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ABSTRACT

We study vertex-colorings of plane graphs that do not contain a rainbow face, i.e., a

face with vertices of mutually distinct colors. If G is a 3-connected plane graph with

n vertices, then the number of colors in such a coloring does not exceed
⌊

7n−8
9

⌋

. If G

is 4-connected, then the number of colors is at most
⌊

5n−6
8

⌋

, and for n ≡ 3 (mod 8),

it is at most
⌊

5n−6
8

⌋

− 1. Finally, if G is 5-connected, then the number of colors is at

most
⌊

25
58n − 22

29

⌋

. The bounds for 3-connected and 4-connected plane graphs are the best

possible as we exhibit constructions of graphs with colorings matching the bounds. c©

??? John Wiley & Sons, Inc.

Journal of Graph Theory Vol. ???, 1 19 (???)
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1. INTRODUCTION

Colorings of graphs embedded on surfaces with face-constraints have recently drawn a
substantial amount of attention. There are two natural questions derived from hyper-
graph colorings that one may ask in this setting:

1. What is the minimal number of colors needed to color an embedded graph in such a

way that each of its faces is incident with vertices of at least two different colors, i.e.,

there is no monochromatic face?

2. What is the maximal number of colors that can be used in a coloring of an embedded

graph that contains no face with vertices of mutually distinct colors, i.e., that contains

no rainbow face?

The first question can be traced back to work of Zykov [24] and was further explored
by Kündgen and Ramamurthi [17]. It can be shown [8] that every graph embedded on a
surface of genus ε has a coloring with O( 3

√
ε) colors that avoids a monochromatic face.

Let us remark that this type of coloring can be also formulated in the terms of colorings
of so-called face hypergraphs of embedded graphs. Also let us mention that colorings that
avoid both monochromatic and rainbow faces have been also studied, see, e.g., [7, 14, 16].
For instance, the results of Penaud [20] and Diwan [5] imply that each plane graph with
at least five vertices has a coloring with two colors as well as a coloring with three colors
that avoid both monochromatic and rainbow faces.

In this paper, we focus on the second question. A non-rainbow coloring of a plane
graph G is a vertex-coloring such that each face of G is incident with at least two vertices
with the same color. Unlike in the case of ordinary colorings, the goal is to maximize
the number of used colors. The maximum number of colors that can be used in a non-
rainbow coloring of a plane graph G is denoted by χf (G). Let us remark at this point
that graphs considered in the problems of this type can usually contain parallel edges
unless they form a bigon in an embedding, but since graphs appearing in our proofs are
3- or more connected, the graphs in Sections 2.–5. do not have any parallel edges. The
following extremal anti-Ramsey problem is equivalent to the second question:

What is the smallest number k(G) of colors such that every vertex-coloring of a plane

graph G with k(G) colors contains a rainbow face?

It is easy to see that χf (G) = k(G) − 1 and the results obtained in either of the
scenarios translate smoothly to the other one.

* This work was supported by the Czech-Slovenian bilateral research project 15/2006–2007 and
MEB 090805.
† Institute for Theoretical computer science is supported as project 1M0545 by Czech Ministry
of Education.
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Let us briefly survey some results on the second question. The problem independently
appeared in the work of Ramamurthi and West [22] and Negami [19] who considered the
problem in the anti-Ramsey framework (see also [1, 2, 18] for some even earlier results
of this flavor). Ramamurthi and West [21] noticed that every plane graph G has a non-
rainbow coloring with at least α(G) + 1 colors, in particular, every plane graph G of
order n has a coloring with at least

⌈

n
4

⌉

+ 1 colors by the Four Color Theorem. Also,
Grötzsch’s theorem [9, 23] implies that every triangle-free plane graph has a non-rainbow
coloring with

⌈

n
3

⌉

+ 1 colors. Ramamurthi et al. [21] conjectured that this bound can

be improved to
⌈

n
2

⌉

+ 1. Partial results on this conjecture were obtained in [15] and the
conjecture has been eventually proven in [13]. More generally, Jungić et al. [13] proved
that every planar graph of order n with girth g ≥ 5 has a non-rainbow coloring with

at least
⌈

g−3
g−2n − g−7

2(g−2)

⌉

colors if g is odd, and
⌈

g−3
g−2n − g−6

2(g−2)

⌉

colors if g is even. All

these bounds are the best possible.

Negami [19] investigated non-rainbow colorings of plane triangulations G and showed
that α(G) + 1 ≤ χf (G) ≤ 2α(G). Jendrol’ and Schrötter [12] determined the number
χf (G) for all semiregular polyhedra. In addition, Jendrol’ [10] established that n

2 +α∗
1 −

2 ≤ χf (G) ≤ n−α∗
0 for 3-connected cubic plane graphs G where α∗

0 is the independence
number of the dual graph G∗ of G and α∗

1 is the size of the largest matching of G∗.
Jendrol’ also conjectured [10, 11] the following (let us remark that the former conjecture
was proven in [6]):

Conjecture 1. Every cubic 3-connected plane graph G of order n has χf (G) = n
2 +

α∗
1 − 2.

Conjecture 2. A non-rainbow coloring of a plane 3-connected graph G of order n uses
at most

⌊

3n−1
4

⌋

colors.

Motivated by Conjecture 2, we establish tight upper bounds on the maximal numbers
of colors used in non-rainbow colorings of plane 3-connected and 4-connected graphs and
close lower and upper bounds on the maximal number of such colors for 5-connected
plane graphs. We show that a non-rainbow coloring of a plane 3-connected graph of
order n always uses at most

⌊

7n−8
9

⌋

colors and a non-rainbow coloring of a plane 4-

connected graph always uses at most
⌊

5n−6
8

⌋

colors, and for n ≡ 3 (mod 8), it uses at

most
⌊

5n−6
8

⌋

−1 colors. All these bounds are the best possible. In particular, Conjecture 2
is false. For completeness, let us also remark that the optimal bound for 2-connected
plane graphs is n − 1 and is achieved for a cycle.

For 5-connected plane graphs G, we show that the number of colors of a non-rainbow
coloring of G does not exceed

⌊

25
58n − 22

29

⌋

≈ .4310 n where n is the order of G. On
the other hand, we construct plane 5-connected graphs G of order n with non-rainbow
colorings with almost 171

400n = .4275 n colors. We were not able to close the gap between
our lower and upper bounds in this case and conjecture (see Conjecture 3 at the end of
the paper) that the correct bound is 3

7n + const.
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Let us now briefly introduce several definitions that will be useful in our further
considerations. Most of them are standard graph theory definitions, but we still like to
include. A color class of a vertex-coloring is the set of vertices assigned the same color.
A monochromatic path or cycle is a path or a cycle such that all its vertices have the
same color. We often refer to a cycle of length k as a k-cycle.

If G is a graph embedded in the plane and C a cycle of G, then Int(C) is the subgraph
of G lying in the closed region bounded by C, in particular, the subgraph Int(C) includes
the cycle C. Similarly, Ext(C) is the subgraph of G lying outside the open region bounded
by C. If both Int(C) and Ext(C) contain more vertices than C, then the cycle C is said
to be separating. If G and H are two graphs with 3-cycles u1u2u3 and v1v2v3, then the
graph obtained from G and H by identifying the 3-cycles u1u2u3 and v1v2v3 is called
the 3-sum of G and H . Observe that if G is a 3-connected plane graph and C is a
separating triangle, then both Int(C) and Ext(C) are 3-connected, and if both G and H
are 3-connected, then their 3-sum is also 3-connected.

2. COUNTING ARGUMENT

Our upper bounds are proved using counting arguments based on the lemmas estab-
lished in this section. Let G be a colored plane graph of minimum degree at least
d. We define a d-weight wd(H) of a connected monochromatic subgraph H of G as
k− 1

2

∑

v∈V (H)(degG(v)− d), where k is the number of faces of G that share at least one

edge with H , and degG(v) is the degree of v in G. The next lemma provides a simple (and
in most cases good enough) upper bound on the d-weight of a monochromatic subgraph
of G. We say that a subgraph H is a maximal connected monochromatic subgraph of G
if all the vertices of H have the same color, H is connected and there is no supergraph
of H with these two properties.

Lemma 1. Let G be a colored plane graph of minimum degree at least d. If H is a
maximal connected monochromatic subgraph of G, then

wd(H) ≤ 1

2

∑

v∈V (H)

min{2 degH(v), d} ≤ d

2
|V (H)| .

Proof. The second inequality of the statement of the lemma obviously holds and thus
we focus on proving the first one. For a vertex v of H , let kv be the number of faces of
G that contain an edge e of H incident with v. By the definition, the d-weight of H is
at most

1

2

∑

v∈V (H)

(kv + d − degG(v))

since each face incident with a monochromatic edge of H is counted in at least two
variables kv (note that a single face can be incident with more edges of H).
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Observe that kv ≤ min{2 degH(v), degG(v)}. We infer from kv ≤ 2 degH(v) that
kv + d − degG(v) ≤ kv ≤ 2 degH(v) and from kv ≤ degG(v) that kv + d − degG(v) ≤ d.
Hence, kv +d−degG(v) ≤ min{2 degH(v), d}. The assertion of the lemma now follows.

The following lemma provides an upper bound on the number of colors used in a non-
rainbow coloring. Note that we prove the lemma under the stronger assumption that
each face actually contains a monochromatic edge. As we shall see in the rest of the
paper, this does not decrease the generality of our considerations.

Lemma 2. Let G be a plane connected graph of order n and with minimum degree at
least d, let c be a vertex-coloring of G such that each face of G contains a monochromatic
edge, and let H1, . . . , Ht be all maximal connected monochromatic subgraphs of G. If
there exist α > 0 and β1, . . . , βt ≥ 0 such that wd(Hi) ≤ α(|V (Hi)| − 1) − βi for every
i = 1, . . . , t, then the coloring c uses at most

(

1 − d − 2

2α

)

n − 2 +
∑t

i=1 βi

α

colors.
Proof. Let ni be the number of vertices of Hi and ki the number of faces of G incident

with an edge of Hi.
Since each face of G is incident with a monochromatic edge, the number f of faces of

G is at most
∑t

i=1 ki. By Euler’s formula, we have the following:

t
∑

i=1

ki ≥ f =
1

2

∑

v∈V (G)

deg(v) − n + 2 =
1

2

∑

v∈V (G)

(deg(v) − d) +
d − 2

2
n + 2 .

We now plug our assumption that the d-weight of Hi is at most α(|V (Hi) − 1) − βi to
the above estimate:

d − 2

2
n + 2 ≤

t
∑

i=1

ki −
1

2

∑

v∈V (G)

(degG(v) − d)

=

t
∑

i=1



ki −
1

2

∑

v∈V (Hi)

(degG(v) − d)





≤
t

∑

i=1

(α(ni − 1) − βi) .

We infer from this inequality that

α t ≤ α n − d − 2

2
n − 2 −

t
∑

i=1

βi
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which yields that

t ≤
(

1 − d − 2

2α

)

n − 2 +
∑t

i=1 βi

α
.

This finishes the proof of the lemma since the number of colors used by c is at most t.
In Sections 3.–5., we apply Lemma 2 with different values of α and βi (setting βi = 0

in most cases).

3. 3-CONNECTED PLANE GRAPHS

In this section, we prove our lower and upper bounds on the number of colors of non-
rainbow colorings of 3-connected plane graphs. The upper bound is rather easy once we
have established Lemma 2.

Theorem 1. If G is a plane 3-connected graph with n ≥ 4 vertices, then the number
of colors used by any non-rainbow coloring c of G does not exceed

⌊

7n−8
9

⌋

.
Proof. By adding edges to G, we can assume without loss of generality that each face

of G is incident with a monochromatic edge. In addition, we can assume that each color
class induces a connected subgraph of G; otherwise, we can recolor one of the components
to increase the number of used colors. Let H be a subgraph induced by one of the color
classes (note that H is a maximal connected monochromatic subgraph of G) and let n′

be the number of its vertices.
Since G is 3-connected, it has minimum degree at least three and thus we can apply

Lemma 2 with d = 3. We now estimate the 3-weight of H . If n′ = 1, then the 3-weight
of H is non-positive. If n′ = 2, then H is a single edge and thus w3(H) ≤ 2 ≤ 9

4 (n′ − 1)
by Lemma 1. If n′ ≥ 3, then w3(H) ≤ 3

2n′ ≤ 9
4 (n′ − 1) again by Lemma 1. Therefore,

the assumption of Lemma 2 is satisfied for α = 9
4 , βi = 0 and d = 3. The upper bound

7n−8
9 on the number of colors used by c easily follows.
In the rest of this section, we show that the bound established in Theorem 1 is the best

possible. Let us start with the following lemma that allows us to construct larger exam-
ples that match the bound from smaller ones. Notice that in Lemma 3, the monochro-
matic triangle can be both facial or separating.

Lemma 3. Let G be a plane 3-connected graph with n vertices that has a non-rainbow
coloring c with k colors. If G contains a monochromatic triangle, then there exists a plane
3-connected graph G′ with n + 9 vertices that has a non-rainbow coloring c′ with k + 7
colors and which also contains a monochromatic triangle.

Proof. Let v1v2v3 be a monochromatic triangle contained in G. Split the triangle
into two copies, v′1v

′
2v

′
3 and v′′1 v′′2 v′′3 , and keep the rest of the graph (see Figure 1 for

illustration). Next, insert a cycle w1w2w3w4w5w6 of length six between the cycles v′1v
′
2v

′
3

and v′′1v′′2 v′′3 as in the figure, and insert the following edges: v′1w1, v′′1 w2, v′2w3, v′′2w4,
v′3w5, and v′′3 w6. Let G′ be the resulting graph. The vertices of Int(v′′1 v′′2 v′′3 ) with the
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v1
v2

v3

v′1
v′2

v′3

v′′1

v′′2

v′′3

w1

w2 w3

w4

w5w6

FIGURE 1. A construction presented in Lemma 3. The monochromatic edges in the configurations are
drawn bold.

same color as v′′1 are recolored by a new color not previously used by c. Six new colors are
also assigned to the vertices w1, . . . , w6. We conclude that the resulting coloring c′ uses
k + 7 colors. It follows that if c is a non-rainbow coloring of G, then c′ is a non-rainbow
coloring of G′.

It remains to verify that the graph G′ is 3-connected. The 3-connectivity of G implies
that both Int(v1v2v3) and Ext(v1v2v3) are 3-connected. Since the graph G′ can be viewed
as the 3-sum of Int(v1v2v3) and the graph obtained by the 3-sum of Ext(v1v2v3) and a
12-vertex 3-connected graph, G′ is also 3-connected (if Int(v1v2v3) or Ext(v1v2v3) is just
K3, we apply the 3-sum only once).

We can now provide constructions of 3-connected graphs that witness that the bound
established in Theorem 1 is tight:

Theorem 2. For every n ≥ 4, there exists a plane 3-connected graph G with n ≥ 4
vertices that has a non-rainbow coloring with

⌊

7n−8
9

⌋

colors.
Proof. The reader can find the graphs G for n = 4, . . . , 12 in Figure 2. Since each

of the graphs depicted in Figure 2 contains a monochromatic triangle, the existence of
graphs G for all n ≥ 13 follows from Lemma 3.

4. 4-CONNECTED PLANE GRAPHS

In this section, we prove our lower and upper bounds on the number of colors of non-
rainbow colorings of 4-connected plane graphs.
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1 1

1

2

1 1

1

2

3

1 1

1

1

2 3

1 1

1

1

2 3

4
1 1

1

2

3 3

4 5

1 1

1

2
3 3

4 5

6

1 1

1

2 2

2

3 4

5 6 1 1

1

2 2

2

3

4 5 6 7 1 1

1

2 2

2

3

5 6 7 8

4

FIGURE 2. 3-connected plane graphs G with n vertices, n = 4, . . . , 12, that have non-rainbow colorings

with
⌊

7n−8

9

⌋

colors. The edges of G that are monochromatic in such a coloring are drawn bold. The

colors assigned to the vertices are represented by numbers.
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Theorem 3. Let G be a plane 4-connected graph with n ≥ 6 vertices. The number of
colors in a non-rainbow coloring of G does not exceed

⌊

5n−6
8

⌋

. Moreover, if n ≡ 3 (mod 8),

then the number of colors does not exceed
⌊

5n
8

⌋

− 1.
Proof. Fix a non-rainbow coloring c of G. Without loss of generality, we can assume

by adding edges that each face is incident with at least one monochromatic edge. In
addition, we can also assume that the vertices of each color induce a connected subgraph
of G; otherwise, recoloring one of the components with a new color yields a non-rainbow
coloring of G with more colors.

Let H be a subgraph of G induced by the vertices of one of the colors and n′ the
number of its vertices. Our aim is to show that the 4-weight w4(H) of H is at most
8
3 (n′ − 1).

The inequality w4(H) ≤ 8
3 (n′ − 1) clearly holds if n′ = 1. If n′ ≥ 4, w4(H) ≤ 2n′ ≤

8
3 (n′−1) by Lemma 1. If n′ = 2, H is a single edge and thus the degree of both the vertices
of H is one. Hence, by Lemma 1, we have w4(H) ≤ 2 < 8

3 (n′−1). If n′ = 3, H is either a
3-vertex path or a triangle. In the former case, w4(H) ≤ 1+2+1 ≤ 8

3 (n′−1) by Lemma 1.
If H is a triangle, then it bounds a 3-face of G since G is 4-connected. Therefore, the edges
of H are incident with at most four distinct faces of G, and w4(H) ≤ 4 < 8

3 (n′−1) by the
definition of the d-weight. This finishes the proof of the inequality w4(H) ≤ 8

3 (n′ − 1).
We infer from Lemma 2 applied with α = 8

3 , βi = 0, and d = 4 that the number of
colors used by c is at most 5n−6

8 which is the bound claimed for n 6≡ 3 (mod 8) in the
statement of the theorem. The case n ≡ 3 (mod 8) is further considered in more detail.

We assume that n ≡ 3 (mod 8) in the remainder of the proof. It is straightforward to
verify that unless H is a single vertex or n′ = 4, the estimates established in the previous
paragraph yield w4(H) ≤ 8

3 (n′−1)− 2
3 . If n′ = 4, then w4(H) ≤ 6 ≤ 8

3 (n′−1)− 2
3 unless

H is a 4-cycle. Therefore, if there is a maximal connected monochromatic subgraph H1

of G different from a vertex or a 4-cycle, we can apply Lemma 2 with α = 8
3 , β1 = 2

3 ,
βi = 0 with i 6= 1, and d = 4 to obtain the desired bound.

We conclude that if the number of colors used by c is greater than 5n
8 − 1, then each

color class is either a single vertex or a 4-cycle. We now address this case directly.
Let f be the number of faces of G and s the number of monochromatic 4-cycles of G.

Since each face of G is incident with a monochromatic edge, it follows that f ≤ 8s. On
the other hand, since G is 4-connected, its minimum degree is at least four, and thus the
number of its edges is at least 2n. Hence, by Euler’s formula, we get the following:

8s ≥ n + f − n ≥ (2n + 2) − n = n + 2 .

Since n ≡ 3 (mod 8), we infer the following:

s ≥
⌈

n + 2

8

⌉

=
n + 5

8
.
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v1 v2

v3v4

v′1 v′2

v′3v′4

w1 w2

w3w4

v′′1 v′′2

v′′3v′′4

FIGURE 3. A construction presented in Lemma 4. The monochromatic edges in the configurations are
drawn bold.

Finally, we can conclude that the number of colors used by c, which is equal to n − 3s,
is at most

n − 3s ≤ n − 3 · n + 5

8
=

5n − 15

8
≤ 5n

8
− 1 .

In the rest of this section, we show that the bound established in Theorem 3 is tight.
We start with a lemma that allows us to construct larger examples of graphs for which
the bound of the theorem is tight from smaller ones.

Lemma 4. Let G be a plane 4-connected graph with n vertices that has a non-rainbow
coloring c with k colors. If G contains a separating monochromatic 4-cycle, then there
exists a 4-connected plane graph with n+8 vertices that has a non-rainbow coloring with
k + 5 colors and with a separating monochromatic 4-cycle.

Proof. Let v1v2v3v4 be a monochromatic 4-cycle of G. Split the cycle to two cycles
v′1v

′
2v

′
3v

′
4 and v′′1 v′′2v′′3 v′′4 . Each vertex of G adjacent to vi is adjacent to v′i or to v′′i in

such a way that the resulting graph is still plane, see Figure 3. In addition, add a new
cycle w1w2w3w4 between the two cycles v′1v

′
2v

′
3v

′
4 and v′′1 v′′2v′′3 v′′4 , and add edges v′iwi and

v′′i wi, i = 1, 2, 3, 4. Let G′ be the obtained graph. The vertices v′i keep the color of the
vertices vi, the vertices v′′i and all the vertices with the same color in Int(v′′1 v′′2 v′′3 v′′4 ) are
recolored by a new color and each of the vertices wi also receives a new color. Hence, G′

is a graph of order n + 8 and the constructed coloring is a non-rainbow coloring of G′

with k + 5 colors.
It remains to verify that G′ is 4-connected. Let A′ be a vertex cut of G′ formed by at

most three vertices. Note that each component of G′ \ A′ contains at least one original
vertex of G, i.e., a vertex different from v′i, v′′i and wi, i = 1, 2, 3. Let A be the set
obtained from A′ by replacing v′i, v′′i or wi by the vertex vi. Note that A contains at
most three vertices. If G′ \A′ is disconnected, then the graph G \A is also disconnected
(any path of G \A can be turned to a path of G′ \A′ and the subgraph of G induced by
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the vertices v′i, v′′i and wi, i = 1, 2, 3, 4, is 4-connected). This contradicts our assumption
that G is 4-connected since |A′| ≤ |A|.

We finish this section with a construction of graphs for which the bound proven in
Theorem 3 is tight.

Theorem 4. For every n ≥ 6, n 6≡ 3 (mod 8), there exists a plane 4-connected graph
G with n vertices that has a non-rainbow coloring with

⌊

5n−6
8

⌋

colors. Moreover, for
n ≥ 6 and n ≡ 3 (mod 8), there exists such a graph G that has a non-rainbow coloring
with

⌊

5n
8

⌋

− 1 colors.

Proof. The construction of graphs G for n = 6, 7, . . . , 13 can be found in Figure 4,
and the existence of the graphs G for n ≥ 14 follows from Lemma 4 by induction on n.

5. 5-CONNECTED PLANE GRAPHS

In the last section of the paper, we focus on bounds on 5-connected plane graphs. We
start with showing the upper bound on the number of the colors.

Theorem 5. Let G be a plane 5-connected graph with n vertices. The number of
colors in a non-rainbow coloring of G does not exceed

⌊

25
58n − 22

29

⌋

.

Proof. By adding edges if necessary, we can assume that each face of G is incident
with a monochromatic edge. Our aim is to apply Lemma 2 with α = 29

11 and d = 5.
In particular, we have to show that w5(H) ≤ 29

11 (n′ − 1) for each maximal connected
monochromatic subgraph H of G, where n′ is the number of vertices of H .

If H is a tree, then its edges are incident with at most 2(n′ − 1) faces of G, and
consequently w5(H) ≤ 2(n′−1) ≤ 29

11 (n′−1). Therefore, we assume in what follows that
H is not a tree, in particular, n′ ≥ 3.

If H = Cn′ for n′ = 3, 4, then there are at most n′ + 1 faces of G that contain an
edge of H (as G is 5-connected, H forms a boundary of a face of G). It follows that
w5(H) ≤ n′ + 1 ≤ 29

11 (n′ − 1). We may assume that H 6= C3, C4 (and thus n′ ≥ 4).

Suppose that n′ = 4. If H = K4, then the faces of H coincide with the faces of G,
and w5(H) ≤ 4. Similarly, if H = K4 \ e, i.e., H is the complement of an edge, then
w5(H) ≤ 6, and if H is the complement of a path of length two, then w5(H) ≤ 6. As
29
11 (4 − 1) > 7.9, the claimed inequality holds for H .

We have analyzed all cases with n′ ≤ 4 and we focus on graphs H with five or more
vertices in the rest. Let kv be the number of faces of G that contain an edge of H
incident with a vertex v. Let sd, d = 3, 4, be the number of faces of H of size d. Since G
is 5-connected, every such face f of H must also be a face of G. Consequently, the edges

of H are incident with at most
(

1
2

∑

v∈V (H) kv

)

− 1
2s3 − s4 faces of G. An argument
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FIGURE 4. 4-connected plane graphs G with n vertices, n = 6, 7, . . . , 13, that have non-rainbow

colorings with
⌊

5n−6

8

⌋

colors if n 6= 11, i.e., n 6≡ 3 (mod 8), and with
⌊

5n

8

⌋

− 1 = 5 colors, if n = 11.

The edges of G that are monochromatic in such a coloring are drawn bold. The colors assigned to the
vertices are represented by numbers (some vertices are not labeled with numbers; those vertices are
colored with 1).
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analogous to that used in the proof of Lemma 1 yields that

w5(H) ≤





∑

v∈V (H)

1

2
(kv + 5 − degG(v))



 − 1

2
s3 − s4 where (1)

kv + 5 − degG(v) ≤ min{2 degH(v), 5} for every v ∈ V (H). (2)

In particular, a vertex v contributes at most one to the sum in (1) if degH(v) = 1, at
most two if degH(v) = 2, and it contributes at most 5

2 otherwise. Let n′
d, d = 1, 2, denote

the number of vertices of H with degree d. We can infer from (1) and (2) the following
inequality:

w5(H) ≤ 5

2
n′ − 3

2
n′

1 −
1

2
n′

2 −
1

2
s3 − s4 (3)

We now apply Euler’s formula to H . Plugging the inequalities 3n′ − 2n′
1 − n′

2 ≤ 2m
and 5s− 2s3− s4 ≤ 2m where where m is the number of edges of H and s is the number
of its faces into Euler’s formula, we obtain the following:

n′ + s = m + 2

n′ + s ≥ (s − 2s3/5 − s4/5) + (9n′/10 − 6n′
1/10 − 3n′

2/10) + 2

6n′
1 + 3n′

2 + 4s3 + 2s4 ≥ 20 − n′ (4)

Combining (3) and (4) yields:

w5(H) ≤ 5

2
n′ − 1

8
(20 − n′) =

21n′ − 20

8
(5)

If n′ ≥ 12, then 21n′−20
8 ≤ 29

11 (n′ − 1) which yields the claimed estimate on w5(H).
As w5(H) is half-integral, it is possible to rewrite the inequality (5) to the form

w5(H) ≤ 1

2

⌊

21n′ − 20

4

⌋

. (6)

Let us compare the values given by the estimate (6) and the claimed bound 29
11 (n′ − 1)

for 5 ≤ n′ ≤ 11:
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n′ 1
2

⌊

21n′−20
4

⌋

29
11 (n′ − 1)

5 10.5 ≈ 10.545
6 13 ≈ 13.182
7 15.5 ≈ 15.818
8 18.5 ≈ 18.455
9 21 ≈ 21.091
10 23.5 ≈ 23.727
11 26 ≈ 26.363

We conclude that it holds w5(H) ≤ 29
11 (n′−1) with a possible exception of n′ = 8. The

case n′ = 8 needs to be analyzed in more detail. The inequality (5) gives w5(H) ≤ 18.5.
As w5(H) is half-integral, in order to establish w5(H) ≤ 29

11 (n′ − 1), it is enough to show
that w5(H) 6= 18.5. If (5) were an equality, then all the inequalities used to derive (5)
would also be equalities. In particular, it would hold that n′

1 = n′
2 = s4 = 0 in (4) and

H would be a cubic graph that contained three faces of size three and its remaining faces
have size five. Euler’s formula implies that H has six faces. Since there is no planar
cubic graph with three faces of size three and three faces of size five, the inequality (5)
must be strict which yields the claimed bound on w5(H) for n′ = 8.

We have established that w5(H) ≤ 29
11 (n′ − 1) for every n′-vertex monochromatic

subgraph H of G. Finally, the upper bound of 25
58n− 22

29 on the number of colors follows
from Lemma 2 applied with α = 29

11 , βi = 0 for all i, and d = 5.
Unfortunately, we were not able to find matching lower and upper bounds on the

number of colors in non-rainbow colorings of 5-connected plane graphs. The best lower
bound construction that we have found is given in the next theorem (note that we only
sketch some straightforward but technical steps needed to verify that the constructed
graph is 5-connected at the end of the proof).

Theorem 6. For every real number ε > 0, there exists a plane 5-connected graph G
with n vertices that has a non-rainbow coloring with

(

171
400 − ε

)

n colors.
Proof. We construct plane 5-connected graphs by combining plane gadgets of two

different types, A-gadgets and B-gadgets.
An A-gadget is obtained as follows (the gadget is depicted in Figure 5): consider three

concentric cycles in the plane, the inner and outer ones of length 10 and the middle one of
length 20, and join the vertices of the middle cycle in an alternating way to the vertices of
the inner and outer cycles. The graph obtained in this way is the graph formed by bold
edges in the left part of Figure 5. Into each of the 20 pentagonal faces of the obtained
graph, add a single vertex and join it with all the five vertices on its boundary. This
completes the construction of the gadget. Note that an A-gadget has 60 vertices.

The construction of a B-gadget is more complex. First, start with a copy of the
dodecahedron and subdivide each edge of two antipodal faces. Next, place a copy of
the dodecahedron into each of the ten hexagonal faces of the obtained graph and join it
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FIGURE 5. An A-gadget and its coloring (the monochromatic edges are bold). The interconnecting
edges between an A-gadget and two B-gadgets are depicted in the left part of the figure and the in-
terconnection between an A-gadget with an additional vertex of degree 10 and a B-gadget surrounding
it in the right part of the figure. The vertices used to find five vertex-disjoint paths in the proof of
5-connectivity are drawn with empty circles.

FIGURE 6. A B-gadget (depicted in the left part of the figure) and its coloring where the monochromatic
edges are bold. Each of the gray parts of the gadget is a copy of the drawing depicted in the right. The
vertices used to find five vertex-disjoint paths in the proof of 5-connectivity are drawn with empty circles.
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FIGURE 7. Edges joining an A-gadget and a B-gadget.

by five edges to the rest of the graph as depicted in the left part of Figure 6 (the gray
pentagons represent the copies of the dodecahedron). Finally, add a vertex to each of
the eleven faces of each copy of the dodecahedron and join this vertex to all the five
vertices on the boundary of the face (see Figure 6 for illustration). The obtained graph
has 30 + 10 · 20 + 10 · 11 = 340 vertices.

We are now ready to construct plane graphs Gk. The graph Gk is obtained from k+1
A-gadgets and k B-gadgets by placing the gadgets concentrically in an alternating way,
i.e., each B-gadget is surrounded by two A-gadgets. Next, ten edges between each pair
of two neighboring gadgets are added in such a way that each vertex of the A-gadget is
incident with one such edge and the vertices of the B-gadget have degree at least five,
say this is done in the way drawn in Figure 7. A new vertex is placed in the most inner
face and joined by ten edges to the vertices in its boundary as depicted in the right part
of Figure 5. Similarly, a new vertex is added to the outer face. Hence, the graph Gk has
n = 60(k + 1) + 340k + 2 = 400k + 62 vertices in total.

Let us now turn to a construction of a non-rainbow coloring of Gk with many colors.
We first describe the coloring of an A-gadget. The 40 vertices of the three original cycles
are colored with the same color and the 20 new vertices with mutually distinct colors.
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In this way, a coloring of the gadget with 21 colors avoiding a rainbow face is obtained
(see Figure 5 for illustration).

We now describe the coloring of the vertices of the B-gadget. The vertices of each
copy of the dodecahedron are colored with the same color but vertices in different copies
receive different colors. The remaining vertices are colored with mutually distinct colors.
In this way, a coloring with 30 + 10 + 10 · 11 = 150 colors that avoids a rainbow face is
obtained. The coloring is also depicted in Figure 6.

Finally, a coloring of Gk with non-rainbow faces is obtained from the colorings of the
gadgets and vertices of different gadgets are colored with distinct colors. The two vertices
not contained in any of the gadgets are assigned colors different from the colors of all
the other vertices. In this way, a coloring of Gk with 21(k + 1) + 150k + 2 = 171k + 23
colors is obtained. Hence, for a sufficiently large integer k, the coloring uses more than
(171
400 − ε)n colors.

In order to finish the proof, it remains to verify that the graph Gk is 5-connected. Since
a complete proof of this fact is very technical, we sketch only the main idea and the reader
is invited to check the missing details. In order to verify that the graph Gk is 5-connected,
it is enough to construct five vertex-disjoint paths between any pair of vertices u and v
of Gk. Assume first that u and v are contained in different gadgets. If u is contained
in an A-gadget, find five vertex-disjoint paths from u to the five vertices depicted with
empty cycles in right part of Figure 5 that surrounds the part of Gk containing the vertex
v. If u is contained in a copy of the dodecahedron in a B-gadget, find first five vertex
disjoint paths to the five vertices on the outer face of the dodecahedron and then extend
them to vertex-disjoint paths to the vertices on the boundary of the gadget. Since the
five vertices on the inner boundary and the five vertices on the outer boundary that are
drawn with empty cycles in Figures 5 and 6 can be joined by five vertex-disjoint paths,
there exist five vertex-disjoint paths between u and v. We leave the remaining details
to the reader. Note that it is also necessary to verify the existence of five vertex-disjoint
paths between u and v if u and v are in the same gadget, or if one or both are the vertices
of degree 10.

We were not able to close the gap between the multiplicative constants in the bounds
that we provide in Theorems 5 and 6. There are examples of graphs (such as the dodec-
ahedron appearing in the B-gadget) for which the bound on their 5-weight is tight but
they seem very hard to combine together and thus a more involved argument may be
needed to settle this case. We leave determining the optimal multiplicative constant in
the bounds as an open problem.

Conjecture 3. There exists a constant C such that a rainbow coloring of a 5-connected
plane graph with n vertices uses at most 3

7n+C colors and there exist 5-connected plane
graphs with n vertices (for arbitrarily large n) with non-rainbow colorings with at least
3
7n − C colors.

Note that the conjectured multiplicative constant of 3/7 is sandwiched between the
bounds given in Theorems 5 and 6.
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