An improved bound on the largest induced forests for triangle-free planar graphs *

Lukasz Kowalik ${ }^{1} \dagger$ Borut Lužar ${ }^{2}$, Riste Škrekovski ${ }^{3 \ddagger}$

June 6, 2009
${ }^{1}$ Institute of Informatics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland kowalik@mimuw.edu.pl
${ }^{2}$ Institute of Mathematics, Physics, and Mechanics
Jadranska 19, 1111 Ljubljana, Slovenia
borut.luzar@gmail.com
${ }^{3}$ Department of Mathematics, University of Ljubljana
Jadranska 21, 1111 Ljubljana, Slovenia

Abstract

We proved that every planar triangle-free graph with n vertices has a subset of vertices that induces a forest of size at least $(71 n+72) / 128$. This improves the earlier work of Salavatipour [10]. We also pose some questions regarding planar graphs of higher girth.

1 Introduction

The maximum size of acyclic induced subgraphs is studied in several different ways. If only connected subgraphs are considered, the problem is to find the order of maximum induced tree of a graph G, denoted by $t(G)$. The problem was initiated by Erdős, Saks, and Sós in 1986 [5]. Some latest results are due to Matoušek and Šámal [8], and also due to Fox, Loh, and Sudakov [6].

On the other hand, if the maximum induced subgraph is not necessarily connected, the task is to find the maximum induced forest. There are two equivalent approaches to obtain the maximum forest of a graph. The former is determining the decycling number $\nabla(G)$ of a graph G, which is the least number of vertices whose deletion results in an induced forest. In [7] it was shown that determining this invariant is NP-hard even for

[^0]planar graphs. An interested reader can find more results on the decycling number in a survey of Punnim [9].

The latter approach is finding a maximum set S of vertices of graph G such that the graph $G[S]$ induced on S is a forest. The size of such a set S is denoted by $a(G)$ and it is referred to as a forest number. Note that $a(G)+\nabla(G)=|V(G)|$. We call the ratio between the forest number and the order of a graph a forest ratio and denote it by $\gamma(G)$. Large induced forests in graphs recently attracted attention in various graph classes. In 1979, Albertson and Berman [2] raised a conjecture regarding planar graphs and initiated the study of this topic:

Conjecture 1 (Albertson \& Berman) Every planar graph has an induced forest on at least half of its vertices.

Notice that the conjecture implies that every planar graph of order n has an independent set of size at least $\frac{n}{4}$. This fact which is known to be true only as a consequence of the Four Color Theorem. In 1987, Akiyama and Watanabe [1] posed a similar conjecture on bipartite planar graphs:

Conjecture 2 (Akiyama \& Watanabe) Every bipartite planar graph has an induced forest with at least $\frac{5}{8}$ of its vertices.

Note that Conjectures 1 and 2, if true, are sharp by K_{4} and Q_{3}. Motivated by Conjecture 2, Alon [3] proved the following result for sparse bipartite graphs:

Theorem 1 There exists an absolute positive constant b such that for every bipartite graph G of order n and average degree at most d holds the inequality

$$
a(G) \geq\left(\frac{1}{2}+e^{-b d^{2}}\right) n
$$

Additionally, Alon proved that the exponential dependence on d cannot be replaced by a polynomial one. In [4], Alon, Mubayi, and Thomas proved a result for triangle-free graphs:

Theorem 2 Let G be a subcubic triangle-free graph of order n. Then $a(G) \geq \frac{5}{8} n$, and the bound is sharp whenever n is divisible by 8.

Furthermore, Alon, Mubayi, and Thomas proved that for every triangle-free graph G of order n and size m the forest number is at least $n-\frac{m}{4}$. For planar triangle-free graphs this bound implies that the forest number is at least $\frac{n}{2}+1$ due to Euler's formula. Salavatipour [10] improved the bound for planar graphs and showed that every trianglefree planar graph of order n has the forest number $a(G) \geq\left\lceil\frac{17 n+24}{32}\right\rceil$. Using his approach, we improve this bound and prove the following theorem:

Theorem 3 Let G be a planar graph on n vertices and m edges with girth $g(G) \geq 4$. Then, $a(G) \geq \frac{119 n-24 m-24}{128}$.

From Theorem 3 the following corollary immediatelly follows.
Corollary 4 Let G be a planar graph of order n and girth $g(G) \geq 4$. Then, $a(G) \geq$ $\left\lceil\frac{71 n+72}{128}\right\rceil$.

As mentioned above, the investigation of triangle-free graphs was motivated by Conjecture 2. However, one could also ask what is the forest number of graphs with girth at least 5 . We pose the following problem:

Conjecture 3 For every planar graph of order n and girth at least 5, the forest number $a(G)$ is at least $\frac{7}{10} n$.

The conjecture, if true, is sharp by the dodecahedron, and it was inspired by the fact that the dodecahedron has the minimal edge to vertex ratio among all graphs of girth at least 5 and without vertices of degree 2. By this fact, it is natural to ask:

Question 1 Is the dodecahedron the only connected graph of girth at least five with forest ratio $\frac{7}{10}$?

Graphs of minimum degree at least 3 are important due to the following two simple observations:

Proposition 5 For every connected graph distinct from a cycle, there exists a maximum induced forest which contains all vertices of degree 2 .

Proof. Let F be a maximum induced forest in a graph G with as many vertices of degree 2 as possible. Suppose v is a vertex of degree 2 which is not in F. Obviously, v is an element of a cycle, since F is maximum. Let e_{1} and e_{2} be the edges incident with v. Let u_{1} be a vertex of degree at least 3 such that the shortest path p_{1} between v and u_{1} contains e_{1} and u_{1} is the only vertex of degree at least 3 on p_{1}. Note that such u_{1} is unique and it always exists, since G is not a cycle. Similarly, we define u_{2} and the shortest path p_{2} which should contain e_{2}. Notice that $u_{1}=u_{2}$ is possible, but then v belongs to a cycle where $u_{1}\left(=u_{2}\right)$ is the only vertex of degree at least 3 .

Now, if $u_{1} \neq u_{2}$, they are both contained in F, otherwise v could be added to F. In case when $u_{1}=u_{2}$, similarly u_{1} is in F. We now replace u_{1} by v in F and obtain a contradiction to the choice of F.

Before stating the next observation, we define graph G^{*} obtained from the graph G by contracting all 2 -vertices. Notice that G^{*} may have parallel edges and loops.

Proposition 6 For any graph G with n_{2} vertices of degree 2 the following equality holds:

$$
a(G)=a\left(G^{*}\right)+n_{2} .
$$

Proof. First, we prove that $a(G) \leq a\left(G^{*}\right)+n_{2}$. Let V_{2} be the set of all vertices of degree 2 in G, so $\left|V_{2}\right|=n_{2}$. By Proposition 5 there exists a maximum induced forest F in G that contains all vertices from V_{2}. Obviously, $F-V_{2}$ is an induced (not necessarily maximum) forest in G^{*}.

Now, we prove that $a(G) \geq a\left(G^{*}\right)+n_{2}$. Let F^{*} be the maximum induced forest in G^{*}. Obviously, F^{*} is an induced forest in G. Next, observe that by adding vertices from V_{2} we do not introduce any cycles, thus $F^{*} \cup V_{2}$ is also an induced forest in G.

The above observations imply that if the dodecahedron is the graph with the smallest forest ratio, it follows that when considering graphs of higher girth, the graphs with the smallest forest ratio are dodecahedra with some edges subdivided. In particular, we can easily state such graphs for girth 6,7 , and 8 . Let M be the minimum set of edges in dodecahedron D, such that each face is incident with an edge in M. Note that $|M|=6$. We define D_{k} to be a graph obtained by subdividing each edge in M by k-vertices. It is easy to see that D_{k} has girth $5+k$ for $k \in\{1,2,3\}$, and $\gamma\left(D_{k}\right)=\frac{7+3 k}{10+3 k}$.

Figure 1: The dodecahedron with 14 square vertices that induce a forest, and the graph D_{2}.

Observe that the maximum induced forest in D_{k} contains all the vertices of degree 2 and the vertices which form the induced forest of the dodecahedron.

In the paper, we mostly follow the notation from [10]. We call a vertex of degree k a k-vertex, and a neighbor of degree k a k-neighbor. For a given cycle C in G we define $\operatorname{int}(C)$ to be the graph induced by the vertices lying strictly in the interior of C. Similarly, $\operatorname{ext}(C)$ is the graph induced by the vertices lying strictly in the exterior of C. A separating cycle is a cycle C such that $\operatorname{int}(C) \neq \emptyset$ and $\operatorname{ext}(C) \neq \emptyset$.

2 Proof of Theorem 3

We prove Theorem 3 by contradiction. Suppose that the theorem is false and suppose G is a minimal counter-example. It is easy to see that G is connected. In what follows, we determine some structure of G.

Lemma 7 Graph G does not contain a bridge, i.e. it is 2-edge-connected.
Proof. Assume G contains a bridge $u v$. Let G_{u} and G_{v} be the connected components that contain u and v, respectively, in $G-u v$. By the minimality of G, there is a set of vertices R_{u} in G_{u} and R_{v} in G_{v}, respectively, that induces a forest of size at least $\frac{119\left|V\left(G_{u}\right)\right|-24\left|E\left(G_{u}\right)\right|-24}{128}$ and $\frac{119\left|V\left(G_{v}\right)\right|-24\left|E\left(G_{v}\right)\right|-24}{128}$, respectively. Then $R_{u} \cup R_{v}$ induces a forest in G of size at least $\frac{119 n-24(m-1)-48}{128}=\varphi$, which is a contradiction.

Lemma 8 The maximum degree of G is at most 4, i.e. $\Delta(G) \leq 4$.
Proof. Let v be a ≥ 5-vertex of G. By minimality of G, there is an induced forest of size at least $\frac{119(n-1)-24(\overline{m-5})-24}{128}$ in $G-v$, what is the required size φ for an induced forest of G.

Lemma 9 The minimum degree of G is at least 3, i.e., $\delta(G) \geq 3$.
Proof. Suppose that the lemma is false and that G has 2 -vertices. First, we claim that no 2 -vertex is adjacent to a 4 -vertex. Let u be a 4 -neighbor of a 2 -vertex v. By minimality of G, we have that $G-\{u, v\}$ has an induced forest of size at least $\frac{119(n-2)-24(m-5)-24}{128} \geq \varphi-1$ induced by a set R^{\prime}. Then $R^{\prime} \cup\{v\}$ induces a forest of size at least φ in G.

We now claim that no 2-vertex has both, a 2 -neighbor and a 3 -neighbor. Let u be a 2-neighbor, and let w be a 3 -neighbor of a 2 -vertex v. Let R^{\prime} be a subset of vertices in $G-\{u, v, w\}$ that induces a forest of size $\frac{119(n-3)-24(m-5)-24}{128} \geq \varphi-2$. Then $R^{\prime} \cup\{u, v\}$ induces a forest of size at least φ in G.

By the above two claims, we obtain that G is either a cycle or it does not contain a pair of adjacent 2 -vertices. If G is a cycle, it has an induced tree of size $n-1 \geq \varphi$. Hence, we conclude that both neighbors of a 2 -vertex in G are of degree 3 .

Now, we claim that every 3-vertex in G has at most one 2-neighbor. Let us consider a 3 -vertex w adjacent to 2 -vertices u and v. Let R^{\prime} be a subset of vertices in $G-\{u, v, w\}$ that induces a forest of size at least $\frac{119(n-3)-24(m-5)-24}{128} \geq \varphi-2$. By introducing vertices u and v to R^{\prime}, we obtain an induced forest of size at least φ in G, which establishes the claim.

Let v be one of the 2 -vertices of G. By the third observation above, it has two 3neighbors, say u and w. We will consider few possibilities regarding the number of their common neighbors, and each time we will obtain a contradiction. This will establish the lemma.

- u and w have one common neighbor, namely v. Let $G^{\prime}=G+u w-v$. Observe that G^{\prime} has girth at least 4, since the only 2-path between u and w in G contains v. By the minimality of G, there is a subset R^{\prime} that induces a forest of size at least $\frac{119(n-1)-24(m-1)-24}{128} \geq \varphi-1$ in G^{\prime}. So, $R^{\prime} \cup\{v\}$ induces a forest of size at least φ in G. Notice that adding v to the forest does not introduce a cycle, since u and w were adjacent in G^{\prime}, i.e. if $u, w \in R^{\prime}$ then an edge in the forest is subdivided, and if at most one of u, w was in the forest, then v is a leaf or an isolated vertex.
- u and w have precisely two common neighbors. Let these two neighbors be v and z, and let x be the third neighbor of u. By the last claim, we know that z and x have degree at least 3 . Since x and z are non-adjacent by the girth assumption, there are at most $m-9$ edges in $G-\{u, v, w, x, z\}$. By the induction, it has a subset R^{\prime} of vertices that induces a forest of size at least $\frac{119(n-5)-24(m-9)-24}{128} \geq \varphi-3$, and so, $R^{\prime} \cup\{u, v, w\}$ induces a forest of size at least φ in G.
- u and w have three common neighbors. Let these three vertices be v, z, and x. Notice again that z and x are not adjacent due to the girth assumption. If one of z and x is a 4 -vertex, similarly as above, we obtain an induced forest of size at least $\frac{119(n-5)-24(m-9)-24}{128} \geq \varphi-3$ in $G-\{u, v, w, x, z\}$, and by adding vertices u, v, and w to the forest, we obtain a forest of size at least φ in G. So, we can assume that z and x are 3 -vertices.
Now, let y be the neighbor of z distinct from u and w (note that $x \neq y$). If y is a 2 -neighbor of x, then G is a graph on six vertices, and the vertices u, v, x, z induce a forest of size $4>\varphi=\frac{119 \cdot 6-24 \cdot 8-24}{128}=\frac{498}{128}$. However, if y is a ≥ 3-vertex, not necessarily adjacent to x, then there is a subset of vertices R^{\prime} in $G-\{u, v, w, x, y, z\}$ that induces a forest of size at least $\frac{119(n-6)-24(m-9)-24}{128} \geq \varphi-4$, and hence $R^{\prime} \cup\{u, v, x, z\}$ induces a forest of size $\geq \varphi$ in G. Finally, if y is a 2 -vertex not adjacent to x, then there are at most $m-9$ edges in $G^{\prime}=G-\{u, v, w, x, y, z\}$, and G^{\prime} has a forest F^{\prime} of size $\varphi-4$. So, by adding the vertices u, v, x, z to F^{\prime} we infer an induced forest of size at least φ in G.

Lemma 10 Let v be a 3-vertex adjacent to a 4-vertex u. Then the other two neighbors of v have a common neighbor distinct from v.

Proof. Let w and z be the other two neighbors of v. Suppose that v is the only neighbor of w and z. Consider the graph $G^{\prime}=G+w z-\{u, v\}$. Note that G^{\prime} has girth at least 4 . By minimality of G, there is a subset of vertices R^{\prime} in G^{\prime} that induce a forest of size at least $\frac{119(n-2)-24(m-5)-24}{128} \geq \varphi-1$ in G^{\prime}, thus $R^{\prime} \cup\{v\}$ induces a forest of size at least φ in G.

In the following two lemmas the indices are considered modulo 4 .
Lemma $11 G$ does not contain a 4-cycle $C=v_{0} v_{1} v_{2} v_{3}$ which has at least two 4-vertices and a 3-vertex v_{i} such that
(a) v_{i+2} is a 3-vertex; or
(b) v_{i+2} is connected to both $\operatorname{int}(C)$ and $\operatorname{ext}(C)$.

Proof. By minimality of G, there is a set R^{\prime} of size at least $\frac{119(n-4)-24(m-10)-24}{128} \geq \varphi-2$ which induces a forest F^{\prime} in $G-V(C)$. Note that v_{i} has at most one neighbor in R^{\prime} and v_{i+2} has either at most one neighbor in R^{\prime} (when $\operatorname{deg}\left(v_{i+2}\right)=3$) or it is connected to two distinct trees in $F^{\prime}\left(\right.$ when $\left.\operatorname{deg}\left(v_{i+2}\right)=4\right)$. It follows that $R^{\prime} \cup\left\{v_{i}, v_{i+2}\right\}$ induces a forest of size at least φ in G.

Lemma 12 There is no separating 4-cycle $C=v_{0} v_{1} v_{2} v_{3}$ which has
(a) at least two 3-vertices; or
(b) precisely one 3-vertex v_{i} and precisely one neighbor of v_{i+2} is in $\operatorname{int}(C)$.

Proof. Let $C=v_{0} v_{1} v_{2} v_{3}$ be a separating 4 -cycle. Note that (b) follows from Lemma 11. We split the proof of (a) in several cases regarding the number of 3 -vertices of C.
Case 1: C has at least three 3 -vertices. Let v_{0}, v_{1}, and v_{2} be three such vertices.
Suppose first that vertices v_{0}, v_{1}, and v_{2} are all connected to one of $\operatorname{ext}(C)$ and $\operatorname{int}(C)$, say $\operatorname{int}(C)$. Then by 2 -edge-connectivity of G and the fact that C is a separating cycle, we have that v_{3} is a 4 -vertex connected to $\operatorname{ext}(C)$ with two edges. Let u_{0}, u_{1}, and u_{2} be the neighbors of v_{0}, v_{1}, and v_{2} from $\operatorname{int}(C)$, respectively. By Lemma 10 we infer that $u_{0} u_{1}, u_{2} u_{1} \in E(G)$, and from that, by the girth assumption, $u_{0} u_{2} \notin E(G)$. Notice that u_{0} and u_{2} may coincide. In that case, the graph $G^{\prime}=G-V(C)-u_{0}$ has an induced forest F of size at least $\frac{119(n-5)-24(m-10)-24}{128} \geq \varphi-3$, so by adding v_{0}, v_{1}, v_{2} to F, we obtain an induced forest of size at least φ in G. Hence, we may assume $u_{0} \neq u_{2}$.

If all three vertices u_{0}, u_{1}, u_{2} are of degree 3 , then we add u_{0}, u_{1}, and v_{0} to an induced forest F^{\prime} in $G-\left\{v_{0}, v_{1}, u_{0}, u_{1}, u_{2}\right\}$ of size at least $\frac{119(n-5)-24(m-10)-24}{128} \geq \varphi-3$. So the induced forest in G is of size at least φ. On the other hand, if at least one of these three neighbors is of degree 4, the induced forest in G is obtained from a forest in the graph $G-V(C)-\left\{u_{0}, u_{1}, u_{2}\right\}$ of size at least $\frac{119(n-7)-24(m-14)-24}{128} \geq \varphi-4$ by introducing vertices v_{0}, v_{1}, v_{2}, and u_{1}.

Suppose now that not all of v_{0}, v_{1}, and v_{2} are connected to $\operatorname{ext}(C)$ or to $\operatorname{int}(C)$. Without loss of generality, two vertices from $\left\{v_{0}, v_{1}, v_{2}\right\}$ are connected to int (C) and the third one is connected to $\operatorname{ext}(C)$. By symmetry, we can assume v_{0} is connected to int (C), and just one of v_{1}, v_{2} with $\operatorname{ext}(C)$. Let u be a neighbor of $v_{0} \operatorname{in} \operatorname{int}(C)$. There is an induced forest F^{\prime} of size at least $\frac{119(n-5)-24(m-10)-24}{128} \geq \varphi-3$ in the graph $G-V(C)-u$. By adding v_{0}, v_{1}, and v_{2} to F^{\prime}, we obtain an induced forest F of size at least φ in G. Note that F is acyclic, since the path $v_{0} v_{1} v_{2}$ is connected to F^{\prime} by at most two edges which are not incident with the same tree in F^{\prime}.

Case 2: C has exactly two 3-vertices. Note that by Lemma 11 we can assume that the two 3 -vertices of C are consecutive, say v_{0} and v_{1}. Let u_{0} be the neighbor of v_{0} distinct from v_{1} and v_{3}. By symmetry we can assume that $u_{0} \in \operatorname{ext}(C)$ for otherwise one can change the plane embedding of G. By Lemma 10 , the vertices v_{1} and u_{0} have another common neighbor u_{1}, beside the vertex v_{0}.

Observe that by Lemma 11 and the fact that C is a separating cycle, one of the vertices v_{2} and v_{3} has two neighbors in $\operatorname{int}(C)$ and the other has two neighbors in $\operatorname{ext}(C)$. By symmetry we can assume v_{2} has two neighbors in int (C).

Now we note that if v_{3} is adjacent with u_{1} then $\operatorname{deg}\left(u_{1}\right)=4$ for otherwise $u_{1} v_{1} v_{0} v_{3}$ is a separating 4 -cycle with three 3 -vertices and we can proceed as in Case 1. It follows that the set of vertices $S=\left\{u_{1}, v_{1}, v_{0}, v_{3}\right\}$ is always incident with at least 10 edges. Hence in the graph $G^{\prime}=G-S$ there is a subset of vertices R^{\prime} which induces a forest of size at least $\frac{119(n-4)-24(m-10)-24}{128} \geq \varphi-2$. In graph G^{\prime} there is no path from v_{2} to u_{0} since in G vertex v_{2} has two neighbors in $\operatorname{int}(C)$. It follows that $R^{\prime} \cup\left\{v_{0}, v_{1}\right\}$ induces a forest of size at least φ in G, even if both v_{2} and u_{0} are in R^{\prime}.

Lemma 13 The graph G has no 4 -face with four 3-vertices.
Proof. Let $C=v_{0} v_{1} v_{2} v_{3}$ be a 4 -face in G incident only with 3 -vertices. If v_{0} and v_{2} have a common neighbor u in $G-V(C)$, then we have a separating 4 -cycle $v_{0} v_{1} v_{2} u$ with at least three 3 -vertices, which is a contradiction by Lemma 12. A similar argument applies if v_{1} and v_{3} have a common neighbor. Thus, each vertex of C has a distinct neighbor in $G-V(C)$. Let u_{0}, u_{1}, u_{2}, and u_{3} be the third neighbors of v_{0}, v_{1}, v_{2}, and v_{3}, respectively. As we argued, u_{0}, u_{1}, u_{2}, and u_{3} are pairwise distinct. Note also that by the planarity, at most one of $u_{0} u_{2}$ and $u_{1} u_{3}$ is in G.

Suppose first that at least two consecutive edges, $v_{i} v_{i+1}$ and $v_{i+1} v_{i+2}$, of C are incident to ≥ 5-faces (indices are considered modulo 4). Note that in case, when u_{i} and u_{i+2} are adjacent, at least one of $v_{i+2} v_{i+3}$ and $v_{i+3} v_{i}$ is incident to a ≥ 5-face (and u_{i+1}, u_{i+3} are non-adjacent as stated above), due to the girth assumption. Hence, there always exist edges $v_{j} v_{j+1}, v_{j+1} v_{j+2}$ incident to ≥ 5-faces such that u_{j} and u_{j+2} are non-adjacent. Say $v_{0} v_{1}$ and $v_{1} v_{2}$ are such edges. Now, consider the graph G^{\prime} obtained from G by removing vertices of C, and adding a new vertex x. As u_{0} and u_{2} are non-adjacent, let x be adjacent to u_{0}, u_{1}, and u_{2}, i.e. $G^{\prime}=G \cup\left\{x, x u_{0}, x u_{1}, x u_{2}\right\}-V(C)$. The resulting graph G^{\prime} has girth at least 4 , since u_{0}, u_{1}, and u_{2} are pairwise non-adjacent by Lemma 12 . By minimality of G, there is a vertex set R^{\prime} that induces a forest of size at least $\frac{119(n-3)-24(m-5)-24}{128} \geq \varphi-2$ in G^{\prime}. If $x \notin R^{\prime}$, then $R^{\prime} \cup\left\{v_{1}, v_{3}\right\}$ induces a forest of size at least φ in G. On the other hand, if $x \in R^{\prime}$, we consider the vertex set $R^{\prime} \backslash\{x\} \cup\left\{v_{0}, v_{1}, v_{2}\right\}$, inducing a forest of size at least φ in G.

Now, we can assume that C has at most two edges incident to ≥ 5-faces, which are non-consecutive on C. We will consider several cases regarding the number of 3 -vertices in $U=\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\}$. Note that any two vertices of U incident with the same ≥ 5-face are non-adjacent due to Lemma 12.

Case 1: All the vertices in U are of degree 3 and C is incident with at least three 4-faces. In case when C is incident with four 4 -faces, G is the cube, so there is an induced forest of size $\varphi=\frac{119 \cdot 8-24 \cdot 12-24}{128}=5$.

Suppose now that C is incident to precisely three 4 -faces, and let u_{0} and u_{1} be the two vertices incident with the only ≥ 5-face. Since G is not a cube, there exists a vertex x adjacent to u_{0} and distinct from v_{0}, u_{1}, u_{3}. By the minimality, there is a subset of vertices R^{\prime} in $G-V(C)-\left\{u_{0}, u_{1}, u_{2}, u_{3}, x\right\}$ which induces a forest in G^{\prime} of size at least
$\frac{119(n-9)-24(m-14)-24}{128} \geq \varphi-6$. Consider the set $R=R^{\prime} \cup\left\{u_{0}, u_{1}, u_{2}, v_{0}, v_{1}, v_{3}\right\}$. The tree induced by $\left\{u_{0}, u_{1}, u_{2}, v_{0}, v_{1}, v_{3}\right\}$ might be connected with R^{\prime} only by one edge that is incident with u_{1}. So, R induces a forest of size at least φ in G.

Case 2: U has one 4-vertex and C is incident with at least three 4 -faces. First, note that C cannot be incident with four 4 -faces due to 2 -edge-connectivity, so we may assume that C is incident to precisely one ≥ 5-face f. Then U must have a 3 -vertex x which is incident to two of the three 4 -faces, and which has a 4 -neighbor y in U. We may assume $x=u_{0}$. Observe that u_{2} is a 3 -vertex. Also note that the two vertices of U incident to f are not adjacent by Lemma 12. Now, by minimality of G there is a set of vertices R^{\prime} in $G-V(C)-\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\}$ that induces a forest of size at least $\frac{119(n-8)-24(m-14)-24}{128} \geq \varphi-5$. The set $R^{\prime} \cup\left\{u_{0}, u_{2}, v_{0}, v_{1}, v_{3}\right\}$ induces a forest of size at least φ in G. Obviously, no cycles are introduced, since the vertices $u_{0}, v_{0}, v_{1}, v_{3}$ induce a tree which is not connected to R^{\prime} and u_{2} has at most one neighbor in R^{\prime}.

Case 3: U has at most one 4-vertex and C is incident with precisely two 4-faces. Recall that these two faces are not consecutive around C, so we may assume the 4 -faces incident with C are bounded by the cycles $v_{0} u_{0} u_{1} v_{1}$ and $v_{2} u_{2} u_{3} v_{3}$. Note that $u_{0} u_{2}, u_{1} u_{3} \notin E(G)$ due to 2-edge-connectivity of G. By symmetry, we may also assume that the possible 4 -vertex in U is u_{1}. Consider the graph $G-V(C)-\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\}$ and its vertex set R^{\prime} that induces the forest F^{\prime} of size at least $\frac{119(n-8)-24(m-14)-24}{128} \geq \varphi-5$. The set of vertices $R^{\prime} \cup\left\{u_{0}, u_{2}, v_{0}, v_{1}, v_{3}\right\}$ induces a forest of size at least φ in G.
Case 4: U has two 4 -vertices. If C is incident to four 4 -faces, then there is a separating 4 -cycle $u_{0} u_{1} u_{2} u_{3}$, which is reducible by Lemma 12 .

Suppose now C is incident with precisely one ≥ 5-face f. We consider two possibilities. First, let both 4 -vertices of U be incident to f. We may assume that these two vertices are u_{0} and u_{1}. Note that u_{0} and u_{1} are non-adjacent by Lemma 12. Again, there exists an induced forest of size at least $\frac{119(n-8)-24(m-15)-24}{128} \geq \varphi-5$ in $G-V(C)-\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\}$. It is easy to see that inserting the vertices $u_{2}, u_{3}, v_{0}, v_{1}$, and v_{3} into the forest does not introduce any cycles, so we obtain a forest of size at least φ in G. Thus we can assume that at least one 3 -vertex from U is incident to f, say u_{0}. There exists a vertex set R^{\prime} that induces a forest of size at least $\frac{119(n-7)-24(m-14)-24}{128} \geq \varphi-4$ in $G-V(C)-\left\{u_{1}, u_{2}, u_{3}\right\}$. By inserting vertices u_{2}, v_{1}, v_{2}, and v_{3} to R^{\prime} we obtain an induced forest of size at least φ in G.

Finally, suppose C is incident with two (non-consecutive) 4-faces. Again, we may assume that u_{0} and u_{1} are incident with the same ≥ 5-face, and u_{0} is a 3 -vertex. Let R^{\prime} be the vertex set that induces a forest in $G^{\prime}=G-V(C)-\left\{u_{0}, u_{1}, u_{3}\right\}$. By the minimality, this set is of size at least $\frac{119(n-7)-24(m-14)-24}{128} \geq \varphi-4$ unless u_{1} and u_{3} are adjacent. But in the exceptional case, u_{0} and u_{2} are not adjacent by the planarity, so we redefine $G^{\prime}=G-V(C)-\left\{u_{0}, u_{1}, u_{2}\right\}$ to obtain an induced forest of size at least $\frac{119(n-7)-24(m-14)-24}{{ }^{128}} \geq \varphi-4$. Now, we add vertices u_{0}, v_{0}, v_{1}, and v_{3} (resp. u_{1}, v_{0}, v_{1}, and v_{2}) to R^{\prime}. We obtain an induced forest in G of size at least φ.
Case 5: U has three 4-vertices. By Lemma 12, we infer that there are no four 4-faces incident with C, since $u_{0} u_{1} u_{2} u_{3}$ is a separating 4 -cycle with one 3 -vertex and its opposite
vertex is adjacent with the internal and external component.
Suppose now that there are three 4 -faces incident with C. By symmetry, assume u_{0} is the 4 -vertex not incident to a ≥ 5-face. Next, let R^{\prime} be the vertex set which induces the forest of size at least $\frac{119(n-7)-24(m-14)-24}{128} \geq \varphi-4$ in $G-V(C)-\left\{u_{0}, u_{1}, u_{3}\right\}$. To obtain an induced forest of size at least φ in G, just introduce the vertices u_{0}, v_{0}, v_{1} and v_{3} to R^{\prime}. Again, the introduced claw could be connected to the forest only by u_{0}, thus no cycle is introduced.

Finally, suppose that C is incident to two 4 -faces. Here, let u_{0} be the only 3 -vertex in U. It is easy to see that by defining R^{\prime} as in the case above and by adding the vertices u_{0}, v_{0}, v_{1}, and v_{3} to R^{\prime} we obtain the induced forest of size at least φ in G.
Case 6: U has four 4-vertices. Note first that by planarity if u_{0} and u_{2} are adjacent then u_{1} and u_{3} are non-adjacent. By symmetry, we may assume $u_{0} u_{2} \notin E(G)$. Next, let R^{\prime} be the vertex set that induces a forest of size at least $\frac{119(n-6)-24(m-14)-24}{128} \geq \varphi-3$ in $G-V(C)-\left\{u_{0}, u_{2}\right\}$. It is easy to see that $R^{\prime} \cup\left\{v_{0}, v_{1}, v_{2}\right\}$ induces a forest of size at least φ in G.

Lemma 14 The graph G has no 4-face with precisely two 3-vertices.
Proof. Let the cycle $C=v_{0} v_{1} v_{2} v_{3}$ be a 4 -face with precisely two 3 -vertices. By Lemma 11 we obtain that the 3 -vertices are adjacent, so we can assume v_{0} and v_{1} are of degree 3 . Let u_{0} be the third neighbor of v_{0}, and let u_{1} be the third neighbor of v_{1}. By Lemma 10 , we have that u_{0} and u_{1} are adjacent, moreover, Lemma 12 implies that the cycle $v_{0} v_{1} u_{1} u_{0}$ bounds a face and that $u_{0} v_{2}, u_{1} v_{3} \notin E(G)$. Moreover, at least one of u_{0} and u_{1} is a 4vertex, otherwise $v_{0} v_{1} u_{1} u_{0}$ is a 4 -face with four 3 -vertices, which is reducible by Lemma 13 . By symmetry, we may assume that $\operatorname{deg}\left(u_{0}\right)=4$.

If u_{1} is cubic, there is a set of vertices R^{\prime} of size at least $\frac{119(n-6)-24(m-14)-24}{128} \geq \varphi-3$ in $G-V(C)-\left\{u_{0}, u_{1}\right\}$. The set $R^{\prime} \cup\left\{u_{1}, v_{1}, v_{0}\right\}$ induces a forest of size at least φ in G. It is easy to see that no cycle is introduced by this set.

Finally, assume u_{1} is a 4 -vertex. Note that if u_{0} and v_{2} have a common neighbor, then by the planarity and the girth assumption, u_{1} and v_{3} do not have a common neighbor. By symmetry, we may assume that u_{0} and v_{2} have no common neighbor (and recall that u_{0} and v_{2} are non-adjacent). Then there is a subset of vertices R^{\prime} in $G+u_{0} v_{2}-\left\{u_{1}, v_{0}, v_{1}, v_{3}\right\}$ which induces a forest of size at least $\frac{119(n-4)-24(m-10)-24}{128} \geq \varphi-2$. The vertex set $R^{\prime} \cup\left\{v_{0}, v_{1}\right\}$ induces a forest of size at least φ in G; observe that by adding these two vertices no cycle is introduced, since if $\left\{u_{0}, v_{2}\right\} \subseteq R^{\prime}$, we only subdivide an edge in the forest.

Lemma 15 The graph G has no 5-face incident only with 3-vertices.
Proof. Assume $C=v_{0} v_{1} v_{2} v_{3} v_{4}$ is a 5 -face incident only with 3 -vertices. Let u_{i} be the third neighbor of v_{i}, where $i \in\{0,1,2,3,4\}$. By minimality of G, there is a subset of vertices R^{\prime} in a graph G^{\prime} obtained by removing C and adding the vertices x, y and the edges $x u_{0}, x u_{1}, x y, y u_{2}$, and $y u_{3}$ to G, i.e. $G^{\prime}=G-V(C)+\left\{x, y, x u_{0}, x u_{1}, x y, y u_{2}, y u_{3}\right\}$, that induces a forest F^{\prime} of size $\frac{119(n-3)-24(m-5)-24}{128} \geq \varphi-2$. Note that by adding these edges we do not violate the girth assumption, since there is no 4 -cycle with two 3 -vertices in G by Lemma 11.

Now, we distinguish few possibilities regarding whether x and y are in R^{\prime}. If none of them is in R^{\prime}, then adding v_{0} and v_{2} to F^{\prime} does not introduce a cycle and the size of the resulting forest is at least φ in G. If precisely one of x and y is in R^{\prime}, say x, we need to add three vertices to F^{\prime} to assure that its size is at least φ, since x is not a vertex of G. However, as x is in the forest, adding v_{0} and v_{1} to $F^{\prime}-x$ does not introduce a cycle. The third vertex, v_{3}, is connected to the forest with at most one edge.

Finally, if x and y are both in R^{\prime}, then we replace them with four vertices of C. Namely, we add vertices v_{0}, v_{1}, v_{2}, and v_{3}. It is easy to see that no cycle is introduced, so we obtain an induced forest of size at least φ in G.

Corollary 16 The graph G is not cubic.
Proof. Suppose for a sake of contradiction that G is cubic. By the girth assumption and Lemmas 13 and 15, we infer that faces in G have length at least 6 . On the other hand, Lemma 9 implies that the minimum degree in G is at least 3, so by Euler's formula G contains a face of length at most 5 , a contradiction.

Lemma 17 Every 3-vertex of G has three 4-neighbors.
Proof. Suppose the claim is false. By Lemma 16, G is not cubic, thus it has at least one 4 -vertex. Therefore if there is any 3 -vertex in G, there is also a 3 -vertex v adjacent to at least one 4 -vertex u. Let w and z be the other two neighbors of v. By Lemma 10 , we know that w and z have a common neighbor x distinct from v. However, if w or z is a 3 -vertex, a separating 4 -cycle or a 4 -face with two 3 -vertices is introduced, but such configurations are reducible by Lemmas 12 and 14 .

Lemma 18 The graph G does not contain 4-faces with precisely one 3-vertex.
Proof. Suppose for a sake of contradiction that the cycle $C=v_{0} v_{1} v_{2} v_{3}$ is a 4 -face in G with exactly one 3 -vertex v_{0}. Let u_{0} be the neighbor of v_{0} distinct from v_{1} and v_{3}. By Lemma 17, it follows that u_{0} is a 4 -vertex. Moreover, by Lemma $10, u_{0}$ and v_{1} have a common neighbor x distint from v_{0}, and also u_{0} and v_{3} have a common neighbor y distint from v_{0}. Lemmas 12 and 14 imply that $d(x)=d(y)=4$. Now we show in few steps that the vertices of Fig. 2 are all pairwise distinct.

Figure 2: The neighborhood of vertices v_{0}, v_{1}, v_{2}, and v_{3}.

First we claim that $x \neq v_{2}$. Suppose contrary that $x=v_{2}$. Let u_{2} be the neighbor of v_{2} which is distinct from v_{1}, v_{3}, and u_{0}. Let C_{1} be the separating 4 -cycle $v_{0} v_{3} v_{2} u_{0}$. If u_{2} is not in the same component of $G-V\left(C_{1}\right)$ as v_{1}, then we have a separating 4-cycle with one 3 -vertex and its opposite vertex adjacent to two components. Such a cycle is reducible by Lemma 12. On the other hand, if u_{2} is in the same component, consider instead the reducible separating 4 -cycle $v_{0} v_{1} v_{2} u_{0}$, a contradiction. We similarly show that $y \neq v_{2}$.

Now, we claim that $x \neq y$. Again, suppose contrary that $x=y$. Let x_{1} be the neighbor of x distinct from u_{0}, v_{1}, and v_{3}. Consider the 4 -cycles $C_{1}=x u_{0} v_{0} v_{1}, C_{2}=x u_{0} v_{0} v_{3}$, and $C_{3}=x v_{3} v_{0} v_{1}$. Note that among these three cycles we can always choose a cycle C_{i} such that x_{1} and the neighbor of x not incident to C_{i} are in different parts $\operatorname{int}\left(C_{i}\right)$ and $\operatorname{ext}\left(C_{i}\right)$ (see Fig. 3). Hence, C_{i} is a separating cycle. Since C_{1}, C_{2}, and C_{3} all contain a 3 -vertex v_{0}, C_{i} is reducible by Lemma $12(b)$, a contradiction. This establishes the claim.

Figure 3: We can always find such a 4 -cycle C_{i} that x_{1} and the other neighbor of x not in incident with C_{i} are in different parts $\operatorname{int}\left(C_{i}\right)$ and $\operatorname{ext}\left(C_{i}\right)$.

Consider now the neighbor z of u_{0} distinct from v_{0}, x, and y. We claim that $z \neq v_{2}$, for otherwise we consider the separating 4 -cycles $u_{0} v_{0} v_{3} v_{2}$ and $u_{0} v_{0} v_{1} v_{2}$. At least one of them satisfies the assumptions of Lemma $12(b)$, a contradiction.

Next, let u_{1} be the neighbor of v_{1} distinct from x, v_{0}, and v_{2}. Also, let u_{3} be the neighbor of v_{3} distinct from y, v_{0}, and v_{2}. We claim that $u_{1} \neq u_{3}$. Suppose contrary that $u_{1}=u_{3}$. Note that $x u_{1}$ and $y u_{1}$ are not the edges in G, due to the girth assumption. Let R^{\prime} be the subset of vertices that induce the forest in $G-V(C)-\left\{u_{0}, u_{1}, x, y\right\}$ of size at least $\frac{119(n-8)-24(m-19)-24}{128} \geq \varphi-4$. Now, the set $R^{\prime} \cup\left\{u_{0}, v_{0}, v_{1}, v_{3}\right\}$ induces a forest of size at least φ in G. This establishes the claim that u_{1} and u_{3} are distinct.

We also claim that $x \neq u_{3}$. Suppose contrary that $x=u_{3}$. By planarity, $y=u_{1}$. Let $G^{\prime}=G-\left\{v_{0}, v_{1}, v_{3}, u_{0}, x, y\right\}$. There exists a set of vertices R^{\prime} in G^{\prime} that induces the forest of size at least $\frac{119(n-6)-24(m-15)-24}{128} \geq \varphi-3$. Inserting the vertices v_{0}, v_{3}, and u_{0} in R^{\prime} infers a forest of size at least φ in G. Observe that no cycle is introduced, since z and v_{2} are in different parts of the plane regarding the separating cycle $v_{0} v_{1} x v_{3}$. We show similarly that $y \neq u_{1}$.

As we established that all vertices from Fig. 2 are distinct, we continue by considering the adjacency of the vertices z, u_{1}, and u_{3}. If neither of them are adjacent, then there exists a set of vertices R^{\prime} of size at least $\frac{119(n-6)-24(m-15)-24}{128} \geq \varphi-3$ in $G \cup\left\{w, w z, w u_{1}, w u_{3}\right\}-$ $\left\{v_{0}, v_{1}, v_{2}, v_{3}, u_{0}, x, y\right\}$, where w is a new vertex. If $w \notin R^{\prime}$, then the vertices v_{1}, v_{3}, and
u_{0} are added to R^{\prime} to induce a forest F of size at least φ. On the other hand, if $w \in R^{\prime}$, then such a forest is induced by adding v_{0}, v_{1}, v_{3}, and u_{0} to F. Obviously in both cases no cycle is introduced.

By the above paragraph, we may assume that some two vertices from $\left\{z, u_{1}, u_{3}\right\}$ are adjacent, however, there exist a pair which is not, due to girth assumption. Observe that without loss of generality, we may assume that $z u_{3} \notin E(G)$ and $u_{1} u_{3} \in E(G)$.

Next, we claim that both of the vertices u_{1} and u_{3} are of degree 4. Suppose for a contradiction that u_{1} is a 3 -vertex. Then, by Lemma $17, u_{3}$ is a 4 -vertex, and by Lemma $10, u_{3}$ is adjacent to x. So, consider the separating 5 -cycle $g=u_{1} v_{1} v_{0} v_{3} u_{3}$ and an induced forest F^{\prime} of $G-V(g)-y$. It is of size at least $\frac{119(n-6)-24(m-16)-24}{128} \geq \varphi-3$. Observe that after adding vertices v_{0}, v_{3}, and u_{1} to F^{\prime} no cycles are introduced, thus we obtain an induced forest of size at least φ in G, a contradiction.

Finally, consider two subcases regarding the degree of z :

- z is a 4-vertex. In this case, by planarity at most one of the edges $u_{1} y$, and $u_{3} x$ exists. By symmetry, suppose that $u_{3} x$ does not. Then there is a set of vertices R^{\prime} in $G-$ $V(C)-\left\{u_{0}, u_{3}, z, x, y\right\}$ which induces a forest of size at least $\frac{119(n-9)-24(m-24)-24}{128} \geq$ $\varphi-4$. The vertex set $R^{\prime} \cup\left\{u_{0}, v_{0}, v_{1}, v_{3}\right\}$ induces a forest of size at least φ in G.
- z is a 3-vertex. Let s and t be the neighbors of z distinct from u_{0}. By Lemma 10 we infer that s and t have a common neighbor p. In addition, by Lemma 10, we may assume that $t y, s x \in E(G)$. Note that $t \neq u_{3}$ and $s \neq u_{1}$ by the girth assumption. Moreover, if $t=u_{1}$, then either $p=y$ or $p=u_{3}$. Both cases are violating the planarity, thus $t \neq u_{1}$. Similarly we show that $s \neq u_{3}$.
Let q be the neighbor of x distinct from v_{1}, u_{0}, and s, and similarly let r be the neighbor of y distinct from v_{3}, u_{0}, and t. Note that $q=r$ is possible only when q is a 4 -vertex. Otherwise, if q is a 3 -vertex, we obtain a separating 4 -cycle $u_{0} x q y$ which is reducible by Lemma $12(b)$.
Next, by the planarity at least one of the edges $q t$ and rs does not exists, say $q t \notin E(G)$. Then, there exists a set R^{\prime} in $G-\left\{v_{0}, v_{1}, v_{3}, u_{0}, x, y, z, s, t, q\right\}$ which induces a forest F^{\prime} of size at least $\frac{119(n-10)-24(m-24)-24}{128} \geq \varphi-5$. By introducing vertices u_{0}, v_{0}, x, y, and z to R^{\prime}, we obtain a set of vertices which induces a forest of size at least φ in G. It is easy to see that the new vertices do not introduce any cycles, since only the edge $y u_{0}$ could be incident with F^{\prime}.

This analysis establishes the lemma.
From Lemmas 13, 14, and 16-18 immediately follows the corollary below:
Corollary 19 Every 4-face (resp. 5-face) of G is incident with four (resp. three) 4vertices.

Finally we are ready to establish the theorem with the following short application of Euler's formula. Let n_{d} be the number of vertices of degree d and let f_{l} be the number of faces of length l in G. By Corollary 19 we infer

$$
4 n_{4} \geq 4 f_{4}+3 f_{5}
$$

Using this inequality and Euler's Formula we obtain

$$
-12=\sum_{d \geq 3}(2 d-6) n_{d}+\sum_{l \geq 4}(l-6) f_{l} \geq 2 n_{4}-2 f_{4}-f_{5} \geq 0 .
$$

Hence, we obtain a contradiction which shows that the minimal counterexample does not exist and establish Theorem 3.

Acknowledgement The authors thank Gašper Fijavž for valuable comments.

References

[1] J. Akiyama, M. Watanabe, Maximum induced forests of planar graphs, Graphs Combin. 3 (1987), 201-202.
[2] M. O. Albertson, D. M. Berman, A conjecture on planar graphs, Bondy, J.A., Murty, U.S.R. (eds) Graph Theory and Related Topics. Academic Press (1979), 357.
[3] N. Alon, Problems and results in Extremal Combinatorics I, Discrete Math. 273 (2003), 31-53.
[4] N. Alon, D. Mubayi, R. Thomas, Large induced forests in sparse graphs, J. Graph Theory 38 (2001), 113-123.
[5] P. Erdős, M. Saks, V. T. Sós, Maximum induced trees in graphs, J. Combin. Theory Ser. B 41 (1986), 61-79.
[6] J. Fox, P. S. Loh, B. Sudakov, Large induced trees in K_{r}-free graphs, J. Combin. Theory Ser. B 99 (2009), 494-501.
[7] R. M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations (R. E. Miller, J. W. Thatcher, ed.), Plenum Press, New York London (1972), 85-103.
[8] J. Matoušek, R. Šámal, Induced trees in triangle-free graphs, Electron. J. Combin. 15 (2008), 7-14.
[9] N. Punnim, The decycling number of regular graphs, Thai J. Math. 4 (2008), 145161.
[10] M. R. Salavatipour, Large Induced Forests in Triangle-free Planar Graphs, Graphs Combin. 22 (2006), 113-126.

[^0]: *Supported in part by bilateral project BI-PL/08-09-008.
 ${ }^{\dagger}$ Supported in part by a grant from the Polish Ministry of Science and Higher Education, project N206 005 32/0807.
 ${ }^{\ddagger}$ Supported in part by Ministry of Science and Technology of Slovenia, Research Program P1-0297.

