be replaced
by a polynomial one. In [4], Alon, Mubayi, and Thomas proved a result for triangle-free
graphs:

Theorem 2 Let G be a subcubic triangle-free graph of order n. Then a(G) > gn, and
the bound is sharp whenever n is divisible by 8.

Furthermore, Alon, Mubayi, and Thomas proved that for every triangle-free graph
G of order n and size m the forest number is at least n — 7. For planar triangle-free
graphs this bound implies that the forest number is at least 5 + 1 due to Euler’s formula.
Salavatipour [10] improved the bound for planar graphs and showed that every triangle-
free planar graph of order n has the forest number a(G) > [17224]. Using his approach,

32
we improve this bound and prove the following theorem:

Theorem 3 Let G be a planar graph on n vertices and m edges with girth g(G) > 4.

119n—24m—24
Then, a(G) > =58



From Theorem 3 the following corollary immediatelly follows.

Corollary 4 Let G be a planar graph of order n and girth g(G) > 4. Then, a(G) >

[71?2-2721

As mentioned above, the investigation of triangle-free graphs was motivated by Con-
jecture 2. However, one could also ask what is the forest number of graphs with girth at
least 5. We pose the following problem:

Conjecture 3 For every planar graph of order n and girth at least 5, the forest number
a(G) is at least s5n.

The conjecture, if true, is sharp by the dodecahedron, and it was inspired by the fact
that the dodecahedron has the minimal edge to vertex ratio among all graphs of girth at
least 5 and without vertices of degree 2. By this fact, it is natural to ask:

Question 1 [s the dodecahedron the only connected graph of girth at least five with forest
ratio - ?
10

Graphs of minimum degree at least 3 are important due to the following two simple
observations:

Proposition 5 For every connected graph distinct from a cycle, there exists a mazximum
induced forest which contains all vertices of degree 2.

Proof. Let F' be a maximum induced forest in a graph G' with as many vertices of degree
2 as possible. Suppose v is a vertex of degree 2 which is not in F'. Obviously, v is an
element of a cycle, since F'is maximum. Let e; and e5 be the edges incident with v. Let u;
be a vertex of degree at least 3 such that the shortest path p; between v and u; contains
e; and u; is the only vertex of degree at least 3 on p;. Note that such u; is unique and
it always exists, since G is not a cycle. Similarly, we define uy and the shortest path p,
which should contain e;. Notice that u; = us is possible, but then v belongs to a cycle
where u; (= us) is the only vertex of degree at least 3.

Now, if u; # us, they are both contained in F, otherwise v could be added to F'.
In case when u; = us, similarly uy is in /. We now replace u; by v in F' and obtain a
contradiction to the choice of F. 0

Before stating the next observation, we define graph G* obtained from the graph G
by contracting all 2-vertices. Notice that G* may have parallel edges and loops.

Proposition 6 For any graph G with ny vertices of degree 2 the following equality holds:

a(G) = a(G") + nsy.



Proof. First, we prove that a(G) < a(G*) 4 ny. Let V5 be the set of all vertices of degree
21in G, so |V4| = ny. By Proposition 5 there exists a maximum induced forest F' in G that
contains all vertices from V5. Obviously, F' — V5 is an induced (not necessarily maximum)
forest in G*.

Now, we prove that a(G) > a(G*) + ny. Let F* be the maximum induced forest in
G*. Obviously, F* is an induced forest in GG. Next, observe that by adding vertices from
V5 we do not introduce any cycles, thus F* U Vj; is also an induced forest in G. U

The above observations imply that if the dodecahedron is the graph with the smallest
forest ratio, it follows that when considering graphs of higher girth, the graphs with the
smallest forest ratio are dodecahedra with some edges subdivided. In particular, we can
easily state such graphs for girth 6, 7, and 8. Let M be the minimum set of edges in
dodecahedron D, such that each face is incident with an edge in M. Note that |M| = 6.
We define D;, to be a graph obtained by subdividing each edge in M by k-vertices. It is

easy to see that Dy has girth 5 + k for k € {1,2,3}, and y(Dy) = 170*;?;)’2

Figure 1: The dodecahedron with 14 square vertices that induce a forest, and the graph
Ds.

Observe that the maximum induced forest in Dy contains all the vertices of degree 2
and the vertices which form the induced forest of the dodecahedron.

In the paper, we mostly follow the notation from [10]. We call a vertex of degree k
a k-vertex, and a neighbor of degree k a k-neighbor. For a given cycle C' in G we define
int(C') to be the graph induced by the vertices lying strictly in the interior of C'. Similarly,
ext(C') is the graph induced by the vertices lying strictly in the exterior of C. A separating
cycle is a cycle C such that int(C) # () and ext(C) # 0.



2 Proof of Theorem 3

We prove Theorem 3 by contradiction. Suppose that the theorem is false and suppose G
is a minimal counter-example. It is easy to see that GG is connected. In what follows, we
determine some structure of G.

Lemma 7 Graph G does not contain a bridge, i.e. it is 2-edge-connected.

Proof. Assume G contains a bridge uv. Let GG, and G, be the connected components
that contain v and v, respectively, in G — uv. By the minimality of G, there is a set
of vertices R, in G, and R, in G,, respectively, that induces a forest of size at least

llg‘V(G“”_lgg‘E(G“)‘_M and 119|V(G”)‘_1§§|E(G“)|_24, respectively. Then R,U R, induces a forest

in G of size at least 119”_2[?(27;_1)_48 = ¢, which is a contradiction. O

Lemma 8 The mazimum degree of G is at most 4, i.e. A(G) < 4.

Proof. Let v be a >5-vertex of G. By minimality of G, there is an induced forest of size

at least 119("_1)_1224;(”1_5)_24 in G — v, what is the required size ¢ for an induced forest of

G. O

Lemma 9 The minimum degree of G is at least 3, i.e., §(G) > 3.

Proof. Suppose that the lemma is false and that G has 2-vertices. First, we claim that no
2-vertex is adjacent to a 4-vertezr. Let u be a 4-neighbor of a 2-vertex v. By minimality of
G, we have that G —{u, v} has an induced forest of size at least 119("_2)_12242(”1_5)_24 > p—1
induced by a set R’. Then R’ U {v} induces a forest of size at least ¢ in G.

We now claim that no 2-vertex has both, a 2-neighbor and a 3-neighbor. Let u be a
2-neighbor, and let w be a 3-neighbor of a 2-vertex v. Let R’ be a subset of vertices in
G — {u,v,w} that induces a forest of size 119("_3)_12242(7'1_5)_24 > ¢ — 2. Then R' U {u,v}
induces a forest of size at least ¢ in G.

By the above two claims, we obtain that G is either a cycle or it does not contain a
pair of adjacent 2-vertices. If G is a cycle, it has an induced tree of size n —1 > ¢. Hence,
we conclude that both neighbors of a 2-vertex in G are of degree 3.

Now, we claim that every 3-vertex in G has at most one 2-neighbor. Let us consider a

3-vertex w adjacent to 2-vertices u and v. Let R’ be a subset of vertices in G — {u, v, w}
119(n=3)-24(m=5)-24
128 =

that induces a forest of size at least — 2. By introducing vertices
u and v to R', we obtain an induced forest of size at least ¢ in G, which establishes the
claim.

Let v be one of the 2-vertices of G. By the third observation above, it has two 3-
neighbors, say v and w. We will consider few possibilities regarding the number of their
common neighbors, and each time we will obtain a contradiction. This will establish the
lemma.



e u and w have one common neighbor, namely v. Let G' = G + uw — v. Observe
that G’ has girth at least 4, since the only 2-path between v and w in G contains
v. By the minimality of G, there is a subset R’ that induces a forest of size at least
119("_1)_12242(”1_1)_24 > ¢ —1in G'. So, R'U{v} induces a forest of size at least ¢
in G. Notice that adding v to the forest does not introduce a cycle, since v and w
were adjacent in G', i.e. if u,w € R’ then an edge in the forest is subdivided, and if

at most one of u,w was in the forest, then v is a leaf or an isolated vertex.

e u and w have precisely two common neighbors. Let these two neighbors be v and z,
and let x be the third neighbor of u. By the last claim, we know that z and = have
degree at least 3. Since x and z are non-adjacent by the girth assumption, there

are at most m — 9 edges in G — {u,v,w, x, z}. By the induction, it has a subset R’
119(n—5)—24(m—9)

—24
158 > ¢ — 3, and so,

of vertices that induces a forest of size at least
R U {u,v,w} induces a forest of size at least ¢ in G.

e u and w have three common neighbors. Let these three vertices be v, z, and =x.
Notice again that z and x are not adjacent due to the girth assumption. If one of z
and x is a 4-vertex, similarly as above, we obtain an induced forest of size at least
119("_5)_1224;(”1_9)_24 > ¢ —3in G — {u,v,w,r,z}, and by adding vertices u, v, and
w to the forest, we obtain a forest of size at least ¢ in G. So, we can assume that z

and z are 3-vertices.

Now, let y be the neighbor of z distinct from v and w (note that  # y). If y is a
2-neighbor of z, then G is a graph on six vertices, and the vertices u, v, x, z induce a
forest of size 4 > ¢ = W = %2. However, if y is a >3-vertex, not necessarily
adjacent to z, then there is a subset of vertices R’ in G—{u, v, w, z,y, z} that induces
a forest of size at least 119("_6)_1222(”1_9)_24 > ¢ —4, and hence R'U{u, v, z, z} induces
a forest of size > ¢ in G. Finally, if y is a 2-vertex not adjacent to x, then there
are at most m — 9 edges in G’ = G — {u, v, w, x,y, z}, and G’ has a forest F” of size
¢ — 4. So, by adding the vertices u, v, x, z to F’ we infer an induced forest of size

at least ¢ in G. O

Lemma 10 Let v be a 3-vertex adjacent to a 4-vertex uw. Then the other two neighbors
of v have a common neighbor distinct from v.

Proof. Let w and z be the other two neighbors of v. Suppose that v is the only neighbor
of w and z. Consider the graph G' = G + wz — {u,v}. Note that G’ has girth at least 4.
By minimality of G, there is a subset of vertices R’ in G’ that induce a forest of size at
least 119(”_2)_122‘§(m_5)_24 > ¢ —11in G', thus R U {v} induces a forest of size at least ¢ in
G. O

In the following two lemmas the indices are considered modulo 4.

Lemma 11 G does not contain a 4-cycle C' = vgv vav3 which has at least two 4-vertices
and a S-vertex v; such that

(@) viro is a 3-vertez; or



(b) wito is connected to both int(C) and ext(C).
Proof. By minimality of G, there is a set R’ of size at least 119("_4)_1224ém_10)_24 >p—2
which induces a forest F’ in G — V(C). Note that v; has at most one neighbor in R’ and
Vi+o has either at most one neighbor in R’ (when deg(v;12) = 3) or it is connected to two
distinct trees in F” (when deg(v;42) = 4). It follows that R’ U {v;, v;42} induces a forest
of size at least ¢ in G. U

Lemma 12 There is no separating 4-cycle C = vyvyv9v3 which has
(a) at least two 3-vertices; or
(b) precisely one 3-vertex v; and precisely one neighbor of v;1o is in int(C').

Proof. Let C' = vgvivyv3 be a separating 4-cycle. Note that (b) follows from Lemma 11.
We split the proof of (a) in several cases regarding the number of 3-vertices of C.

Case 1: C has at least three 3-vertices. Let vy, vy, and vy be three such vertices.

Suppose first that vertices vy, v1, and v, are all connected to one of ext(C') and int(C'),
say int(C'). Then by 2-edge-connectivity of G and the fact that C' is a separating cycle,
we have that v is a 4-vertex connected to ext(C') with two edges. Let ug, uy, and us
be the neighbors of vy, vy, and vy from int(C'), respectively. By Lemma 10 we infer that
upuy, uguy € E(G), and from that, by the girth assumption, ugus ¢ E(G). Notice that ug
and us may coincide. In that case, the graph G’ = G — V(C) — up has an induced forest
F of size at least 119("_5)_12;5"7’_10)_24 > ¢ — 3, so by adding vy, vy, v, to I, we obtain an
induced forest of size at least ¢ in GG. Hence, we may assume ug # us.

If all three vertices ug, u1, us are of degree 3, then we add wug, u;, and vy to an induced
forest F' in G — {wvg, vy, ug, u1,us} of size at least 119("_5)_12§ém_10)_24 > o — 3. So the
induced forest in G is of size at least . On the other hand, if at least one of these three
neighbors is of degree 4, the induced forest in G is obtained from a forest in the graph
G —V(C)—{ug,us,us} of size at least 119("_7)_f§ém_14)_24 > —4 by introducing vertices
Vg, V1, Vo2, and u;.

Suppose now that not all of vy, vy, and vy are connected to ext(C) or to int(C).
Without loss of generality, two vertices from {vg, v1,v2} are connected to int(C') and the
third one is connected to ext(C'). By symmetry, we can assume vy is connected to int(C'),
and just one of vy, vy with ext(C). Let u be a neighbor of vy in int(C'). There is an
induced forest F’ of size at least 119("_5)_12§ém_10)_24 > ¢ — 3 in the graph G — V(C) — u.
By adding vy, v1, and ve to F’; we obtain an induced forest F' of size at least ¢ in G. Note
that F is acyclic, since the path vgvvs is connected to F’ by at most two edges which are

not incident with the same tree in F".

Case 2: C has exactly two 3-vertices. Note that by Lemma 11 we can assume that the
two 3-vertices of C' are consecutive, say vy and v;. Let ug be the neighbor of vy distinct
from v; and v3. By symmetry we can assume that ug € ext(C) for otherwise one can
change the plane embedding of G. By Lemma 10, the vertices v; and wug have another
common neighbor u;, beside the vertex vy.



Observe that by Lemma 11 and the fact that C is a separating cycle, one of the vertices
vy and w3 has two neighbors in int(C') and the other has two neighbors in ext(C'). By
symmetry we can assume vy has two neighbors in int(C').

Now we note that if vz is adjacent with u; then deg(u;) = 4 for otherwise uqvv9v3 is
a separating 4-cycle with three 3-vertices and we can proceed as in Case 1. It follows that
the set of vertices S = {uy,v1,v9,v3} is always incident with at least 10 edges. Hence in
the graph G’ = G — S there is a subset of vertices R’ which induces a forest of size at
least 119("_4)_f§ém_10)_24 > ¢ — 2. In graph G’ there is no path from vy to ug since in G
vertex vy has two neighbors in int(C'). It follows that R’ U {vg, v1} induces a forest of size

at least ¢ in G, even if both vy and ug are in R'. U

Lemma 13 The graph G has no 4-face with four 3-vertices.

Proof. Let C' = vgvvev3 be a 4-face in GG incident only with 3-vertices. If vy and vy have
a common neighbor u in G — V(C'), then we have a separating 4-cycle vov,vou with at
least three 3-vertices, which is a contradiction by Lemma 12. A similar argument applies
if v; and v3 have a common neighbor. Thus, each vertex of C' has a distinct neighbor in
G —V(C). Let ug, uy, uz, and uz be the third neighbors of vy, v1, vo, and vs, respectively.
As we argued, ug, ui, ug, and ug are pairwise distinct. Note also that by the planarity, at
most one of ugus and ujus is in G.

Suppose first that at least two consecutive edges, v;v;11 and v;1v;,9, of C are incident
to > 5-faces (indices are considered modulo 4). Note that in case, when u; and u; o are
adjacent, at least one of v;19v;13 and v;;3v; is incident to a > 5-face (and w41, u;3 are
non-adjacent as stated above), due to the girth assumption. Hence, there always exist
edges v;v;41, V41042 incident to > 5-faces such that u; and u;;o are non-adjacent. Say
vov1 and vivy are such edges. Now, consider the graph G’ obtained from G by removing
vertices of C', and adding a new vertex x. As ug and uy are non-adjacent, let x be adjacent
to ug, uy, and ug, i.e. G' = GU{x, zug, zus, zus} —V(C). The resulting graph G’ has girth
at least 4, since ug, u1, and us are pairwise non-adjacent by Lemma 12. By minimality of
G, there is a vertex set R’ that induces a forest of size at least 119(n—3)—122£;(m—5)—24 >p—2
in G'. If x ¢ R', then R" U {vy,v3} induces a forest of size at least ¢ in G. On the other
hand, if z € R/, we consider the vertex set R\ {z} U {vg, v1, v}, inducing a forest of size
at least ¢ in G.

Now, we can assume that C' has at most two edges incident to >5-faces, which are
non-consecutive on C. We will consider several cases regarding the number of 3-vertices
in U = {ug, uy, us, uz}. Note that any two vertices of U incident with the same >5-face
are non-adjacent due to Lemma 12.

Case 1: All the vertices in U are of degree 3 and C' is incident with at least three 4-faces.
In case when C' is incident with four 4-faces, G is the cube, so there is an induced forest
of size p = HEEZAEA — 5

Suppose now that C' is incident to precisely three 4-faces, and let uy and u; be the
two vertices incident with the only > 5-face. Since GG is not a cube, there exists a vertex
x adjacent to ug and distinct from vy, ui, uz. By the minimality, there is a subset of

vertices R in G — V(C) — {ug, u1, ug, us, z} which induces a forest in G’ of size at least



119("_9)_f§ém_14)_24 > ¢ — 6. Consider the set R = R' U {ug, u, ug, vo, v1,v3}. The tree

induced by {ug, u1, us, v, v1,v3} might be connected with R’ only by one edge that is
incident with u;. So, R induces a forest of size at least ¢ in G.

Case 2: U has one 4-vertex and C' is incident with at least three 4-faces. First, note
that C' cannot be incident with four 4-faces due to 2-edge-connectivity, so we may assume
that C' is incident to precisely one > 5-face f. Then U must have a 3-vertex x which is
incident to two of the three 4-faces, and which has a 4-neighbor y in U. We may assume
x = ug. Observe that uy is a 3-vertex. Also note that the two vertices of U incident to f
are not adjacent by Lemma 12. Now, by minimality of GG there is a set of vertices R’ in
G—V(C)—{uo, u1, us, us3} that induces a forest of size at least 119("_8)_f§ém_14)_24 > p—b.
The set R'U{ug, uz, vg, v1,v3} induces a forest of size at least ¢ in G. Obviously, no cycles
are introduced, since the vertices ug, vy, v1, v3 induce a tree which is not connected to R’

and uy has at most one neighbor in R'.

Case 3: U has at most one 4-vertex and C' is incident with precisely two 4-faces. Recall
that these two faces are not consecutive around C', so we may assume the 4-faces incident
with C are bounded by the cycles vouguivy and vousuzvs. Note that ugug, ujusz ¢ E(Q)
due to 2-edge-connectivity of G. By symmetry, we may also assume that the possible
4-vertex in U is uy. Consider the graph G — V(C') — {ug, u1, us, us} and its vertex set R’
that induces the forest F” of size at least 119("_8)_12§ém_14)_24 > ¢ — 5. The set of vertices

R’ U {ug, ug, vo, v1,v3} induces a forest of size at least ¢ in G.

Case 4: U has two 4-vertices. If C' is incident to four 4-faces, then there is a separating
4-cycle uguiususg, which is reducible by Lemma 12.

Suppose now C'is incident with precisely one >5-face f. We consider two possibilities.
First, let both 4-vertices of U be incident to f. We may assume that these two vertices
are ug and u;. Note that ug and u; are non-adjacent by Lemma 12. Again, there exists an
induced forest of size at least 119("_8)_12§ém_15)_24 >p—5in G—V(C) — {ug, ur, ua, ug}.
It is easy to see that inserting the vertices us, us, v, v1, and vz into the forest does not
introduce any cycles, so we obtain a forest of size at least ¢ in G. Thus we can assume
that at least one 3-vertex from U is incident to f, say ug. There exists a vertex set R’ that
induces a forest of size at least 119("_7)_12§ém_14)_24 > p—41in G —V(C) — {uy, us, ug}.
By inserting vertices ug, v1, v2, and v3 to R’ we obtain an induced forest of size at least
pin G.

Finally, suppose C' is incident with two (non-consecutive) 4-faces. Again, we may
assume that uy and u, are incident with the same > 5-face, and ug is a 3-vertex. Let
R’ be the vertex set that induces a forest in G' = G — V(C) — {ug,u1,us}. By the
minimality, this set is of size at least 119("_7)_f§ém_14)_24 > ¢ — 4 unless u; and ug are
adjacent. But in the exceptional case, ug and us are not adjacent by the planarity, so
we redefine G = G — V(C) — {ug, us,us} to obtain an induced forest of size at least
19(n=7)— 2;%’” 14)-24 > ¢ —4. Now, we add vertices ug, vg, v1, and vs (resp. uq, vg, v1, and
v9) to R'. We obtain an induced forest in G of size at least ¢.

Case 5: U has three 4-vertices. By Lemma 12, we infer that there are no four 4-faces
incident with C', since ugujusus is a separating 4-cycle with one 3-vertex and its opposite



vertex is adjacent with the internal and external component.

Suppose now that there are three 4-faces incident with C'. By symmetry, assume uy is
the 4-vertex not incident to a >5-face. Next, let R’ be the vertex set which induces the
forest of size at least 119("_7)_f§ém_14)_24 >p—4in G —V(C) — {ug, ur,us}. To obtain
an induced forest of size at least ¢ in G, just introduce the vertices ug, vy, v; and v3 to
R’. Again, the introduced claw could be connected to the forest only by ug, thus no cycle
is introduced.

Finally, suppose that C'is incident to two 4-faces. Here, let uy be the only 3-vertex in
U. It is easy to see that by defining R’ as in the case above and by adding the vertices

U, Vg, v1, and vz to R’ we obtain the induced forest of size at least ¢ in G.

Case 6: U has four 4-vertices. Note first that by planarity if ug and us are adjacent
then u; and w3 are non-adjacent. By symmetry, we may assume ugus ¢ E(G). Next, let
R’ be the vertex set that induces a forest of size at least 119(”_6)_12§§m_14)_24 > p—3in
G —V(C) —{ug,us}. It is easy to see that R U {vg, vy, vo} induces a forest of size at least

@ in G. UJ

Lemma 14 The graph G has no 4-face with precisely two 3-vertices.

Proof. Let the cycle C' = vyviv9v3 be a 4-face with precisely two 3-vertices. By Lemma 11
we obtain that the 3-vertices are adjacent, so we can assume vy and v; are of degree 3.
Let ug be the third neighbor of vy, and let u; be the third neighbor of v;. By Lemma 10,
we have that uy and u; are adjacent, moreover, Lemma 12 implies that the cycle vovuiug
bounds a face and that ugvs, ujvz ¢ E(G). Moreover, at least one of ug and wu; is a 4-
vertex, otherwise vouviuiug is a 4-face with four 3-vertices, which is reducible by Lemma 13.
By symmetry, we may assume that deg(ug) = 4.

If u; is cubic, there is a set of vertices R’ of size at least 119(”_6)_12§§m_14)_24 >p—3
in G —V(C) — {ug,ur}. The set R' U {uy,v1,v9} induces a forest of size at least ¢ in G.
It is easy to see that no cycle is introduced by this set.

Finally, assume u; is a 4-vertex. Note that if ug and v, have a common neighbor, then
by the planarity and the girth assumption, u; and v3 do not have a common neighbor. By
symmetry, we may assume that uy and v9 have no common neighbor (and recall that ug and
vy are non-adjacent). Then there is a subset of vertices R" in G+ugva—{uy, vg, v1, v3} which
induces a forest of size at least 119("_4)_f§ém_10)_24 > ¢ — 2. The vertex set R' U {vg, v1}
induces a forest of size at least ¢ in GG; observe that by adding these two vertices no cycle
is introduced, since if {ug, v} C R, we only subdivide an edge in the forest. O

Lemma 15 The graph G has no 5-face incident only with 3-vertices.

Proof. Assume C' = vgvivav3vy is a b-face incident only with 3-vertices. Let u; be the
third neighbor of v;, where i € {0,1,2,3,4}. By minimality of G, there is a subset of
vertices R’ in a graph G’ obtained by removing C' and adding the vertices x, vy and the
edges wug, xuy, Y, yus, and yus to G, i.e. G' = G =V (C) +{x,y, Tug, Tu1, 1Y, YUuo, yus},
that induces a forest F” of size 119("_3)_1222("1_5)_24 > ¢ — 2. Note that by adding these
edges we do not violate the girth assumption, since there is no 4-cycle with two 3-vertices

in G by Lemma 11.
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Now, we distinguish few possibilities regarding whether z and y are in R’. If none of
them is in R, then adding vy and v, to F’ does not introduce a cycle and the size of the
resulting forest is at least ¢ in G. If precisely one of x and y is in R, say x, we need to
add three vertices to F” to assure that its size is at least ¢, since x is not a vertex of G.
However, as x is in the forest, adding vy and v; to F’ — x does not introduce a cycle. The
third vertex, vs, is connected to the forest with at most one edge.

Finally, if x and y are both in R’, then we replace them with four vertices of C.
Namely, we add vertices vy, vy, vg, and v3. It is easy to see that no cycle is introduced,
so we obtain an induced forest of size at least ¢ in G. 0J

Corollary 16 The graph G is not cubic.

Proof. Suppose for a sake of contradiction that G is cubic. By the girth assumption and
Lemmas 13 and 15, we infer that faces in G have length at least 6. On the other hand,
Lemma 9 implies that the minimum degree in G is at least 3, so by Euler’s formula G
contains a face of length at most 5, a contradiction. ([l

Lemma 17 FEwvery 3-vertex of G has three 4-neighbors.

Proof. Suppose the claim is false. By Lemma 16, G is not cubic, thus it has at least
one 4-vertex. Therefore if there is any 3-vertex in G, there is also a 3-vertex v adjacent
to at least one 4-vertex u. Let w and z be the other two neighbors of v. By Lemma 10,
we know that w and z have a common neighbor z distinct from v. However, if w or z
is a 3-vertex, a separating 4-cycle or a 4-face with two 3-vertices is introduced, but such
configurations are reducible by Lemmas 12 and 14. 0

Lemma 18 The graph G does not contain 4-faces with precisely one 3-vertex.

Proof. Suppose for a sake of contradiction that the cycle C' = vgvv9vs is a 4-face in G
with exactly one 3-vertex vy. Let ug be the neighbor of vy distinct from vy and vs. By
Lemma 17, it follows that ug is a 4-vertex. Moreover, by Lemma 10, ug and v; have a
common neighbor x distint from vy, and also ug and v3 have a common neighbor y distint
from vy. Lemmas 12 and 14 imply that d(z) = d(y) = 4. Now we show in few steps that
the vertices of Fig. 2 are all pairwise distinct.

Y
us
U3 U2

Uy

Vo U1

Uug €T
Figure 2: The neighborhood of vertices vy, v, vy, and vs.
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First we claim that z # vy. Suppose contrary that x = vy. Let us be the neighbor
of vy which is distinct from vy, vs, and ug. Let C; be the separating 4-cycle vouzvaug. If
ug is not in the same component of G — V(C) as vy, then we have a separating 4-cycle
with one 3-vertex and its opposite vertex adjacent to two components. Such a cycle is
reducible by Lemma 12. On the other hand, if uy is in the same component, consider
instead the reducible separating 4-cycle vyvivaug, a contradiction. We similarly show that
Y # vs.

Now, we claim that x # y. Again, suppose contrary that z = y. Let x1 be the neighbor
of x distinct from ug, v{, and v3. Consider the 4-cycles C| = xugugvy, Cy = xuguovs, and
C5 = zv3vgv;. Note that among these three cycles we can always choose a cycle C; such
that x; and the neighbor of z not incident to C; are in different parts int(C;) and ext(C;)
(see Fig. 3). Hence, C; is a separating cycle. Since Cy, Cs, and Cj all contain a 3-vertex
vo, C; is reducible by Lemma 12(b), a contradiction. This establishes the claim.

U3 V2 Co VU3 V2 & U3 b2
Vo U1 o vy Yo v
e a o
ug UQ Ug
x =
r=1Yy 1 =y x Y

Figure 3: We can always find such a 4-cycle C; that z; and the other neighbor of x not
in incident with C; are in different parts int(C;) and ext(C;).

Consider now the neighbor z of ug distinct from vy, x, and y. We claim that z # vs,
for otherwise we consider the separating 4-cycles ugvgvzve and ugvgvive. At least one of
them satisfies the assumptions of Lemma 12(b), a contradiction.

Next, let u; be the neighbor of v; distinct from x, vy, and vy. Also, let uz be the
neighbor of vs distinct from ¥, vy, and v. We claim that u; # uz. Suppose contrary that
uy; = u3. Note that zu; and yu, are not the edges in GG, due to the girth assumption. Let

R’ be the subset of vertices that induce the forest in G — V(C') — {ug, uy, x,y} of size at
119(n—8)—24(m—19)—2

least o8 1 > p—4. Now, the set R' U {ug, vy, v1,v3} induces a forest of size
at least ¢ in G. This establishes the claim that u; and ug are distinct.

We also claim that x # ug. Suppose contrary that z = wuz. By planarity, y = u;.
Let G' = G — {vg, v1, v3, up, z,y}. There exists a set of vertices R in G’ that induces the
forest of size at least 119("_6)_f§ém_15)_24 > ¢ — 3. Inserting the vertices vg, v3, and ug
in R’ infers a forest of size at least ¢ in G. Observe that no cycle is introduced, since z
and vy are in different parts of the plane regarding the separating cycle vov;zv3. We show
similarly that y # wuy.

As we established that all vertices from Fig. 2 are distinct, we continue by considering
the adjacency of the vertices z, uq, and ug. If neither of them are adjacent, then there exists
a set of vertices R’ of size at least 119("_6)_f§ém_15)_24 > p—3in GU{w,wz,wuy, wug} —
{vo, v1, V2, V3, up, T,y }, where w is a new vertex. If w ¢ R’, then the vertices vy, v3, and
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ug are added to R’ to induce a forest I’ of size at least ¢. On the other hand, if w € R/,
then such a forest is induced by adding vy, vy, v3, and ug to F'. Obviously in both cases
no cycle is introduced.

By the above paragraph, we may assume that some two vertices from {z,uy,us} are
adjacent, however, there exist a pair which is not, due to girth assumption. Observe that
without loss of generality, we may assume that zusz ¢ F(G) and ujuz € E(G).

Next, we claim that both of the vertices u; and ug are of degree 4. Suppose for
a contradiction that u; is a 3-vertex. Then, by Lemma 17, ug is a 4-vertex, and by
Lemma 10, ug is adjacent to x. So, consider the separating 5-cycle g = uqviv9v3us and
an induced forest F' of G — V(g) — y. It is of size at least 119("_6)_12;1ém_16)_24 > ¢ —3.
Observe that after adding vertices vg, v3, and u; to F’ no cycles are introduced, thus we
obtain an induced forest of size at least ¢ in GG, a contradiction.

Finally, consider two subcases regarding the degree of z:

e 2 is a4-vertex. In this case, by planarity at most one of the edges u,y, and uzx exists.
By symmetry, suppose that uzx does not. Then there is a set of vertices R’ in G —
V(C) — {uo, us, z, x,y} which induces a forest of size at least 119(”_9)_12§§gm_24)_24 >

@ — 4. The vertex set R’ U {ug, vo, v1,v3} induces a forest of size at least ¢ in G.

e 2 is a 3-vertex. Let s and t be the neighbors of z distinct from ug. By Lemma 10 we
infer that s and ¢ have a common neighbor p. In addition, by Lemma 10, we may
assume that ty, sz € E(G). Note that t # uz and s # u; by the girth assumption.
Moreover, if t = wuy, then either p = y or p = u3. Both cases are violating the
planarity, thus ¢ # u;. Similarly we show that s # us.

Let ¢ be the neighbor of x distinct from vy, ug, and s, and similarly let r be the
neighbor of y distinct from vs, ug, and t. Note that ¢ = r is possible only when ¢ is
a 4-vertex. Otherwise, if g is a 3-vertex, we obtain a separating 4-cycle upxqy which
is reducible by Lemma 12(b).

Next, by the planarity at least one of the edges ¢t and rs does not exists, say

gt ¢ E(G). Then, there exists a set R in G — {vg, vy, vs,uo, z,, 2, S, t,q} which
119(n—10)—24(m—24)—24

induces a forest F’ of size at least 58 > ¢ — 5. By introducing
vertices ug, v, x, y, and z to R/, we obtain a set of vertices which induces a forest
of size at least ¢ in G. It is easy to see that the new vertices do not introduce any
cycles, since only the edge yug could be incident with F’.

This analysis establishes the lemma. 0
From Lemmas 13, 14, and 16-18 immediately follows the corollary below:

Corollary 19 FEvery 4-face (resp. 5-face) of G is incident with four (resp. three) 4-
vertices.

Finally we are ready to establish the theorem with the following short application of
Euler’s formula. Let ny be the number of vertices of degree d and let f; be the number of
faces of length [ in G. By Corollary 19 we infer

dng > 4fs + 3 fs.
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Using this inequality and Euler’s Formula we obtain

—12=> "(2d—6)ng+ Y (1 —6)f; > 2n4 — 2fs — f5 > 0.

d>3 1>4

Hence, we obtain a contradiction which shows that the minimal counterexample does not
exist and establish Theorem 3.
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