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1 Introduction

We study L(p, q)-labelings of planar graphs with no short cycles. An L(p, q)-
labeling of a graph G is a labeling c of its vertices by non-negative integers
such that the labels (colors) assigned to neighboring vertices differ by at least
p and the labels of pairs of vertices at distance two differ by at least q. The
least integer K such that there exists a proper L(p, q)-labeling of G by integers
between 0 and K is called the span and denoted by λp,q(G). Clearly, if p =
q = 1, an L(p, q)-labeling of G is just a proper coloring of the square of G
with numbers between 0 and K and χ(G2) = λ1,1(G) + 1.

The chromatic number of the square of a graph G is between ∆+1 and ∆2 +1
where ∆ is the maximum degree of G. However, it is not hard to infer from
Brooks’ theorem that there are only finitely many connected graphs for which
the upper bound is attained (each such graph must be ∆-regular graph of order
∆2 + 1 and diameter two and there are only finitely many such graphs [17]).
On the other hand, the chromatic number of the square of a planar graph
is bounded by a function linear in the maximum degree (note that this does
not follow directly from the 5-degeneracy of planar graphs [16]). Wang and
Lih [27] conjectured that there exists an integer ∆0 such that if G is a planar
graph with maximum degree ∆ ≥ ∆0 and the girth of G is at least seven,
then the chromatic number of G2 is ∆ + 1. Borodin et al. [5] proved this
conjecture (without being actually aware of the conjecture itself) and also
showed that the analogous statement is not true for graphs of girth six by
constructing planar graphs G of girth six and arbitrary maximum degree ∆
with χ(G2) = ∆+2. On the other hand, the squares of planar graphs of girth
six and sufficiently large maximum degree are (∆ + 2)-colorable [8].

Wang and Lih [27] also asked whether similar results could hold for L(2, 1)-
labelings of graphs. In this paper, we show that this is indeed the case. In
particular, we prove that if G is a planar graph of maximum degree ∆ ≥
190 + 2p, p ≥ 1, and its girth is at least seven, then λp,1(G) ≤ 2p + ∆ − 2. At
the end of the paper, we show that our upper bound is tight for all pairs of
∆ and p and discuss possible extensions of our results to L(p, q)-labelings for
q > 1.

Before we start with the presentation of our results, let us briefly summa-
rize the known results on L(p, q)-labelings of graphs. One of the most im-
portant open problems in the area is the conjecture of Griggs and Yeh [15]
that λ2,1(G) ≤ ∆2 for every graph G with maximum degree ∆ ≥ 2. This
conjecture is widely open, verified only for few classes of graphs including
graphs of maximum degree two, chordal graphs [25] (see also [6,22]), Hamilto-
nian cubic graphs [18,19], and planar graphs with maximum degree four and
more [2]. For general graphs, the original bound λ2,1(G) ≤ ∆2 + 2∆ from [15]

2



was improved to λ2,1(G) ≤ ∆2 + ∆ in [7] and a recent more general result of
Král’ and Škrekovski [21] yields λ2,1(G) ≤ ∆2 + ∆ − 1. The present record of
∆2 + ∆ − 2 was established by Gonçalves [13]. Optimal L(p, q)-labelings are
also intensively studied for the class of planar graphs. The following bounds
are known: λp,q(G) ≤ (4q − 2)∆ + 10p − 38q − 23 due to van den Heuvel and
McGuiness [16], λp,q(G) ≤ (2q − 1)⌈9∆/5⌉ + 8p − 8q + 1 if ∆ ≥ 47 due to
Borodin et al. [4], and λp,q(G) ≤ q⌈5∆/3⌉+ 18p+ 77q− 18 due to Molloy and
Salavatipour [24]. Bounds for planar graphs without short cycles were proven
by Wang and Lih [27]:

• λp,q(G) ≤ (2q − 1)∆ + 4p + 4q − 4 if G is a planar graph of girth at least
seven,

• λp,q(G) ≤ (2q − 1)∆ + 6p + 12q − 9 if G is a planar graph of girth at least
six, and

• λp,q(G) ≤ (2q − 1)∆ + 6p + 24q − 15 if G is a planar graph of girth at least
five.

The algorithmic aspects of L(p, q)-labelings also attracted a lot of attention
of researchers [1,3,10,11,20,23] because of potential applications in radio fre-
quency assignment.

2 Preliminaries

In this section, we introduce notation used throughout the paper. All graphs
considered in the paper are simple, i.e., without parallel edges and loops. A
d-vertex is a vertex of degree exactly d. An (≤d)-vertex is a vertex of degree
at most d. Similarly, an (≥d)-vertex is a vertex of degree at least d. A k-thread
is an induced path comprised of k 2-vertices.

An ℓ-face is a face of length ℓ (counting multiple incidences, i.e., bridges in-
cident to the face are counted twice). If the boundary of a face f forms a
connected subgraph, then the subgraph formed by the boundary (implicitly
equipped with the orientation determined by the embedding) is called the fa-
cial walk. A face f is said to be biconnected if its boundary is formed by a
single simple cycle. The neighbors of a vertex v on the facial walk are called
f -neighbors of v. Note that if f is biconnected, then each vertex incident with
f has exactly two f -neighbors.

Let us consider a biconnected face f , and let v1, . . . , vk be (≥ 3)-vertices
incident to f listed in the order on the facial walk of f . The type of f is a
k-tuple (ℓ1, . . . , ℓk) if the part of the facial walk between vi and vi+1 is an
ℓi-thread. In particular, if vi and vi+1 are f -neighbors, then ℓi is zero. Two
face types are considered to be the same if they can be types of the same face,
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i.e., they differ only by a cyclic rotation and/or a reflection.

If the face f is biconnected and v is a vertex incident to f , then the neighbors
of v that are not its neighbors on the facial walk are said to be opposite to
the face f . Similarly, if both the faces f1 and f2 incident to an edge uv are
biconnected, then the faces incident to v distinct from f1 and f2 are opposite
to the vertex u (with respect to the vertex v).

Our main result is that the square of a planar graph of girth seven and suffi-
ciently large maximum degree ∆ is (∆+1)-colorable. In fact, we prove a more
general on L(p, q)-labelings of such graphs. For an integer D ≥ 192, a graph
G is D-good if its maximum degree is at most D and it has an L(p, 1)-labeling
of span at most D + 2p − 2 for every p ≤ (D − 190)/2. A planar graph G of
girth at least 7 and maximum degree at most D is said to be D-minimal if
it is not D-good but every proper subgraph of G is D-good. Clearly, if G is
D-minimal, then it is connected. A vertex of G is said to be small if its degree
is at most 95, and big otherwise.

Our proof is based on the discharging method. We show that there is no D-
minimal graph, i.e., all planar graphs of girth at least seven and maximum
degree at most D are D-good. In order to show this, we first describe configu-
rations that cannot appear in a D-minimal graph (reducible configurations).
In the proof, we consider a potential D-minimal graph and assign each vertex
and each face a certain amount of charge. The amounts are assigned in such
a way that their sum is negative. The charge is then redistributed among the
vertices and faces according to the rules described in Section 5. It is shown
that if the considered graph is D-minimal, then the final charge of every vertex
and every face is non-negative after the redistribution. Since the sum of the
initial charges is negative, we obtain a contradiction and conclude that there
is no D-minimal graph.

3 Structure of D-minimal graphs

In this section, we identify configurations that cannot appear in D-minimal
graphs. The following argument is often used in our considerations: we first
assume that there exists a D-minimal graph G that contains a certain config-
uration. We remove some vertices of G and find a proper L(p, 1)-labeling of
the new graph (the labeling exists because G is D-minimal). We then recolor
some of the vertices: at this stage, we state the properties that the new colors
of the recolored vertices should have, and recolor the vertices such that the
properties are met (and show that it is possible). If the original colors of such
vertices already have the desired properties, then the vertices just keep their
original colors. Finally, the labeling is extended to the removed vertices.
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We have already seen that every D-minimal graph is connected. Similarly, it
is not hard to see that the minimum degree of a D-minimal graph is at least
two:

Lemma 1 If G is a D-minimal graph, then its minimum degree is at least
two.

PROOF. Assume that G contains a vertex v of degree one (since G is con-
nected, it has no vertices of degree zero). Fix an integer p ≤ (D−190)/2 such
that G has no proper L(p, 1)-labeling of span D + 2p− 2. Let v′ be the neigh-
bor of v in G. Remove v from G. Since G is D-minimal, the obtained graph
has a proper L(p, 1)-labeling c of span D + 2p − 2. We extend the labeling c
to v: the vertex v cannot be assigned at most 2p − 1 colors whose difference
from the color of v′ is less than p and it cannot be assigned at most D − 1
colors which are assigned to the other neighbors of v′. Therefore, there are at
most D + 2p− 2 forbidden colors for v. In particular, there exists a color that
can be assigned to v, and thus c can be extended to v. This contradicts our
assumption that G is D-minimal.

Observe that Lemma 1 implies that every ℓ-face of a D-minimal graph G for
ℓ ≤ 13 is biconnected because of the girth assumption and that the facial walk
of every ℓ-face with ℓ ≤ 11 induces a chordless cycle of G.

Next, we focus on 2-, 3- and 4-threads contained in D-minimal graphs:

Lemma 2 If vertices v and w of a D-minimal graph G are joined by a 2-
thread, then at least one of the vertices v and w is big.

PROOF. Fix an integer p ≤ (D− 190)/2 such that G has no proper L(p, 1)-
labeling with span D + 2p − 2. Let v′w′ be the 2-thread between v and w in
G (where v′ is the neighbor of v). Assume for the sake of contradiction that
neither v nor w is big. Remove the vertices v′ and w′ from G. Since G is D-
minimal, there exists a proper L(p, 1)-labeling c of the obtained graph whose
span does not exceed D + 2p − 2. We extend the labeling c to the vertices v′

and w′.

Let Av be the set of the colors that differ by at least p from the color of v
and are different from the colors of all the neighbors of v and from the color
of w. Similarly, let Aw be the set of the colors that differ by at least p from
the color of w and are different from the colors of all the neighbors of w and
from the color of v. Since w is not a big vertex, the number of these colors is
at least (D + 2p − 1) − (2p − 1) − 94 − 1 ≥ 2p, since D − 95 ≥ 2p. Similarly,
we have |Av| ≥ 2p.
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Color now the vertices v′ and w′ by colors from Av and Aw that differ by at
least p (observe that such colors always exist). The obtained labeling c is a
proper L(p, 1)-labeling of G with span at most D + 2p − 2.

The following two statements readily follow:

Lemma 3 No D-minimal graph G contains a 4-thread.

PROOF. Assume that a D-minimal graph G contains a 4-thread vv′v′′v′′′.
By Lemma 2, v or v′′′ is big and vv′v′′v′′′ is not a 4-thread.

Lemma 4 If vertices v and w of a D-minimal graph G are joined by a 3-
thread, then both v and w are big.

PROOF. Let v′v′′v′′′ be the 3-thread joining v and w. By Lemma 2, v or v′′′

is big. Since v′′′ is a 2-vertex, v is big. Similarly, we infer that w is big.

Next, we focus on cycles of lengths seven and eight contained in D-minimal
graphs. Note that the boundary of every 7-face and 8-face is biconnected
(because of the girth assumption and Lemma 1), i.e., its boundary is a simple
cycle of length seven or eight, and thus the following lemma can always be
applied in such cases.

Lemma 5 Let v1v2v3v4v5v6v7 be a part of a 7-cycle or an 8-cycle contained
in a D-minimal graph G. If v2, v3, v5 and v6 are 2-vertices, then v1 or v7 is a
big vertex.

PROOF. Fix an integer p ≤ (D− 190)/2 such that G has no proper L(p, 1)-
labeling with span D + 2p − 2. Note that the distance between the vertices
v1 and v7 is at most two. Assume that neither v1 nor v7 is big. Remove the
vertices v2, v3, v5 and v6 from G. Since G is D-minimal, the new graph has
an L(p, 1)-labeling c of span at most 2p + D − 2. Let A be the set of colors γ
that differ from the color of v4 by at least p and such that no neighbor of v4

is colored with γ. Since there are 2p + D − 1 colors available and the degree
of v4 in the new graph does not exceed D − 2, we infer that |A| ≥ 2.

We extend the labeling c to the removed vertices. Color the vertices v5 and
v3 by distinct colors from A in such a way that the colors of v5 and v7 are
different, and the colors of v3 and v1 are also different. Since the colors of v7

and v1 are different (the distance of v7 and v1 in G is at most two), this is
always possible.
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Color now the vertex v6 by a color that differs by at least p from the colors
of v5 and v7 and that differ from the colors of v4 and (at most 94) neighbors
of v7. Since there are at most 95 + 4p − 2 ≤ 2p + D − 2 forbidden colors for
v6, the vertex v6 can be colored. Similarly, it is possible to color the vertex
v2. Since the obtained labeling is a proper L(p, 1)-labeling with span at most
2p + D − 2, the graph G is not D-minimal.

The following result is an easy consequence of Lemma 5:

Lemma 6 No D-minimal graph G contains a pair of vertices joined by two
3-threads.

PROOF. Assume for the sake of contradiction that G contains two vertices v
and w joined by two 3-threads. The vertices v, w and the two 3-threads joining
them comprise an 8-cycle in G. By Lemma 5, at least one of the neighbors of
w in the 3-threads is big, but both the neighbors are 2-vertices.

We now focus on 3-vertices in D-minimal graphs:

Lemma 7 Let v1v2v3v4 be a path of a D-minimal graph G where v2 is a 3-
vertex. If neither v1 nor v4 is big and v3 is a 2-vertex, then the remaining
neighbor w of v2 is big.

PROOF. Fix an integer p ≤ (D−190)/2 such that G has no L(p, 1)-labeling
of span 2p + D − 2. Assume that w is not big. Remove the vertex v3 from G.
Since G is D-minimal, there exists a proper L(p, 1)-labeling of the obtained
graph with span at most 2p + D − 2. We first change the color of v2 and then
we extend the labeling c to the vertex v3.

Recolor the vertex v2 by a color that differs from the colors of v1 and w by
at least p, and that is different from the colors of all the neighbors of v1 and
w and from the color of v4. Since neither v1 nor w is big, there are at most
2(2p − 1) + 2 · 94 + 1 ≤ 2p + D − 2 forbidden colors for v2. Hence, the vertex
v2 can be recolored.

Finally, color the vertex v3 by a color that differs from the colors of v2 and v4

by at least p, and that is different from the colors of all the neighbors of v2 and
v4. Since v2 is a 3-vertex and v4 is not big, there are at most 2(2p−1)+94+2 ≤
2p + D − 2 forbidden colors and v3 can be colored.

We finish this section by establishing a lemma on the structure of faces of type
(2, 1, 1):
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Fig. 1. Notation used in the proof of Lemma 8.

Lemma 8 The following configuration does not appear in a D-minimal graph
G: a 7-face f of type (2, 1, 1) with one big and two 4-vertices such that both
the 4-vertices of f are adjacent only to small vertices.

PROOF. By Lemma 2, the big vertex incident to f delimits the 2-thread.
Let v be the big vertex and w the other vertex delimiting the 2-thread and
let v′v′′ be the 2-thread (the 2-vertex v′ is an f -neighbor of v). Let w′, w′′ and
w′′′ be the neighbors of w different from v′′ (see Figure 1) and assume that w′

is an f -neighbor of w.

Fix an integer p ≤ (D − 190)/2 such that G has no proper L(p, 1)-labeling
with span 2p + D − 2. Remove the vertices v′′ and w′ from G. Since G is
D-minimal, there exists a proper L(p, 1)-labeling c of the new graph whose
span is at most 2p+D− 2. Next, we change the color of w and we extend the
labeling c to the vertices v′′ and w′.

Recolor the vertex w by a color that differs by at least p from the colors w′′

and w′′′, and that is different from the colors of all the neighbors of w′′ and w′′′

and that is also different from the color of v′ and the other 4-vertex incident to
f . Since none of the vertices w′′ and w′′′ is big, the number of colors forbidden
for w does not exceed 2(2p − 1) + 2 · 94 + 2 ≤ D + 2p − 2. Hence, the vertex
w can be recolored.

Next, color the vertex w′ by a color that differs from the colors of both the
4-vertices incident with f by at least p and that is also different from the colors
of all the six neighbors of the 4-vertices. Since the number of such forbidden
colors does not exceed 2(2p−1)+6 ≤ D+2p−2, the vertex w′ can be colored.

Finally, we color the vertex v′′ by a color that differs from the colors of v′ and
w by at least p and that is different from the colors of the vertices v, w′, w′′

and w′′′. Since there are at most 4p + 2 ≤ D + 2p − 2 forbidden colors, the
labeling c can be also extended to the vertex v′′.
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4 Initial charge

We now describe the amounts of initial charge of vertices. The initial charge
of a d-vertex v is set to

ch(v) = d − 3,

and the initial charge of an ℓ-face f to

ch(f) = ℓ/2 − 3.

It is easy to verify that the sum of initial charges is negative:

Proposition 9 If G is a connected planar graph, then the sum of all initial
charges of the vertices and faces of G is −6.

PROOF. Since G is connected, Euler’s formula yields that n + f = m + 2
where n is the number of the vertices of G, m is the number of its edges and
f is the number of its faces. The sum of initial charges of the vertices of G is
equal to

∑

v∈V (G)

(d(v) − 3) = 2m − 3n.

The sum of initial charges of the faces of G is equal to

∑

f∈F (G)

(

ℓ(f)

2
− 3

)

= m − 3f.

Therefore, the sum of initial charges of all the vertices and faces is 3m− 3n−
3f = −6.

Note that the amounts of initial charge were chosen such that each face of size
at least 6 (consequently, each face of a D-minimal graph) has non-negative
charge, the charge of 6-faces is zero and only 2-vertices have negative charge
of −1 unit.

5 Discharging rules

Next, the charge is redistributed among the vertices and faces of a (potential)
D-minimal graph by the following rules:

R1 Each face f sends a charge of 1/2 to every incident 2-vertex.
R2 Each 4-vertex sends a charge of 1/4 to every incident face.
R3 Each small (≥ 5)-vertex sends a charge of 5/16 to every incident face.
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R4 Each big vertex adjacent to a 3-vertex w sends a charge of 5/16 to the
opposite face through w.

R5 Each big vertex adjacent to a 4-vertex w sends a charge of 1/16 to each
of the two opposite faces through w.

R6 If v is a big vertex incident to a face f and v1 and v2 are its f -neighbors,
then v sends the following charge to f :

1/2 if k = 0,

3/4 if k = 1,

15/16 if k = 2 and the type of f is not (3, 2), and

1 if the type of f is (3, 2),

where k is the number of 2-vertices in set {v1, v2}.

If there are multiple incidences, the charge is sent according to the appropriate
rule(s) several times, e.g., if a 2-vertex v is incident to a bridge, then it is
incident to a single face f and f sends a charge of 1/2 to v twice by Rule R1.

6 Final charge of vertices

In this section, we analyze the final amounts of charge of vertices.

Lemma 10 If a graph G is D-minimal, then the final charge of every (≤ 4)-
vertex is zero.

PROOF. The initial charge of a 2-vertex v is −1 and it receives a charge
of 1/2 from each of the two incident faces by Rule R1. Therefore, its final
charge is zero. Since a 3-vertex does not receive or send out any charge, its
final charge is zero. Similarly, a 4-vertex sends a charge of 1/4 to each of the
four incident faces by Rule R2. Since its initial charge is 1, its final charge is
also zero.

Lemma 11 If a graph G is D-minimal, then the final charge of every small
(≥ 5)-vertex is non-negative.

PROOF. Consider a small vertex v of degree d ≥ 5. The vertex v sends a
charge of 5/16 to each of the d incident faces by Rule R3. Hence, it sends out
a charge of at most 5d/16. Since the initial charge of v is d − 3 ≥ 5d/16, the
final charge of v is non-negative.

The analysis of final charge of big vertices needs finer arguments:
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Lemma 12 If a graph G is D-minimal, then the final charge of every big
vertex is non-negative.

PROOF. Let v be a big vertex of degree d. Let v1, . . . , vd be the neighbors of
v in a cyclic order around the vertex v and let f1, . . . , fd be the faces incident
to v in the order such that the fi-neighbors of v are the vertices vi and vi+1.
Note that some of the faces fi can coincide. Let ϕ(vi) be the amount of charge
sent from v through a vertex vi. Similarly, ϕ(fi) is the amount of charge sent
to fi. Note that this is a slight abuse of our notation since the faces fi are not
necessarily mutually distinct—in such case, ϕ(fi) is the amount of charge sent
from v because of this particular incidence to fi.

We show that the following holds for every i = 1, . . . , d (indices are modulo
d):

ϕ(vi)

2
+ ϕ(fi) + ϕ(vi+1) + ϕ(fi+1) +

ϕ(vi+2)

2
≤

31

16
. (1)

Summing (1) over all i = 1, . . . , d yields the following:

d
∑

i=1

(2ϕ(vi) + 2ϕ(fi)) ≤
(

2 −
1

16

)

d. (2)

Recall now that the initial charge of v is d−3. Because v is big, its degree d is
at least 96. Since the charge sent out by v is at most d−d/32 by (2), the final
charge of v is non-negative. Therefore, in order to establish the statement of
the lemma, it is enough to show that the inequality (1) holds.

Let us fix an integer i between 1 and d. We distinguish several cases according
to which of the vertices vi, vi+1 and vi+2 are of degree 2:

None of the vertices vi, vi+1 and vi+2 is a 2-vertex. The vertex v sends
through each of the vertices vi, vi+1 and vi+2 a charge at most 5/16 by
Rules R4 and R5, i.e., ϕ(vi), ϕ(vi+1), ϕ(vi+2) ≤ 5/16. By Rule R6, both the
faces fi and fi+1 receive charge of 1/2 from v, i.e., ϕ(fi), ϕ(fi+1) ≤ 1/2.
Hence, the sum (1) of charges is at most 13/8 < 31/16.

The vertex vi+1 is not a 2-vertex and one of vi and vi+2 is a 2-vertex.

By symmetry, we can assume that vi is a 2-vertex and vi+2 is a (≥ 3)-
vertex. Since vi is a 2-vertex, v sends no charge through it, i.e., ϕ(vi) =
0. By Rule R6, ϕ(fi) = 3/4 and ϕ(fi+1) = 1/2. By Rules R4 and R5,
the amounts of charge sent from v through vi+1 and vi+2 do not exceed
5/16, i.e., ϕ(vi+1), ϕ(vi+2) ≤ 5/16. Therefore, the sum (1) is bounded by
3/4 + 1/2 + 3/2 · 5/16 < 31/16.
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The vertex vi+1 is not a 2-vertex and both vi and vi+2 are 2-vertices.
The vertex v sends a charge of 3/4 to both the faces fi and fi+1 by Rule R6,
i.e., ϕ(fi) = ϕ(fi+1) = 3/4. No charge is sent through the vertices vi

and vi+2, i.e., ϕ(vi) = ϕ(vi+2) = 0. The amount of charge sent through
vi+1 is at most 5/16 (charge can be sent through it only by Rule R4 or
Rule R5), i.e., ϕ(vi+1) ≤ 5/16. We conclude that the sum (1) is at most
2 · 3/4 + 5/16 < 31/16.

The vertex vi+1 is a 2-vertex and neither vi nor vi+2 is a 2-vertex. The
vertex v sends a charge of 3/4 to both the faces fi and fi+1 by Rule R6,
i.e., ϕ(fi) = ϕ(fi+1) = 3/4. The amount of charge sent through each of vi

or vi+2 is at most 5/16 (charge can be sent through it only by Rule R4 or
Rule R5), i.e., ϕ(vi), ϕ(vi+2) ≤ 5/16. Since no charge is sent through vi+1,
i.e., ϕ(vi+1) = 0, the sum (1) is at most 2 · 3/4 + 5/16 < 31/16.

The vertex vi+1 is a 2-vertex and one of vi and vi+2 is a 2-vertex. By
symmetry, we can assume that vi is a 2-vertex and vi+2 is a (≥ 3)-vertex.
Since vi and vi+1 are 2-vertices, v sends no charge through vi or vi+1,
i.e., ϕ(vi) = ϕ(vi+1) = 0. By Rule R6, the face fi receives a charge of
at most 1 and the face fi+1 a charge of at most 3/4, i.e., ϕ(fi) ≤ 1
and ϕ(fi+1) ≤ 3/4. Finally, the charge sent from v through vi+2 is at
most 5/16, i.e., ϕ(vi+2) ≤ 5/16. We infer that the sum (1) is bounded
by 1 + 3/4 + 5/32 < 31/16.

All the vertices vi, vi+1 and vi+2 are 2-vertices. There is no charge sent
from v through any of the vertices vi, vi+1 and vi+2, i.e., ϕ(vi) = ϕ(vi+1) =
ϕ(vi+2) = 0. If at least one of the faces fi and fi+1 is not a (3, 2)-face, then
the total amount of charge sent to both of them by Rule R6 is at most
15/16 + 1 = 31/16 as desired. In the rest, we consider the case when both
the faces fi and fi+1 are (3, 2)-faces. Let v′ be the other big vertex incident
to fi and fi+1 (v′ is big by Lemma 4). The vertex vi+1 lies in a 2-thread
or a 3-thread shared by the faces fi and fi+1. If the faces fi and fi+1 share
a 2-thread, then the vertices v and v′ are joined by two 3-threads—this
is impossible by Lemma 6. On the other hand, if they share a 3-thread,
then the vertices v and v′ together with the two 2-threads form a 6-cycle
contradicting the girth assumption.

7 Final charge of faces

In this section, we analyze the final amounts of charge of faces. First, we
start with faces that are not biconnected. Recall that a maximal 2-connected
subgraph of a graph is called a block. Blocks form a tree-like structure. The
blocks that contain (at most) one vertex in common with other blocks are
referred to as end-blocks.

Lemma 13 Let f be a face of a D-minimal graph G. If f is not biconnected,
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then its final charge is non-negative.

PROOF. Let P be the facial walk of f . Since f is not biconnected, P consists
of two or more blocks. In particular, it contains at least one cut-vertex. Each
end-block of P is a cycle by Lemma 1. In addition, observe that the end-blocks
of P are cycles of length at least seven. Let C1 and C2 be two different end-
blocks of P and w1 and w2 be their cut-vertices (note that w1 may be equal
to w2), respectively.

Let k be the number of incidences of f with (≥ 3)-vertices, counting multi-
plicities. If w1 6= w2, then each of w1 and w2 contributes at least two to k,
thus w1 and w2 together contribute by at least 4 to k. Otherwise, the vertex
w1 = w2 contributes at least two to k (it contributes two if P is comprised of
two blocks).

Since the length of C1 is at least seven, it has at least one (≥ 3)-vertex different
from w1 by Lemma 3. If C1 contains exactly one such (≥ 3)-vertex, then it has
a 3-thread (it cannot have a 4-thread by Lemma 3), and the vertex w1 is big
by Lemma 4. Similar statements hold for C2. Therefore, there are at least two
(≥ 3)-vertices incident with f that are distinct from w1 and w2. We conclude
that k ≥ 4. Moreover, if w1 6= w2 or w1 = w2 is small, then k ≥ 6. Note that
in the latter case, there are at least four (≥ 3)-vertices incident with f that
are distinct from w1 = w2.

If f is an ℓ-face, its initial charge is ℓ/2− 3. The face f sends out a charge of
(ℓ− k)/2 by Rule R1. If k ≥ 6, then this is at most ℓ/2− 3 and thus the final
charge of the face is non-negative.

If k < 6, then w1 = w2 is a big vertex (this follows from our previous discus-
sion) and it has two incidences with f . Therefore f receives a charge of at least
one unit from w1 by Rule R6 and its final charge is ℓ/2−3− (ℓ−k)/2+1 ≥ 0.

Next, we analyze biconnected faces starting with 7-faces:

Lemma 14 The final charge of each 7-face f of a D-minimal graph G is
non-negative.

PROOF. The initial charge of the face f is 1/2. By Lemma 3, f does not
contain a 4-thread, and thus the face f is incident to at least two (≥ 3)-
vertices. We distinguish five cases according to the number of (≥ 3)-vertices
incident to f :

13



The face f is incident to two (≥ 3)-vertices. In this case, the type of f
is (3, 2). By Lemma 4, both the (≥ 3)-vertices are big and each of them
sends a charge of 1 unit to f by Rule R6. Since f sends out a charge of 5/2
to the five incident 2-vertices, its final charge is zero.

The face f is incident to three (≥ 3)-vertices. Since f sends a charge of
two units to the incident 2-vertices, it is enough to show that it receives a
charge of at least 3/2 from the incident (≥ 3)-vertices. Since G does not
contain a 4-thread by Lemma 3, the type of f is (3, 1, 0), (2, 2, 0) or (2, 1, 1).

If f is incident to two big vertices, then each of them sends a charge of at
least 3/4 to f by Rule R6, and the final charge of f is non-negative. In the
rest, we assume that f is incident to at most one big vertex. Consequently,
the type of f is (2, 2, 0) or (2, 1, 1) by Lemma 4 and f is incident to exactly
one big vertex by Lemma 2.

Assume that the type of f is (2, 2, 0). By our assumption, f is incident to
a single big vertex and, by Lemma 2, this vertex delimits both the 2-threads
of f . However, Lemma 5 yields that one of the other two (≥ 3)-vertices is
also big (contrary to our assumption).

The final case to consider is that the type of f is (2, 1, 1). Let v be the
big vertex incident to f . By Lemma 2, v delimits the 2-thread. Since both
f -neighbors of v are 2-vertices, v sends a charge of 15/16 to f . Let v′ be any
of the other two (≥ 3)-vertices incident to f . If v′ is a 3-vertex, its neighbor
opposite to f is big by Lemma 7 and it sends (through v′) a charge of 5/16
to f by Rule R4. If v′ is a 4-vertex, it sends a charge of 1/4 to f , and if v′ has
a big neighbor opposite to f , then the big neighbor sends f an additional
charge of 1/16 by Rule R5. Finally, if v′ is a small (≥ 5)-vertex, it sends a
charge of 5/16 to f by Rule R3. We conclude that if f receives a total charge
of less than 3/2, then both the (≥ 3)-vertices incident to f are 4-vertices
with no big neighbors. However, this is impossible by Lemma 8.

The face f is incident to four (≥ 3)-vertices. Since f is incident to three
2-vertices, it sends out a charge of 3/2. We show that, on the other hand,
it receives a charge of at least one unit from the incident (≥ 3)-vertices.
This will imply that the final charge of f is non-negative. If f is incident to
two big vertices, then it receives a charge of at least 1/2 from each of them,
i.e., a charge of at least one unit in total. Hence, we can assume in the rest
that f is incident to at most one big vertex. In particular, by Lemma 4, f
has no 3-thread. Therefore, the type of f is one of the following: (2, 1, 0, 0),
(2, 0, 1, 0) or (1, 1, 1, 0).

Assume first that f is incident to no big vertex. By Lemma 2, the type
of f is (1, 1, 1, 0). Let v be any of the four (≥ 3)-vertices incident to f .
Note that v has an f -neighbor that is a 2-vertex. If v is a (≥ 4)-vertex,
then f receives a charge of at least 1/4 units from v by Rules R2 and R3.
If v is a 3-vertex, then its neighbor opposite to f is big by Lemma 7 and
it sends a charge of 5/16 through v to f by Rule R4. Since the choice of v
was arbitrary, the amount of charge sent from (or through) each incident
(≥ 3)-vertex is at least 1/4 and f receives a charge of at least 1 unit in
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Fig. 2. All configurations (up to symmetry) of a 7-face of types (2, 1, 0, 0), (2, 0, 1, 0)
and (1, 1, 1, 0) when the face is incident to a single big vertex. The big vertices
are represented by full squares, the small (≥ 3)-vertices by empty squares and the
2-vertices by circles. Note that a 2-thread must be bounded by at least one big
vertex by Lemma 2.

total.
We now consider the case that exactly one vertex incident to f is big. We

say that a vertex x incident to f has Property S if the following conditions
are satisfied:
(1) x is small,
(2) both f -neighbors of x are small, and
(3) one of the f -neighbors of x is a 2-vertex with no big f -neighbor.
It is routine to check that the following claim holds (consult Figure 2): unless
the type of f is (2, 1, 0, 0) and the big vertex delimits both the 2-thread and
the 1-thread of f , the face f is incident to two different (≥ 3)-vertices w1

and w2 that have Property S.
Under the assumption that the type of f is not (2, 1, 0, 0), we show that

the face f receives a charge of at least 1/4 from (or through) each of w1

and w2: if wi is a (≥ 4)-vertex, then f receives a charge of at least 1/4 from
it. Otherwise, wi is a 3-vertex and, by Lemma 7, its neighbor opposite to
f is big. Consequently, it sends through wi a charge of 5/16 to f . Since f
receives in addition the charge of at least 1/2 from the big vertex, its final
charge is non-negative as desired.

It remains to consider the case when the type of f is (2, 1, 0, 0) and the
big vertex delimits both the 2-thread and the 1-thread of f . In this case, f
receives a charge of 15/16 from the incident big vertex by Rule R6. Moreover,
there exists a vertex w that has Property S (consult Figure 2). Similarly
as in the previous paragraph, the charge sent from w to f is at least 1/4.
Altogether, f receives a charge of at least 1 and the final charge is thus
non-negative.

The face f is incident to five (≥ 3)-vertices. The face f sends a charge
of 1 unit to the two incident 2-vertices. Thus it is enough to show that the
face f receives a charge of at least 1/2 from incident vertices. If f is incident
to a big vertex, then f receives a charge of at least 1/2 from it by Rule R6.
We assume in the rest that f is only incident to small vertices. In particular,
f has no 2-thread (by Lemma 2).

Let v be a 2-vertex incident to f and let v− and v+ be the two f -neighbors
of v. Note that both v− and v+ are (≥ 3)-vertices. If v− is a (≥ 4)-vertex,
it sends a charge of at least 1/4 to f . If v− is a 3-vertex, then its neighbor
opposite to f is big by Lemma 7, and it sends a charge of 5/16 through v−
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to f . Similarly, f receives a charge of at least 1/4 from (or through) v+.
Hence, the total charge received by f from the vertices v− and v+ is at least
1/2 and the final charge of f is non-negative.

The face f is incident to six or seven (≥ 3)-vertices. Since the face f
is incident to at most one 2-vertex, it sends out a charge of at most 1/2 and
its final charge is non-negative.

Next, we analyze the final charge of 8-faces.

Lemma 15 The final charge of each biconnected 8-face f of a D-minimal
graph G is non-negative.

PROOF. First note that the initial charge of the face f is one. By Lemma 3,
the face f does not contain a 4-thread. Therefore, the face f is incident to
at least two (≥ 3)-vertices. We distinguish five cases based on the number of
(≥ 3)-vertices incident to the face f :

The face f is incident to two (≥ 3)-vertices. Since f does not contain a
4-thread, the type of f is (3, 3). However, this is impossible by Lemma 6.

The face f is incident to three (≥ 3)-vertices. Since f sends a charge of
5/2 to the incident 2-vertices, it is enough to show that it receives a charge
of at least 3/2 from the incident (≥ 3)-vertices. Since f does not contain a
4-thread, the type of f is (3, 2, 0), (3, 1, 1) or (2, 2, 1).

If the type of f is (3, 2, 0) or (3, 1, 1), then the 3-thread is delimited by
two big vertices (by Lemma 4) and f receives from each of them a charge
of at least 3/4 by Rule R6. Hence, the final charge of f is non-negative.

Assume that the type of f is (2, 2, 1). It is enough to show that f is
incident to at least two big vertices because each of them would send a
charge of 3/4 to f by Rule R6. If this is not the case, then f is incident to
exactly one big vertex that is common to the two 2-threads by Lemma 2.
However, by Lemma 5, at least one of the other two (≥ 3)-vertices is also
big. We conclude that f is incident to at least two big vertices.

The face f is incident to four (≥ 3)-vertices. Since f is incident to four
2-vertices, f sends out a charge of two units. We claim that it also receives
a charge of at least one unit from the incident vertices. This will imply that
the final charge of f is non-negative. If f is incident to two big vertices,
then it receives a charge of at least 1/2 from each of them and the claim
holds. We assume in the rest that f is incident to at most one big vertex.
In particular, by Lemma 4, f does not have a 3-thread.

Assume that f contains a 2-thread. Let v and v′ be the vertices delimiting
the 2-thread. By Lemma 2, v or v′ is big, say v. Since v is incident to a
2-vertex, it sends a charge of at least 3/4 to f by Rule R6. If v′ is a (≥ 4)-
vertex, then f receives a charge of at least 1/4 from v′ and the final charge
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of f is non-negative. Otherwise, v′ is a 3-vertex incident to a 2-thread and
its f -neighbor not contained in the 2-thread is a small vertex. By Lemma 7,
the neighbor of v′ opposite to f is a big vertex. Hence, the face f receives
a charge of 5/16 from the big neighbor of v′ and thus its final charge is
non-negative.

In the rest, we assume that f has neither a 3-thread nor a 2-thread.
Consequently, the type of f must be (1, 1, 1, 1). Let v1, v2, v3 and v4 be the
(≥ 3)-vertices incident to f in the order as they appear on the facial walk
of f . We have already established that f is incident with at most one big
vertex. First assume that f is incident to a single big vertex, say v1. Note
that f receives a charge of 15/16 from v1 by Rule R6. If v3 is a (≥ 4)-vertex,
it sends a charge of 1/4 to f and the final charge of f is non-negative. If
v3 is a 3-vertex, then its neighbor opposite to f is big (by Lemma 7) and
sends a charge of 5/16 to f , and thus the final charge of f is non-negative.

It remains to consider the case when the type of f is (1, 1, 1, 1) and f is
not incident to a big vertex. Let us consider a vertex v1. If v1 is (≥ 4)-vertex,
it sends a charge of at least 1/4 to f . If v1 is 3-vertex, then its neighbor
opposite to f is big, and it sends a charge of 5/16 to f through v1. Similarly,
we can infer that f receives a charge of at least 1/4 from (or through) the
vertices v2, v3 and v4. Hence, f receives a charge of at least one unit from
the incident vertices and its final charge is non-negative.

The face f is incident to five (≥ 3)-vertices. The face f sends a charge
of 3/2 units to the incident 2-vertices. Thus it is enough to show that the
face f receives a charge of at least 1/2 from incident (≥ 3)-vertices. If f
is incident to a big vertex, then f receives a charge of at least 1/2 from it
and the final charge is non-negative. We assume in the rest that f is only
incident to small vertices.

Let v be a 2-vertex incident to f . Since f is incident to no big vertex,
both the neighbors v− and v+ of v are (≥ 3)-vertices by Lemma 2. If v− is a
(≥ 4)-vertex, it sends a charge of at least 1/4 to f . And if v− is a 3-vertex,
then its neighbor opposite to f is big by Lemma 7 and it sends through v−

to f a charge of 5/16. Similarly, f receives a charge of at least 1/4 from (or
through) v+. Hence, f receives a charge of at least 1/2 in total from the two
neighbors of v and the final charge of f is non-negative.

The face f is incident to six or more (≥ 3)-vertices. Since the face f is
incident to at most two 2-vertices, it sends out a charge of at most one unit
and the final charge of f is non-negative.

Finally, we analyze the case of (≥ 9)-faces:

Lemma 16 The final charge of each biconnected (≥ 9)-face f of a D-minimal
graph is non-negative.
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Fig. 3. Possible types of a 9-face or a 10-face with no 3-thread and at most two
2-threads. The (≥ 3)-vertices are represented by squares and the 2-vertices by cir-
cles.

PROOF. Since f does not contain a 4-thread by Lemma 3, the face f is
incident to at least three (≥ 3)-vertices. The initial charge of f is ℓ/2 − 3
where ℓ is the length of f . We distinguish four cases according to the number
of (≥ 3)-vertices incident to f :

The face f is incident to three (≥ 3)-vertices. The face f sends out a
charge of (ℓ − 3)/2 to the incident 2-vertices. It is enough to show that
f receives a charge of at least 3/2 from the incident vertices. If f has a
3-thread, then the 3-thread is delimited by two big vertices. Both of them
send a charge of at least 3/4 to f by Rule R6. Therefore, if the total charge
received by f is less than 3/2, then f has no 3-thread. Consequently, the
length of f is nine and its type is (2, 2, 2). By Lemma 2, at least two of the
(≥ 3)-vertices are big and f receives a charge of at least 3/2 from them by
Rule R6 in this case.

The face f is incident to four (≥ 3)-vertices. The face f sends a charge
of (ℓ − 4)/2 to the incident 2-vertices. It is enough to show that f receives
a charge of at least 1 from the incident vertices. If f has a 3-thread, then
the 3-thread is delimited by two big vertices (by Lemma 4) and each of
them sends a charge of at least 1/2 to f by Rule R6. If f has at least three
2-threads, then these threads are delimited by at least two different big
vertices by Lemma 2, and f receives a charge of at least 1/2 from each of
them by Rule R6. If none of the above cases holds, i.e., f has no 3-thread
and at most two 2-threads, then its type must be one of the following:
(2, 2, 1, 0), (2, 1, 2, 0), (2, 1, 1, 1), (2, 2, 1, 1), and (2, 1, 2, 1)—see Figure 3.

Assume that the type of f is one of those five types. Since f has a 2-
thread, it must be incident to a big vertex v by Lemma 2. Let v′, v′′ and v′′′

be the remaining (≥ 3)-vertices incident to f . The face f receives a charge
of at least 1/2 from the vertex v by Rule R6. If at least one of v′, v′′ and v′′′

is big, then it sends an additional charge of at least 1/2 to f by Rule R6,
and the total amount of charge received by f is at least one. Let us assume
in the rest that all the vertices v′, v′′ and v′′′ are small.

Observe that in this case the type of f is (2, 2, 1, 0), (2, 1, 1, 1) or (2, 2, 1, 1).
If v′ is a (≥ 4)-vertex, f receives a charge of at least 1/4 from v′ by Rule R2
or Rule R3. If v′ is a 3-vertex, its neighbor opposite to f is big by Lemma 7
and it sends through v′ to f a charge 5/16 by Rule R4. Similarly, f receives
a charge of at least 1/4 from v′′ and v′′′. We conclude that the total charge
received by f is at least one.
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The face f is incident to five (≥ 3)-vertices. The face f sends a charge
of (ℓ − 5)/2 to the incident 2-vertices. It is enough to show that f receives
a charge of at least 1/2 from the incident vertices. If f is incident to a big
vertex, then it receives a charge of at least 1/2 by Rule R6 from this vertex.
Assume in the rest that f is only incident to small vertices. In particular,
the length of every 2-thread of f is one by Lemma 2. Let v be a 2-vertex
incident to f and v− and v+ the f -neighbors of v. Note that both v− and
v+ are (≥ 3)-vertices. If v− is a (≥ 4)-vertex, then f receives a charge of
at least 1/4 from v− by Rule R2 or Rule R3. If v− is a 3-vertex, then its
neighbor opposite to v is big by Lemma 7 and the face f receives a charge
of 5/16 from it through v. Similarly, f receives a charge of at least 1/4 from
(or through) v+. Altogether, f receives a charge of at least 1/2 as required.

The face f is incident to six or more (≥ 3)-vertices. The face f sends
out a charge of at most (ℓ − 6)/2 by Rule R1. Since the initial charge of f
is ℓ/2 − 3 and ℓ ≥ 9, the final charge is non-negative.

8 Final step

We now combine our observations from the previous sections together:

Theorem 17 If G is a planar graph of maximum degree ∆ ≥ 190+2p, p ≥ 1,
and the girth of G is at least seven, then G has a proper L(p, 1)-labeling with
span 2p + ∆ − 2.

PROOF. Consider a possible counterexample G and set D = ∆. Since G is
not D-good, there exists a D-minimal graph G′. Assign charge to the vertices
and faces of G′ as described in Section 4. Apply the rules given in Section 5
to G′. By Proposition 9, the sum of the amounts of initial charge assigned to
the vertices and edges of G′ is −6. On the other hand, the final amounts of
charge of every vertex (Lemmas 10–12) and every face (Lemmas 13–16) are
non-negative. However, this is impossible since the total amount of charge is
preserved by the rules.

We use an argument applied in [24] to derive the following result for L(p, q)-
labelings:

Corollary 18 If G is a planar graph of maximum degree ∆ ≥ 190 + 2⌈p/q⌉,
p, q ≥ 1, and girth at least seven, then G has a proper L(p, q)-labeling with
span 2p + q∆ − 2.
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PROOF. Let p′ = ⌈p/q⌉. By Theorem 17, the graph G has a proper L(p′, 1)-
labeling c′ with span 2p′ + ∆ − 2. Define a labeling c by setting c(v) = qc′(v)
for each vertex v. The labeling c is a proper L(p′q, q)-labeling. Therefore, it is
also a proper L(p, q)-labeling of G. The span of c is at most the following:

q(2p′ + ∆ − 2) = 2

(

p′ −
q − 1

q

)

q + q∆ − 2 ≤ 2p + q∆ − 2.

9 Conclusion

One may ask whether the bound proven in Theorem 17 cannot be further
improved, e.g., to 2p + ∆ − 3. However, the bound is tight for all considered
pairs of ∆ and p as shown in the following proposition (though the next
proposition follows from results of [12], see Proposition 20, we include its
short proof for the sake of completeness):

Proposition 19 Let p and ∆ ≥ 2p be arbitrary integers. There exists a tree
T with maximum degree ∆ such that the span of an optimal L(p, 1)-labeling of
T is 2p + ∆ − 2.

PROOF. It can be easily proven by induction on the order of a tree that the
span of an optimal labeling of any tree with maximum degree ∆ is at most
2p+∆−2. Therefore, it is enough to construct a tree with no L(p, 1)-labeling
with span less than 2p + ∆− 2. Let us consider the following tree T : a vertex
v0 is adjacent to ∆ vertices v1, . . . , v∆ and each of the vertices v1, . . . , v∆ is
adjacent to ∆ − 1 leaves. Clearly, the maximum degree of T is ∆.

Assume that T has a proper L(p, 1)-labeling c of span at most 2p + ∆ − 3.
Since ∆ ≥ 2p, the color of at least one of the vertices v0, . . . , v∆ is between
p−1 and p+∆−2, i.e., c(vi) ∈ {p−1, . . . , p+∆−2} for some i. The color of
each neighbor of vi is either at most c(vi)− p or at least c(vi) + p. Since there
are only ∆− 1 such colors, two of the neighbors of vi have the same color and
the labeling c is not proper.

One may also ask whether the condition ∆ ≥ 190+2p in Theorem 17 cannot be
further weakened. The answer is positive (we strongly believe that the bound
for p = 2 can be lowered to approximately 50) but we decided not to try to
refine the discharging phase and the analysis in order to avoid adding more
pages to the paper. It is also natural to consider L(p, q)-labelings of planar
graphs with no short cycles for q > 2. In such case, the following result of
Georges and Mauro [12, Theorems 3.2–3.5] comes to use:
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Proposition 20 Let p and q, p ≥ q, be two positive integers. There exists a
∆0 such that the span of an optimal L(p, q)-labeling of the infinite ∆-regular
tree T∆, ∆ ≥ ∆0 (∆0 depends on p and q), is the following:

λp,q(T∆) =







































q∆ + 2p − 2q if p/q is an integer, i.e., q|p,

q∆ + p if 1 < p

q
≤ 3

2
,

q∆ +
⌊

p

q

⌋

q + p − q if 2 ≤
⌊

p

q

⌋

< p

q
≤
⌊

p

q

⌋

+ 1
2
,

q∆ + 2
⌊

p

q

⌋

q otherwise.

Proposition 20 provides lower bounds on optimum spans of L(p, q)-labelings
of planar graphs with large girth as every infinite tree T∆ contains a finite
subtree T with λp,q(T ) = λp,q(T∆). The lower bounds can be complemented
by the following (rather straightforward) upper bound which is tight if q = 1:

Proposition 21 Let p and q, p ≥ q, be two positive integers. There exists
an integer ∆0, which depends on p and q, such that every planar graph G of
maximum degree ∆ and of girth at least 18 has an L(p, q)-labeling of span at
most qD + 2p + q − 3 where D = max{∆0, ∆}.

PROOF. Fix p, q and ∆ and let Λ = qD+2p+q−3. We prove the proposition
for ∆0 = (2p − 1)/q + 3. Let G be a planar graph of the smallest order such
that the maximum degree of G is at most ∆, G contains no cycle of length less
than 18 and λp,q(G) > Λ. Clearly, G is connected. We partition the vertices of
G into three classes and refer the vertices in the classes as to red, green and
blue vertices: the vertices of degree one will be red, the vertices adjacent to
at most two vertices that are not red will be green and the remaining vertices
will be blue.

Assume first that there is a red vertex adjacent to a green vertex. Let v be
that green vertex and W all red vertices adjacent to v. By the choice of G,
G\W has an L(p, q)-labeling of span at most Λ. Since v is green, it is adjacent
to at most two vertices that are green or blue. We consider the case that v
is adjacent to two such vertices, say v1 and v2, and leave the other cases to
be verified by the reader since our arguments readily translate to those cases.
Note that the vertices v, v1 and v2 are the only vertices at distance at most
from the vertices of W in G.

Our aim now is to find ∆ − 2 numbers a1, . . . , a∆−2 such that the difference
between any two numbers ai and aj , i 6= j, is at least q, the difference between
any number ai and the label of v is at least p and the difference between ai

and the label of v1 or v2 is at least q. The numbers are constructed inductively
as follows. Set a1 = 0 and i = 1 and apply the following three rules:
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Rule 1 If the difference between ai and the label of v is smaller than p,
increase ai by 2p − 1.

Rule 2 If the difference between ai and the label of v1 or v2 is smaller than
q, increase ai by 2q − 1.

Rule 3 Suppose that neither Rule 1 nor Rule 2 applies. If i = ∆ − 2, stop.
Otherwise, set ai+1 = ai + q and increase i by one.

Observe that Rule 1 can apply at most once and Rule 2 at most twice during
the entire process. This yields that the value of a∆−2 does not exceed (∆ −
3)q + 2p − 1 + 4q − 2 ≤ Λ. Hence, the labeling of G \ W can be extended to
G by assigning the vertices of W the labels a1, . . . , a∆−2 to an L(p, q)-labeling
of span Λ which contradicts our choice of G. We conclude that green vertices
are adjacent to green and blue vertices only. In particular, every green vertex
has degree two.

Let G′ be the subgraph of G induced by all green and blue vertices. Observe
that the degree of each green vertex in G′ is two and the degree of each blue
vertex is at least three. Hence, the minimum degree of G′ is three. As the girth
of G′ is at least 18, G′ contains a 3-thread comprised of (green) vertices v1, v2

and v3. Since green vertices are adjacent to green and blue vertices in G only,
the vertices v1, v2 and v3 also form a 3-thread in G.

By the choice of G, the graph G \ v2 has an L(p, q)-labeling of span at most
Λ. We aim to extend the labeling of G \ v2 to v2. Let us count the number
of labels that cannot be assigned to v2. There are at most 2p − 1 labels that
cannot be assigned to v2 because of the label assigned to v1 and there are at
most 2q − 1 additional labels that cannot be assigned to v2 because of the
label assigned to the neighbor of v1 different from v2. Similarly, there are at
most 2p + 2q − 2 labels that cannot be assigned to v2 because of the labels of
v3 and the other neighbor of v3. In total, there at most 4p+4q − 4 labels that
cannot be assigned to v2. Since there are at least Λ+1 = qD+2p+q−3+1 ≥
q∆0+2p+q−2 = (2p−1)+3q+2p+q−2 = 4p+4q−3 labels, the labeling can
be extended to v2 contradicting our choice of G. The proof of the proposition
is now finished.

Note that Proposition 21 can be generalized to minor-closed classes of graphs
(with the bound on the girth depending on the considered class of graphs).
However, we think that the assumption on the girth in the proposition is not
optimal and can be weakened to seven:

Conjecture 22 Let p and q, p ≥ q, be two positive integers. There exists
an integer ∆0, which depends on p and q, such that every planar graph G of
maximum degree ∆ and of girth at least seven has an L(p, q)-labeling of span
at most qD + 2p + q − 3 where D = max{∆0, ∆}.
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The lower and upper bounds given in Propositions 20 and 21 do match for
q = 1 but they differ for q 6= 1. We leave as an open problem to determine
the optimal values of spans of L(p, q)-labelings of planar graph with large
maximum degree and no short cycles for q 6= 1.
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[13] D. Gonçalves, On the L(p, 1)-labelling of graphs, Discrete Mathematics and
Theoretical Computer Science AE (2005), 81–86.

[14] J. R. Griggs, D. Král’, Graph labellings with variable weights, a survey, to
appear in Discrete Applied Mathematics.

[15] J. R. Griggs, R. K. Yeh, Labeling graphs with a condition at distance 2 ,
SIAM J. Discrete Math. 5 (1992), 586–595.

[16] J. van den Heuvel, S. McGuiness, Colouring of the square of a planar

graph, J. Graph Theory 42 (2003), 110–124.

[17] A. J. Hoffman, R. R. Singelton, On moore graphs of diameter two and

three, IBM J. Res. Develop. 4 (1960), 497–504.

[18] J.-H. Kang, L(2, 1)-labeling of 3-regular Hamiltonian graphs, submitted for
publication.

[19] J.-H. Kang, L(2, 1)-labelling of 3-regular Hamiltonian graphs, Ph.D. thesis,
University of Illinois, Urbana-Champaign, IL, 2004.

[20] D. Král’, An exact algorithm for channel assignment problem, Discrete Appl.
Math. 145(2) (2004), 326–331.
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