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TOTAL-COLORING OF PLANE GRAPHS WITH MAXIMUM
DEGREE NINE∗

�LUKASZ KOWALIK† , JEAN-SÉBASTIEN SERENI‡ , AND RISTE ŠKREKOVSKI§

Abstract. The central problem of the total-colorings is the total-coloring conjecture, which
asserts that every graph of maximum degree Δ admits a (Δ + 2)-total-coloring. Similar to edge-
colorings—with Vizing’s edge-coloring conjecture—this bound can be decreased by 1 for plane graphs
of higher maximum degree. More precisely, it is known that if Δ ≥ 10, then every plane graph of
maximum degree Δ is (Δ + 1)-totally-colorable. On the other hand, such a statement does not hold
if Δ ≤ 3. We prove that every plane graph of maximum degree 9 can be 10-totally-colored.
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1. Introduction. Given a graph G = (V,E) and a positive integer k, a k-total-
coloring of G is a mapping λ : V ∪ E → {1, 2, . . . , k} such that

(i) λ(u) �= λ(v) for every pair u, v of adjacent vertices,
(ii) λ(v) �= λ(e) for every vertex v and every edge e incident to v,
(iii) λ(e) �= λ(e′) for every pair e, e′ of incident edges.

This notion was independently introduced by Behzad [3] in his doctoral thesis, and
Vizing [15]. It is now a prominent notion in graph coloring, to which a whole book is
devoted [17]. Both Behzad and Vizing made the celebrated total-coloring conjecture,
stating that every graph of maximum degree Δ admits a (Δ+2)-total-coloring. Notice
that every such graph cannot be totally-colored with less than Δ+1 colors, and that a
cycle of length 5 cannot be 3-totally-colored. The best general bound so far has been
obtained by Molloy and Reed [10], who established that every graph of maximum
degree Δ can be (Δ+1026)-totally-colored. Moreover, the conjecture has been shown
to be true for several special cases, namely for Δ = 3 by Rosenfeld [11] and Vijayaditya
[14], and then for Δ ∈ {4, 5} by Kostochka [9].

Another natural subclass to consider is the one of planar graphs, which has at-
tracted a considerable amount of attention and several results were obtained. First,
Borodin [5] proved that if Δ ≥ 9, then every plane graph of maximum degree Δ fulfills
the conjecture. This result can be extended to the case where Δ = 8 by the use of
the four color theorem [1, 2], combined to Vizing’s Theorem about edge coloring—the
reader can consult the book by Jensen and Toft [8] for more details. Elsewhere,
Sanders and Zhao [12] solved the case Δ = 7 of the total-coloring conjecture for plane
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graphs. So the only open case regarding plane graphs is Δ = 6. Interestingly, Δ = 6 is
also the only remaining open case for Vizing’s edge-coloring conjecture, after Sanders
and Zhao [13] resolved the case Δ = 7.

However, plane graphs with high maximum degree allow a stronger assertion.
More precisely, Borodin [5] showed that if Δ ≥ 14, then every plane graph with maxi-
mum degree Δ is (Δ+1)-totally-colorable, and asked whether 14 could be decreased.
Borodin, Kostochka, and Woodall extended this result to the case where Δ ≥ 12 [6],
and later to Δ = 11 [7]. Recently, Wang [16] established the result for Δ = 10. On
the other hand, this bound is not true if Δ ≤ 3. The complete graphs K2, K4, and
the cycles of length 3k + 2 with k ≥ 1 are examples of plane graphs that cannot be
(Δ + 1)-totally-colored. We continue along those lines and establish the following
theorem.

Theorem 1. Every plane graph of maximum degree 9 is 10-totally-colorable.
So, the values of Δ, for which it is not known whether all plane graphs of maximum

degree Δ are (Δ + 1)-totally-colorable are now 4, 5, 6, 7, and 8. Recall that the case
where Δ = 6 is even open for the total-coloring conjecture. We also note that if Δ ≥ 3,
then every outerplane graph with maximum degree Δ can be (Δ + 1)-totally-colored
[19]. Another result of the same type is that every Halin graph of maximum degree 4
admits a 5-total-coloring [18]. Note also that the complete r-partite balanced graph
Kr∗n, whose maximum degree Δ is n(r− 1), admits a (Δ + 2)-total-coloring, and the
cases where this bound can be decreased by 1 have been characterized [4].

We prove Theorem 1 by contradiction. From now on, we let G = (V,E) be
a minimum counter-example to the statement of Theorem 1, in the sense that the
quantity |V | + |E| is minimum. In particular, every proper subgraph of G is 10-
totally-colorable. First, we establish various structural properties of G in section 2.
Then, relying on these properties, we use the discharging method in section 3 to obtain
a contradiction.

In what follows, a vertex of degree d is called a d-vertex. A vertex is a (≤d)-vertex
if its degree is at most d; it is a (≥d)-vertex if its degree is at least d. If f is a face
of G, then the degree of f is its length; i.e., the number of its incident vertices. The
notions of d-face, (≤d)-face, and (≥d)-face are defined analogously as for the vertices.
Moreover, if a vertex v is adjacent to a d-vertex u, then we say that u is a d-neighbor of
v. A cycle of length 3 is called a triangle. For integers a, b, c, an (≤a,≤b,≤c)-triangle
is a triangle xyz of G with deg(x) ≤ a,deg(y) ≤ b, and deg(z) ≤ c. The notions of
(a,≤b,≤c)-triangles, (a, b,≥c)-triangles, and so on are defined analogously.

2. Reducible configurations. In this section, we establish some structural
properties of the graph G. We prove that some planar graphs are reducible configu-
rations; i.e., they cannot be subgraphs of G.

For convenience, we sometimes define configurations by depicting them in figures.
In all of the figures of this paper, 2-vertices are represented by small black bullets,
3-vertices by black triangles, 4-vertices by black squares, and white bullets represent
vertices whose degree is at least the one shown on the figure.

Let λ be a (partial) 10-total-coloring of G. For each element x ∈ V ∪ E, we
define C(x) to be the set of colors (with respect to λ) of vertices and edges incident
or adjacent to x. Also, we set F(x) := {1, 2, . . . , 10} \ C(x). If x ∈ V , then we define
E(x) to be the set of colors of the edges incident to x. Moreover, λ is nice if only
some (≤4)-vertices are not colored. Observe that every nice coloring can be greedily
extended to a 10-total-coloring of G, since |C(v)| ≤ 8 for each (≤4)-vertex v; i.e., v
has at most 8 forbidden colors. Therefore, in the rest of this paper, we shall always
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suppose that such vertices are colored at the very end. More precisely, every time we
consider a partial coloring of G, we uncolor all (≤4)-vertices, and implicitly color them
at the very end of the coloring procedure of G. We make the following observation
about nice colorings and use it implicitly throughout this paper.

Observation. Let uv be an edge with deg(v) ≤ 4. There exists a nice coloring
λ of G − e, in which u is colored and v is uncolored. Moreover, it then suffices to
properly color the edge e with a color from {1, 2, . . . , 10} to extend λ to a nice coloring
of G.

We now study the structural properties of G in a series of lemmas.

Lemma 2. The graph G has the following properties:

(i) the minimum degree is at least 2;
(ii) if vu is an edge with deg(v) ≤ 4 then deg(u) ≥ 11 − deg(v);
(iii) a 9-vertex is adjacent to at most one 2-vertex;
(iv) a triangle incident to a 3-vertex must also contain a 9-vertex;
(v) there is no (4,≤7,≤8)-triangle;
(vi) a triangle contains at most one (≤5)-vertex.

Proof. (i) Suppose that v is a 1-vertex, and let u be its neighbor. By the mini-
mality of G, the graph G− v admits a nice coloring in which u is colored. Since the
degree of u in G − v is at most 8, we obtain |C(vu)| ≤ 9. Thus, the edge vu can be
properly colored, which yields a nice coloring of G.

(ii) Suppose that vu ∈ E with deg(v) ≤ 4 and deg(u) ≤ 10−deg(v). There exists
a nice coloring of G′ := G− vu, in which u is colored and v is uncolored. Therefore,
|C(vu)| ≤ deg(v) − 1 + deg(u) − 1 + 1 ≤ 9. Hence we can color properly the edge vu,
thereby obtaining a nice coloring of G.

(iii) Suppose that v is a 9-vertex adjacent to two 2-vertices x and y. Let x′ be
the neighbor of x different from v, and let y′ be the neighbor of y different from v.
Notice that we may have x′ = y′. By the previous assertion, x′ and y′ are 9-vertices.
It is enough to consider the following two possibilities.

v is adjacent to neither x′ nor y′. Then, we construct the graph G′ by first removing
x and y, and then adding the edge vx′. If y′ �= x′, then we additionally add
the edge vy′. Note that G′ is a simple plane graph of maximum degree 9
with fewer vertices and edges than G. Therefore, it admits a nice coloring
λ by the minimality of G. We easily modify λ to obtain a nice coloring
of G. First, put λ(xx′) := λ(vy) := λ′(vx′). Now, if x′ �= y′, then we put
λ(vx) := λ(yy′) := λ′(vy′). See Figure 1(a) for an illustration. And, if x′ = y′,
then we note that each of the edges yy′ and vx has at most 9 forbidden colors.
Thus, both of them can be colored and the obtained 10-total-coloring of G is
nice.

v is adjacent to x′. Thus vxx′ is a triangle. Consider a nice coloring of G− vy. To
extend it to G, it suffices to properly color the edge vy. If this cannot be
done greedily, then |C(vy)| = 10, and up to a permutation of the colors, we
can assume that the coloring is the one shown in Figure 1(b). If a �= 10, then
recolor vx with 10 and color vy with 5 to obtain a nice coloring of G. And if
a = 10, then we interchange the colors of vx′ and xx′, and afterwards color
vy with 4.

(iv) By 2, a 3-vertex has only (≥8)-neighbors. Thus we may suppose that vwu is
a (3, 8, 8)-triangle, with u being the 3-vertex. Consider a nice coloring of G− vu. To
extend it to G, again it suffices to properly color the edge vu. If we cannot do this
greedily, then it means that |C(vu)| = 10. Thus, up to a permutation of the colors, the
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Fig. 1. Configurations for the proof of Lemma 2.

coloring is the one shown in Figure 1(c). If the edge wu can be properly recolored, then
we do so, and afterwards color the edge vu with 10, which gives a nice coloring of G.
So we deduce that |C(wu)| = 9. Consequently, {a, b, c, d, e, f, g} = {1, 2, 3, 4, 5, 6, 8}.
Thus we obtain 9 /∈ C(vw). So, we can recolor vw with 9 and color vu with 7 to
conclude the proof.

(v) By 2, it is enough to prove that there is no (4, 7, δ)-triangle in G for δ ∈ {7, 8}.
Suppose that vwu is such a triangle with w having degree δ and u degree 4. Consider
a nice coloring of G−vu. It is sufficient to properly color the edge vu to obtain a nice
coloring of G. Again, |C(vu)| = 10, so up to a permutation of the colors, we assume
that the coloring is the one of Figure 1(d). If the edge wu can be properly recolored,
then do so, and color vu with 8 to obtain a nice coloring of G. Thus, we deduce that
|C(wu)| = 9. Therefore, {1, 2, 3, 4, 5, 7} ⊂ {a, b, c, d, e, f, g}. From this we infer that
|C(vw)| ≤ 6+ δ− 6 = δ ≤ 8. Thus, the edge vw can be properly recolored, and so the
edge vu can be colored with 6, yielding a nice coloring of G.

(vi) Let vuw be a triangle with deg(u) = deg(w) = 5. Consider a total-coloring
of G − uw, and uncolor the vertex w. Observe that |F(uw)| ≥ 1 and |F(w)| ≥ 1.
Furthermore, these two sets must actually be equal and of size 1, otherwise we can
extend the coloring to G. Up to a permutation of the colors, the coloring is the one
shown in Figure 1(e), with {A,B,C,D} = {1, 2, 3, 4}. Notice that the colors of the
edges vu and vw can be safely interchanged. Now, the vertex w can be properly



TOTAL-COLORING OF PLANE GRAPHS 5

Fig. 2. Reducible configurations of Lemma 33 and 3.

colored with 6, and the edge uw with 10.
Lemma 3. For the graph G, the following assertions hold.
(i) There is no (5, 6, 6)-triangle.
(ii) A 6-vertex has at most two 5-neighbors.
(iii) Suppose that v is a 7-vertex, and let x1 be one of its neighbors. If v and x1

have at least two common neighbors, then at most one of them has degree 4.
(iv) Suppose that vwu and vwu′ are two triangles with deg(u) = 2. Then, deg(u′) ≥

4.
(v) Suppose that v is a 9-vertex incident to a (2, 9, 9)-triangle. Then it is not

incident to a (≤3,≥8, 9)-triangle.
(vi) The configuration of Figure 2(a) is reducible.
(vii) The configuration of Figure 2(b) is reducible.
Proof. (i) Suppose on the contrary that G contains a (5, 6, 6)-triangle uvw with u

being of degree 5. The proof is in two steps. In the first step, we prove the existence
of a 10-total-coloring of G in which only u is uncolored. And in the second step,
we establish that such a coloring can be extended to G. Consider a nice coloring of
G− vu, and uncolor the vertex u. Our only goal in the first step is to properly color
the edge vu. If we cannot do this greedily, then |C(vu)| = 10, and thus we can assume
that the coloring is the one of Figure 3(a). We infer that {6, 7, 8, 9, 10} = {a, b, c, d, e},
otherwise we can choose a color α ∈ {6, 7, 8, 9, 10} \ {a, b, c, d, e}, recolor uw with α,
and color vu with 4. Consequently, we have C(vw) = {4, 6, 7, 8, 9, 10}. Thus, we can
recolor vw with 1, and color vu with 5.

For the second step, consider a partial 10-total-coloring of G such that only u
is not colored. If we cannot greedily extend it to G, then without loss of generality
the coloring is the one of Figure 3(b). Note that if |C(vu)| ≤ 8, then we can recolor
vu, and color u with 5. Thus, we infer that {a, b, c, d, e} ⊃ {7, 8, 9, 10}. Similarly,
{e, f, g, h, i} ⊃ {6, 8, 9, 10}. Observe that |C(v)| = 9, otherwise we just properly
recolor v, and color u with 6.

We assert that we can assume that e ∈ {1, 2, 3}. If it is not the case, then e ∈
{8, 9, 10}, say e = 10. By what precedes, |C(vw)| ≤ 12 − 4 = 8 and {4, 5, 6, 7, 8, 9} ⊂
C(vw). Thus at least one color among 1, 2, 3 can be used to recolor vw, which proves
the assertion. Therefore, {a, b, c, d} = {7, 8, 9, 10} and {f, g, h, i} = {6, 8, 9, 10}. Thus
vw can be recolored by every color of {1, 2, 3}. So, if there exists a color α ∈ {1, 2, 3}\
{A,B,C,D}, we can recolor vw with a color of {1, 2, 3} different from α, recolor v
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Fig. 3. Configurations for the proofs of Lemmas 3 and 4.
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with α and color u with 6. Hence {1, 2, 3} ⊆ {A,B,C,D}. Now, recall that |C(v)| = 9,
thus 4 ∈ {A,B,C,D}. Consequently, we can interchange safely the colors of vu and
wu, recolor v with 5, and finally color u with 6.

(ii) Suppose that v is a 6-vertex with three 5-neighbors x1, x2, x3. By Lemma 22,
these three vertices are pairwise nonadjacent. Let λ be a nice coloring of G−vx1, and
uncolor the edges vx2 and vx3 as well as the vertices v, x1, x2, and x3. Notice that
|C(xi)| ≤ 8 and |C(vxi)| ≤ 7 for each i ∈ {1, 2, 3}. Moreover, |C(v)| ≤ 6. Recall that
F(x) := {1, 2, . . . , 10} \ C(x) for every x ∈ V ∪E. Observe that for each i ∈ {1, 2, 3},
we have F(v) ∩ F(xi) ⊆ F(vxi). Hence, we infer that F(v) ∩ (F(vxi) ∪ F(xi)) =
F(v) ∩ F(vxi). Consequently, there exists a color α ∈ F(v) such that, after setting
λ(v) := α, it holds that |F(x3)| ≥ 2 and |F(vx3)| ≥ 3. If we color properly x1, vx1, x2,
and vx2, then we will be able to color greedily x3 and vx3, and hence the proof
would be complete. Observe that if α does not belong to F(x1) or to F(vx2), then
the coloring can be extended greedily to x1, x2, vx1, vx2—just color x1 or vx2 last,
respectively. Therefore we assume that α belongs to these two lists. Uncolor v and
color x1 and vx2 with α. With respect to this coloring, note that |F(vx1)| ≥ 2,
|F(v)| ≥ 3, |F(x2)| ≥ 1, |F(vx3)| ≥ 3 and |F(x3)| ≥ 2. Hence, we can color x2. Now,
if there exists β ∈ F(vx1) ∩ F(x3), then we let λ(vx1) := λ(x3) := β, and afterwards
greedily color v and vx3.

So, F(vx1) ∩ F(x3) = ∅. If there exists κ ∈ F(v) ∩ F(x3), then we set λ(v) := κ,
and afterwards we greedily color x3, vx3, and vx1 in this order. This is possible since
κ /∈ F(vx1). Otherwise, greedily coloring vx1, v, vx3, and x3 in this order yields a
nice coloring of G.

(iii) Suppose that the statement is false, so the graph G contains the configuration
of Figure 3(c). Consider a nice coloring λ of G− vx7. If it cannot be extended to G,
then |C(vx7)| = 10. Furthermore, |C(vx2)| = 9, otherwise we can color the edge vx7

with λ(vx2) and greedily recolor the edge vx2, thereby obtaining a nice coloring of G.
Therefore, we can assume that the coloring is the one shown in Figure 3(c). Then a
nice coloring of G is obtained by interchanging the colors of the edges x7x1 and vx1,
recoloring vx2 with 1 and coloring vx7 with 2, as shown in Figure 3(d).

(iv) Suppose on the contrary that G contains the configuration of Figure 3(e).
Consider a nice coloring of G− vx9. If the edge vx9 cannot be greedily colored, then
|C(vx9)| = 10. Thus we may assume that the coloring is the one shown in Figure 3(e).
Notice that a = 10, otherwise we recolor vx2 with 10 and color vx9 with 2. So, the
recoloring in Figure 3(f) is nice.

(v) Suppose that G contains the configuration of Figure 3(g), and consider a nice
coloring λ of G − vx9. Without loss of generality, we may assume that it is the one
of Figure 3(g). Observe that 10 ∈ {a, b}, otherwise we obtain a nice coloring of G by
setting λ(vx6) := 10 and λ(vx9) := 6. Now, we consider two cases regarding b.

b = 10. If a �= 7, then we can interchange the colors of the edges x6x7 and vx7, and
color vx9 with 7 to obtain a nice coloring of G. And if a = 7, then we
interchange the colors of the edges x9x8 and vx8, and then we let λ(vx6) := 8
and λ(vx9) := 6.

b �= 10. In this case, a = 10. We interchange the colors of x9x8 and vx8. Similar to
before, we deduce that b = 8. Now, the previous case applies with 8 playing
the role of color 10.

(vi) Suppose on the contrary that G contains the configuration of Figure 2(a).
Up to a permutation of the colors, every nice coloring of G − vx9 is as the one of
the figure. Note that d = 10, otherwise recolor vx8 with 10 and color vx9 with 8.
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Similarly, a = 10. Now, interchange the colors of the edges x1x2 and vx2. If b �= 2,
then the obtained coloring extends to G by coloring vx9 with 2. If b = 2, then
interchange the colors of the edges x9w and x1w thereby obtaining a nice coloring of
G − vx9. Since d = 10 �= 2, observe that we can extend it to G as before; i.e., we
recolor vx8 with 2 and color vx9 with 8.

(vii) Suppose that G contains the configuration of Figure 2(b). Consider a nice
coloring of G − vx9. Without loss of generality, we may assume that it is the one of
the figure. Note that 10 ∈ {a, b}, otherwise recolor vx5 with 10 and color vx9 with 5.
By symmetry, we can assume that a = 10. Interchange the colors of the edges x5x4

and vx4. If b �= 4, then we have a nice coloring of G − vx9, and we extend it to G
by coloring vx9 with 4. Otherwise, b = 4, we interchange the colors of the edges x5x6

and vx6, and color vx9 with 6, which yields a nice coloring of G.

Lemma 4. The configuration of Figure 3(h) is reducible.

Proof. Consider a nice coloring of G−vx9. If it cannot be greedily extended to G,
then |C(vx9)| = 10, and so we can assume that the coloring is the one of Figure 3(h).
First, we note that if a �= 7, then 10 ∈ {b, c}; otherwise, we recolor vx7 by 10, and
color vx9 with 7. Similarly, if a �= 2, then 10 ∈ {d, e}. We now split the proof into
three cases.

a /∈ {6, 8}. Since a is different from either 2 or 7, we may assume that a �= 7. As
mentioned above, we must have 10 ∈ {b, c}. Moreover, if we interchange the
colors of the edges x9x8 and vx8, then we deduce as before that 8 ∈ {b, c}, the
color 8 playing the role of color 10. Hence {b, c} = {8, 10}. Now, interchange
the colors of the edges x7x6 and vx6, and color vx9 with 6. If b = 10, then
the obtained coloring is proper, and if b = 8, then we additionally interchange
the colors of the edges x9x8 and vx8 to obtain the desired coloring.

a = 8. In this case 10 ∈ {b, c}. By interchanging the colors of the edges x9x8 and
vx8, and also of x9x1 and vx1, we infer that 1 ∈ {b, c}. Hence {b, c} = {1, 10}.
Similar to in the previous case, interchange the colors of x7x6 and vx6, and
afterwards color vx9 with 6. If b = 10, then the obtained coloring of G is
proper, and if b = 1, then it suffices to additionally interchange the colors of
the edges x9x1 and vx1, and also of x9x8 and vx8 to obtain a nice coloring
of G.

a = 6. Then, 10 ∈ {d, e}. Note that the colors of the edges x9x8 and vx8 can
be interchanged safely, because a �= 8. Therefore, as a �= 2, we infer that
8 ∈ {d, e}, and hence {d, e} = {8, 10}. We interchange now the colors of
the edges x2x3 and vx3, and color vx9 with 3. If e = 10, then the obtained
coloring of G if proper. And, if e = 8, then it suffices to interchange the colors
of the edges x9x8 and vx8 to obtain the desired coloring.

Lemma 5. If uvz is a triangle with an 8-vertex v and a 3-vertex u, then v has
no 3-neighbor distinct from u.

Proof. Suppose that v is an 8-vertex that contradicts the lemma. Let u and w be
two 3-neighbors of v, and assume that vuz is a triangle. We consider a nice coloring of
G− vu. If we cannot extend it to G, then, without loss of generality, we may assume
that the coloring is the one shown on Figure 4(a). Observe that {a, b} = {9, 10},
otherwise we obtain the desired coloring by recoloring vw with either 9 or 10, and
coloring vu with 2. Now, as depicted in Figure 4(b), we interchange the colors of the
edges uz and vz, recolor vw with 1, and color vu with 2 to obtain the sought coloring.

Lemma 6. The configuration of Figure 5(a) is reducible.
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Fig. 4. Coloring and recoloring for the proof of Lemma 5.

Fig. 5. Configurations for Lemma 6.

Proof. Consider a nice coloring of G− vx2. Up to a permutation of the colors, it
is the one of Figure 5(a). Note that 10 ∈ {a, b}, otherwise we obtain a nice coloring
of G by coloring vx2 with 10. We split the proof into two cases, regarding the value
of b.

Case 1. b = 10. If a = 4, then apply the recolorings of Figures 5(b) and (c),
regarding whether d is 3.
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Fig. 6. Configurations for Lemmas 7 and 8.

Suppose now that a �= 4. In this case, we deduce that d = 10; otherwise, we can
recolor vx4 with 10, and color vx2 with 4. If c �= 5, then the desired coloring can be
obtained as follows. If a �= 5, then interchange the colors of the edges x4x5 and vx5,
and color vx2 with 5, and if a = 5, then the recoloring of Figure 5(d) is nice.

We may assume now that c = 5. Interchange the colors of the edges x4x5 and
vx5, and also of the edges x4x3 and vx3. If a �= 3, then it suffices to color vx2 with
3. And, if a = 3, then additionally interchange the colors of the edges x2x1 and vx1,
recolor vx4 with 1, and color vx2 with 4 to obtain the sought coloring.

Case 2. b �= 10. Therefore, a = 10. First, note that 10 ∈ {c, d}; otherwise, we
recolor vx4 with 10, and color vx2 with 4. Either the obtained coloring of G is nice,
or b = 4. In the latter case, we additionally interchange the colors of x2x3 and x4x3

to obtain the desired coloring.
Suppose now that c = 10. Then, b = 4; otherwise, we uncolor vx4, color vx2 with

4, and apply Case 1 to the obtained coloring with x4 playing the role of the vertex x2.
Now, interchange the colors of x4x3 and vx3. The obtained coloring is nice if d �= 3,
and we extend it to G by coloring vx2 with 3. And, if d = 3, then we additionally
interchange the colors of x4x5 and vx5, and color vx2 with 5.

Finally, assume that c �= 10, and hence d = 10. Up to interchanging the colors of
x2x3 and x4x3, we may assume that b �= 5. Interchange the colors of x4x5 and vx5.
If c �= 5, the obtained coloring is nice and we extend it to G by coloring vx2 with 5.
And, if c = 5, then we additionally interchange the colors of x4x3 and vx3, and color
vx2 with 3.

Lemma 7. The configuration of Figure 6(a) is reducible.
Our proof of Lemma 7 uses the following result. Given a coloring λ and a vertex

v, recall that E(v) is the set of colors assigned to the edges incident to v. Let E ′(v) :=
{1, 2, . . . , 10} \ (E(v) ∪ {λ(v)}).

Lemma 8. Suppose that G contains the configuration of Figure 6(b). Then, for
every nice coloring λ of G− vx2, it holds that E ′(v) ∪ {λ(vx6)} ⊆ E(x2).

Proof. Up to a permutation of the colors, the coloring λ is the one of Figure 6(b).
Notice that E ′(v) = {10}, λ(vx6) = 6, and E(x2) = {a, b}. First, 10 ∈ {a, b};
otherwise, we just color vx2 with 10. By symmetry, we may assume that a = 10.
Thus, to finish the proof, it only remains to prove that b = 6. Suppose on the
contrary that b �= 6. Note that 10 ∈ {c, d}; otherwise, we recolor vx6 with 10 and
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color vx2 with 6. By symmetry, we may assume that d = 10. We consider two
possibilities regarding the value of b.

b = 1. Interchange the colors of the edges x6x7 and vx7. The obtained coloring
of G is nice if c �= 7, and if c = 7 we additionally interchange the colors of
x6x5 and vx5. Now, coloring vx2 with 7 or 5 yields a nice coloring of G, a
contradiction.

b �= 1. In this case, c = 1. Indeed, if c �= 1, then we recolor vx6 with 1, interchange
the colors of x2x1 and vx1, and color vx2 with 6 to obtain a nice coloring of
G. Now, if b �= 7, then interchange the colors of x6x7 and vx7 and color vx2

with 7. And, if b = 7, then interchange the colors of x6x5 and vx5, and also
of x2x1 and vx1, and color vx2 with 5.

Proof of Lemma 7. Consider a nice coloring λ of G − vx2. Up to a permutation
of the colors, we assume that the coloring is the one of Figure 6(a). By Lemma 8, we
have {a, b} = {6, 10}. We consider two cases.

a = 10 and b = 6. If there exists a color α ∈ {1, 10} \ {e, f, g}, then recolor vx4 with
α, and color vx2 with 4. The obtained coloring is nice if α = 10. And, if
α = 1, then it suffices to additionally interchange the colors of x2x1 and vx1.
Thus, {1, 10} ⊂ {e, f, g}.
Suppose that 6 /∈ {e, f, g}. We start by interchanging the colors of the edges
x2x3 and x4x3. If e = 10, then we additionally interchange the colors of x2x1

and vx1. Observe that the obtained coloring does not fulfill the conclusion
of Lemma 8, a contradiction. Hence, {e, f, g} = {1, 6, 10} and so e ∈ {1, 10}.
We interchange the colors of x4x3 and vx3, and color vx2 with 3. Either this
coloring of G is nice, or e = 1 and hence additionally interchanging the colors
of x2x1 and vx1 yields a nice coloring of G.

a = 6 and b = 10. If there exists α ∈ {3, 10} \ {f, g}, then recolor vx4 with α,
and color vx2 with 4. If the obtained coloring is not nice, then α = 3 and
hence interchanging the colors of x2x3 and vx3 yields a nice coloring of G, a
contradiction. Observe that we may assume that f = 3 and g = 10. Indeed,
if it is not the case, then we interchange the colors of x2x3 and vx3 and obtain
the desired condition, with 3 playing the role of color 10.
Furthermore, e = 5; otherwise, we interchange the colors of x4x5 and vx5, and
color vx2 with 5. Now, observe that d = 10; otherwise we recolor vx6 with
10, vx4 with 6, and color vx2 with 4 to obtain a nice coloring of G. Finally,
we interchange the colors of x6x7 and vx7. If c = 7, then we additionally
interchange the colors of x6x5 and vx5. Now, coloring vx2 with 7 or 5 yields
a nice coloring of G, a contradiction.

Lemma 9. The configurations of Figure 7 are reducible.

Proof. Consider a nice coloring of G − vu. We may assume that the coloring is
the one of Figure 7. Let α ∈ {1, 7, 9, 10} \ {a, b, c}. We recolor vx3 with α and color
vu with 3. The obtained coloring of G is nice unless α ∈ {1, 7}. If α = 1 then we
additionally interchange the colors of uw and vw. And if α = 7, then we interchange
the colors of ut and vt.

Lemma 10. A 6-vertex incident to 6 triangles is not adjacent to two 5-vertices.

Proof. Suppose that v is a 6-vertex. We let x1, x2, . . . , x6 be its neighbors, such
that xi is adjacent to xi+1 if i ∈ {1, 2, . . . , 5} and x6 is adjacent to x1. We also
assume that x6 is a 5-vertex, and we let w be the other 5-vertex. By symmetry and
Lemma 22, we may assume that w ∈ {x2, x3}. The proof is in two steps. In the first
step, we show that there exists a partial 10-total-coloring of G in which only x6 is



12 �L. KOWALIK, J.-S. SERENI, AND R. ŠKREKOVSKI

Fig. 7. Reducible configurations of Lemma 9. We assume that the degree of v in G is 8.

uncolored. In the second step, we show how to extend it to a 10-total-coloring of G.
Given a total-coloring and an element x ∈ V ∪ E, recall that C(x) is the set of

colors of all the elements of V ∪E incident or adjacent to x. Recall also that if x ∈ V ,
then E(x) is the set of colors of all the edges incident to x.

Let λ be a total-coloring of G−vx6, in which, furthermore, we uncolor the vertex
x6. Our goal is to properly color the edge vx6. Note that |C(vx6)| = 10; otherwise,
the edge vx6 can be greedily colored. Without loss of generality, we may assume that
the coloring is the one shown in Figure 8(a).

We want to color vx6 with λ(vw). Recall that w is either x2 or x3. We set E :=
E(w)∪{λ(w)}. If there exists a color α ∈ {7, 8, 9, 10}\E , then we set λ(vx6) := λ(vw)
and λ(vw) := α. Furthermore, if 1 /∈ E , then we interchange the colors of x6x1 and
vx1, color vx6 with λ(vw), and recolor vw with 1. Thus, 1 ∈ E . Similarly, we deduce
that 5 ∈ E . Finally, note that either 2 or 3 belongs to E , according to whether w is
x2 or x3. Consequently, this shows that |E| ≥ 7. But w has degree 5, thus |E| = 6, a
contradiction. This concludes the first step.

Suppose now that we are given a partial 10-total-coloring of G in which only
x6 is not colored. If we cannot extend it to G, then, without loss of generality, we
may assume that the coloring is the one shown in Figure 8(b). If there exists a color
α ∈ {2, 4, 6, 10}\{a, b, c, d, e}, then recolor vx6 with α and color x6 with 7 to obtain a
10-total-coloring of G. Hence, {2, 4, 6, 10} ⊂ {a, b, c, d, e}. Suppose that a /∈ {2, 4, 6}.
In this case, {b, c, d, e} = {2, 4, 6, 10}, and thus e ∈ {2, 4, 10}. Interchange the colors
of the edges x6x5 and vx5. Now, if a �= 5, then the obtained coloring is proper, and we
extend it to G by coloring x6 with 5. And, if a = 5, then we additionally interchange
the colors of x6x1 and vx1, and color v with 9. Consequently, we obtain a ∈ {2, 4, 6}.

If 9 /∈ {b, c, d, e}, then we can apply a similar recoloring. More precisely, we can
interchange the colors of the edges x6x1 and vx1. The obtained coloring is proper and
can be extended to G by coloring x6 with 9. So 9 ∈ {b, c, d, e}, and hence 5 /∈ E(v). We
interchange the colors of x6x5 and vx5, and color x6 with 5. Either the obtained 10-
total-coloring of G is proper, or e = 9. In the latter case, we additionally interchange
the colors of x6x1 and vx1 to obtain the sought contradiction.

Lemma 11. The configuration of Figure 9(a) is reducible.
Proof. Consider a nice coloring of G−vx9. Without loss of generality, it is the one

of Figure 9(a). First, note that a = 10; otherwise, we can recolor the edge vx8 with
10, and color vx9 with 8. Next, we infer that b = 7; otherwise, we can interchange the
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Fig. 8. Proof of Lemma 10: (a) coloring of G − vx6, (b) partial coloring of G in which x6 is
not colored.

Fig. 9. Precoloring and recoloring for the proof of Lemma 11.

colors of x8x7 and vx7, and color vx9 with 7. Now, observe that 10 ∈ {c, d}; otherwise,
we recolor vx2 with 10, and color vx9 with 2. Furthermore, 7 ∈ {c, d}; otherwise, we
interchange the colors of x8w and x9w, and also of x8x7 and vx7, recolor vx2 with
7, and color vx9 with 10. Thus, {c, d} = {7, 10}. If d = 7 and c = 10, then we just
interchange the colors of the edges x2x1 and vx1, and color vx9 with 1. And, if d = 10
and c = 7, then the recoloring shown in Figure 9(b) is a nice coloring of G.

3. Discharging part. Recall that G = (V,E) is a minimum counter-example
to the statement of Theorem 1, in the sense that |V | + |E| is minimum. We obtain
a contradiction by using the discharging method. Here is an overview of the proof.
We fix a planar embedding of G. Each vertex and face of G is assigned an initial
charge. The total sum of the charges is negative by Euler’s formula. Then, some
redistribution rules are applied, and vertices and faces send or receive some charge
according to these rules. The total sum of the charges is not changed during this
step, but at the end we infer that the charge of each vertex and face is nonnegative,
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a contradiction.
Initial charge. We assign a charge to each vertex and face. For every x ∈ V ∪ F ,

we define the initial charge ch(x) to be deg(x)− 4, where deg(x) is the degree of x in
G. By Euler’s formula the total sum is

∑

v∈V

ch(v) +
∑

f∈F

ch(f) = −8 .

Rules. We need the following definitions to state the discharging rules. A 2-
vertex is bad if it is not incident to a (≥5)-face. A triangle is bad if it contains
a vertex of degree at most 4. Recall that a triangle with vertices x, y, and z, is a
(deg(x),deg(y),deg(z))-triangle.

Rule R0. A (≥5)-face sends 1 to each incident 2-vertex.
Rule R1. A 5-vertex v sends 1/5 to each incident triangle.
Rule R2. A 6-vertex sends 13/35 to each incident (5, 6,≥7)-triangle, 1/3 to each

incident (6, 6, 6)-triangle, and 2/7 to each incident (6,≥6,≥7)-triangle.
Rule R3. A 7-vertex sends 1/2 to each incident bad triangle, 3/7 to each incident

nonbad (≤7,≤7, 7)-triangle, and 1/3 to each incident nonbad triangle containing a
(≥8)-vertex.

Rule R4. A 8-vertex sends
(i) 1/3 to each adjacent 3-vertex,
(ii) 1/2 to each incident bad triangle,
(iii) 7/15 to each incident (5,≤7, 8)-triangle and each incident (6, 6, 8)-triangle,
(iv) 2/5 to each incident (5,≥8, 8)-triangle, each incident (6, 7, 8)-triangle, and

each incident (6, 8, 8)-triangle,
(v) 1/3 to each incident (6, 8, 9)-triangle and each incident (≥7,≥7, 8)-triangle.
Rule R5. A 9-vertex sends
(i) 1 to each adjacent bad 2-vertex and 1/2 to each adjacent nonbad 2-vertex,
(ii) 1/3 to each adjacent 3-vertex,
(iii) 1/2 to each incident bad triangle and each incident (5,≤7, 9)-triangle,
(iv) 3/7 to each incident (6, 6, 9)-triangle,
(v) 2/5 to each incident (5,≥8, 9)-triangle and each incident (6,≥7, 9)-triangle,
(vi) 1/3 to each incident (≥7,≥7, 9)-triangle.
In what follows, we prove that the final charge ch∗(x) of every x ∈ V ∪ F is

non-negative. Hence, we obtain

−8 =
∑

v∈V

ch(v) +
∑

f∈F

ch(f) =
∑

v∈V

ch∗(v) +
∑

f∈F

ch∗(f) ≥ 0 ,

a contradiction. This contradiction establishes the theorem.
Final charge of faces. Let f be a d-face. Our goal is to show that ch∗(f) ≥ 0.

By Lemma 22 and 2, f is incident to at most 
d
3� vertices of degree 2. Therefore, if

d ≥ 5, then by Rule R0 we obtain ch∗(f) ≥ d − 4 − 
d
3� = � 2d

3 � − 4 ≥ 0. A 4-face
neither sends nor receives any charge, so its charge stays 0.

Finally, let f = xyz be a triangle with deg(x) ≤ deg(y) ≤ deg(z). The initial
charge of f is −1, and we assert that its final charge ch∗(f) is at least 0. We consider
several cases and subcases according to the degrees of x, y, and z.
deg(x) = 2. Then both y and z have degree 9 by Lemma 22, and hence f receives

1/2 from each of y and z by Rule R5(iii).
deg(x) = 3. In this case, by Lemma 22 and 2, we infer that deg(y) ≥ 8 and

deg(z) = 9. Thus, f receives 1
2 + 1

2 = 1 by Rules R4(ii) and R5(iii).
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deg(x) = 4. Then, by Lemma 22 and 2, deg(y) ≥ 7 and deg(z) ≥ 8. Hence, by Rules
R3, R4(ii), and R5(iii), f receives 1

2 + 1
2 = 1 from y and z.

deg(x) = 5. According to Lemma 22, deg(y) ≥ 6 and by Lemma 33, deg(z) ≥ 7. By
Rule R1, f receives 1/5 from x, so we only need to show that it receives at
least 4/5 from y and z together. Consider the following subcases.
deg(z) = 7. By Rule R3, z sends 3/7 to f , and by Rules R2 and R3, y sends

at least 13/35. Thus, f receives at least 13
35 + 3

7 = 4
5 from y and z, as

needed.
deg(z) = 8. If deg(y) ≤ 7, then z sends 7/15 to f by Rule R4(iii), and y

sends at least 1/3 by Rules R2 and R3. And, if deg(y) = 8, then both
y and z send 2/5 to f by Rule R4(iv). So, in both cases f receives 4/5
from y and z together.

deg(z) = 9. Suppose first that deg(y) ≤ 7. Then, by Rule R5(iii), z sends
1/2 to f . Moreover, by Rules R2 and R3, y sends at least 1/3 to f ,
which proves the assertion. Now, if deg(y) ≥ 8, then according to Rules
R4(iv) and R5(v) f receives 2/5 from each of y and z, as needed.

deg(x) = 6. First, if deg(z) = 6, then f receives 1/3 from each of its vertices by
Rule R2. So we assume that deg(z) ≥ 7. In this case, f receives 2/7 from x
by Rule R2. Hence, we only need to show that y and z send at least 5/7 to
f in total. We consider several cases, regarding the degree of z.
deg(z) = 7. Then f receives 3/7 from z by Rule R3, and at least 2/7 from

y by Rules R2 and R3, as desired.
deg(z) = 8. If deg(y) = 6, then z sends 7/15 by Rule R4(iii) and y sends

2/7 by Rule R2. And, if deg(y) ≥ 7, then y sends at least 1/3 by Rules
R3 and R4(iv), and z sends at least 2/5 by Rule R4(iv).

deg(z) = 9. If deg(y) = 6, then f receives 2/7 from y by Rule R2 and 3/7
from z by Rule R5(iv). And, if deg(y) ≥ 7, then f receives at least
1/3 from y by Rules R3, R4(v), and R5(v), and at least 2/5 from z by
Rule R5(v), which yields the result.

deg(x) ≥ 7. The assertion follows from Rules R3, R4(v), and R5(vi).

Final charge of vertices. Let v be an arbitrary vertex of G. We have deg(v) ≥ 2 by
Lemma 22. For every positive integer d, we define vd to be the number of d-neighbors
of v, and fd to be the number of d-faces incident to v. Let x1, x2, . . . , xdeg(v) be the
neighbors of v in clockwise order. We prove that the final charge of v is nonnegative.
To do so, we consider several cases, regarding the degree of v.

If deg(v) = 2, then its two neighbors are 9-vertices by Lemma 22. If v is bad,
then it receives 1 from each of its two 9-neighbors by Rule R5(i), while otherwise it
receives at least 1 from its incident faces by Rule R0, and 1/2 from each of its two
9-neighbors by Rule R5(i). Thus, in both cases its final charge is at least 0.

If deg(v) = 3, then all of its neighbors have degree at least 8, so by Rules R4(i)
and R5(ii) it receives 1/3 from each of its neighbors, setting its final charge to 0. If
deg(v) = 4, then it neither sends nor receives anything, so its charge stays 0. If v is
a 5-vertex, then by Rule R1 it sends 1/5 to each of its at most five incident triangles;
therefore, its final charge is nonnegative.

Suppose now that v is a 6-vertex. All of its neighbors have degree at least 5 by
Lemma 22. Note that if f3 ≤ 5, then, according to Rule R2, ch∗(v) ≥ 2 − 5 · 13

35 > 0.
So, we assume now that f3 = 6; i.e., v is incident to 6 triangles. Thus, we infer
from Lemma 10 that v5 ≤ 1. If v5 = 0, then following Rule R2, the vertex v sends
at most 6 · 1

3 = 2; therefore, its final charge is at least 0. And, if v5 = 1, then let
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x1 be the unique 5-neighbor of v. By Lemma 33, it holds that deg(x2) ≥ 7 and
deg(x6) ≥ 7. Consequently, vx3x2 and vx5x6 are two (6,≥6,≥7)-triangles. Thus,
ch∗(v) ≥ 2 − 2 · 13

35 − 2 · 1
3 − 2 · 2

7 = 2
105 > 0 by Rule R2.

Suppose that v is a 7-vertex. If f3 ≤ 6, then ch∗(v) ≥ 3 − 6 · 1
2 = 0 by Rule R3.

So, we assume now that f3 = 7. We consider several cases, according to the number
of 4-neighbors of v. Note that, by Lemma 22 and Lemma 33, the vertex v has at most
two such neighbors; i.e., v4 ≤ 2.

v4 = 0. According to Rule R3, we have ch∗(v) ≥ 3 − 7 · 3
7 = 0.

v4 = 1. Let x1 be this 4-neighbor. So, x2 and x7 both are 9-vertices by Lemma 22.
According to Rule R3, the vertex v sends 1/3 to each of vx2x3 and vx5x6.
Furthermore, v is incident to exactly two bad triangles and sends at most 3/7
to each nonbad triangle. Therefore, we obtain ch∗(v) ≥ 3−2 · 1

2 −3 · 3
7 −2 · 1

3 =
1
21 > 0.

v4 = 2. Without loss of generality, we assume that x1 has degree 4. According to
Lemmas 22 and 33, the other 4-neighbor of v must be x4 or x5, say x4 by
symmetry. By Lemma 22, the vertices x2, x7, x3, and x5 all have degree 9.
Note that x6 has degree at least 5. Consequently, ch∗(v) = 3−4 · 1

2 −3 · 1
3 = 0.

Suppose now that v is an 8-vertex. If v3 = 0, then ch∗(v) ≥ 4 − 8 · 1
2 = 0 by

Rule R4. Thus, we assume now that x1 is a 3-vertex. Notice that, by Lemma 5, if a
3-neighbor of v is on a triangle, then v3 = 1. Therefore, v3+f3 ≤ 9. If f3 ≤ 6, then we
obtain ch∗(v) ≥ 4−6 · 1

2 −3 · 1
3 = 0. If f3 = 7, then we infer from Lemma 5 that v3 ≤ 1,

and so ch∗(v) ≥ 4− 7 · 1
2 − 1

3 = 1
6 > 0. Now we suppose that f3 = 8, and thus v3 = 1.

According to Lemma 22, it holds that deg(x2) = 9 and deg(x9) = 9. Moreover, by
Lemma 9, all the vertices but x1 have degree at least 5. Thus, by Rule R4, we infer
that ch∗(v) ≥ 4 − 1

3 − 2 · 1
2 − 4 · 7

15 − 2 · 2
5 = 0.

Finally, suppose that v is a 9-vertex. By Lemma 22, v is adjacent to at most one
2-vertex. We consider two cases.

Case 1. v2 = 0. Suppose first that v is incident to a (≥4)-face; i.e., f3 ≤ 8. If
f3 = 8, then v3 ≤ 3 by Lemmas 4 and 6, and hence ch∗(v) ≥ 5 − 8 · 1

2 − 3 · 1
3 = 0. If

f3 ≤ 7, then we assert that f3 + v3 ≤ 12. Indeed, if v3 ≥ 6, then, as two 3-vertices
are not adjacent, we infer that f3 ≤ 2(9 − v3), which yields the assertion. So if
f3 ≤ 6, then we obtain ch∗(v) ≥ 5 − 6 · 1

2 − 6 · 1
3 = 0. If f3 = 7, then we can see

that v3 ≤ 4 by Lemmas 4 and 6. Consequently, ch∗(v) ≥ 5 − 7 · 1
2 − 4 · 1

3 = 1
6 > 0.

Now assume that f3 = 9. Then, v3 ≤ 2 according to Lemma 4. If v3 ≤ 1, then
ch∗(v) ≥ 5 − 9 · 1

2 − 1
3 = 1

6 > 0. Assume now that v3 = 2. Without loss of generality,
say that x1 is a 3-vertex, thus both x2 and x9 are (≥8)-vertices. Note that by Lemma 6,
both x3 and x8 are (≥4)-vertices. Therefore, up to symmetry, it suffices to consider
the following two cases.

x4 is the second 3-neighbor. Then deg(x3) ≥ 8, so by Rule R5(vi) the vertex v sends
1
3 to vx2x3. Hence, we infer that ch∗(v) ≥ 5 − 2 · 1

3 − 8 · 1
2 − 1

3 = 0.
x5 is the second 3-neighbor. In this case, deg(x4) ≥ 8 and deg(x6) ≥ 8. Further-

more, deg(x3) ≥ 5 by Lemma 7. Consequently, x3x2v and x3x4v are both
(≥5,≥8, 9)-triangles. Hence, v sends at most 2

5 to each of them by Rule R5(v).
So, ch∗(v) ≥ 5 − 2 · 1

3 − 7 · 1
2 − 2 · 2

5 = 1
30 > 0.

Case 2. v2 = 1. Let x1 be the 2-neighbor. Observe that by Lemma 33, v cannot
have a 3-neighbor on two triangles. Moreover, x1 cannot be incident to two triangles,
so f3 ≤ 8. We consider the following possibilities.

x1 is on a triangle. Let this triangle be vx1x2. From Lemma 33 and 3, we infer that
f3 + v3 ≤ 8. So, ch∗(v) ≥ 5 − 1 − 8 · 1

2 = 0.
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x1 is bad but not on a triangle. In this case, x1 is on two 4-faces; therefore, in
particular, f3 ≤ 7. Note that by Lemma 33, either one vertex among x2, x9

has degree at least 4, or f3 ≤ 5. Besides, according to Lemma 33 there is no
3-neighbor on two triangles. Observe also that if both vx2x3 and vx8x9 are
triangles, then Lemma 11 implies that v3 ≤ 6. Let us consider several cases
regarding the value of f3.
f3 ≤ 4. Then f3+v3 ≤ 10; otherwise, we obtain a contradiction by Lemma 33

and 3. Thus, ch∗(v) ≥ 5 − 1 − 4 · 1
2 − 6 · 1

3 = 0.
f3 = 5. Using Lemma 33 and 3, a small case-analysis shows that v3 ≤

5. Moreover, if v3 = 5, then the obtained configuration is the one of
Lemma 11, which is reducible. And, if v3 ≤ 4, then we obtain ch∗(v) ≥
5 − 1 − 5 · 1

2 − 4 · 1
3 = 1

6 > 0.
f3 = 6. In this case, v3 ≤ 3 by Lemma 33 and 3. Thus, ch∗(v) ≥ 5 − 1 − 6 ·

1
2 − 3 · 1

3 = 0.
f3 = 7. By Lemma 33 and 3, v has at most one 3-neighbor, namely x2 or

x9. Thus, ch∗(v) ≥ 5 − 1 − 7 · 1
2 − 1

3 = 1
6 > 0.

x1 is neither bad nor on a triangle. Notice that f3 ≤ 7. Let us again consider several
cases regarding the value of f3.
f3 ≤ 5. In this case, f3 + v3 ≤ 11 by Lemma 33. So, ch∗(v) ≥ 5 − 1

2 − 5 ·
1
2 − 6 · 1

3 = 0.
f3 = 6. Similarly as before, we infer that v3 ≤ 4, and hence ch∗(v) ≥

5 − 1
2 − 6 · 1

2 − 4 · 1
3 = 1

6 > 0.
f3 = 7. By Lemma 33 the vertex v has at most two 3-neighbors, namely x2

and x9. Thus, ch∗(v) ≥ 5 − 1
2 − 7 · 1

2 − 2 · 1
3 = 1

3 > 0.

This establishes that the final charge of every vertex is nonnegative; therefore, the
proof of Theorem 1 is now complete.
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[11] M. Rosenfeld, On the total coloring of certain graphs, Israel J. Math., 9 (1971), pp. 396–402.
[12] D. P. Sanders and Y. Zhao, On total 9-coloring planar graphs of maximum degree seven, J.

Graph Theory, 31 (1999), pp. 67–73.
[13] D. P. Sanders and Y. Zhao, Planar graphs of maximum degree seven are class I, J. Combin.

Theory Ser. B, 83 (2001), pp. 201–212.
[14] N. Vijayaditya, On total chromatic number of a graph, J. London Math. Soc. (2), 3 (1971),

pp. 405–408.
[15] V. G. Vizing, Some unsolved problems in graph theory, Uspehi Mat. Nauk, 23 (1968), pp. 117–

134.
[16] W. Wang, Total chromatic number of planar graphs with maximum degree ten, J. Graph

Theory, 54 (2007), pp. 91–102.
[17] H. P. Yap, Total colorings of graphs, Lecture Notes in Math. 1623, Springer-Verlag, Berlin,

1996.
[18] Z. Zhang, L. Liu, J. Wang, and H. Li, A note on the total chromatic number of Halin graphs

with maximum degree 4, Appl. Math. Lett., 11 (1998), pp. 23–27.
[19] Z. F. Zhang, J. X. Zhang, and J. F. Wang, The total chromatic number of some graphs, Sci.

Sinica Ser. A, 31 (1998), pp. 1434–1441.


