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Riste Škrekovski†2

1Department of Applied Mathematics and Institute for Theoretical Computer
Science (ITI)‡, Faculty of Mathematics and Physics, Charles University,
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Abstract

Wang and Lih conjectured that for every g ≥ 5, there exists a number
M(g) such that the square of a planar graph G of girth at least g and
maximum degree ∆ ≥ M(g) is (∆+1)-colorable. The conjecture is known
to be true for g ≥ 7 but false for g ∈ {5, 6}. We show that the conjecture
for g = 6 is off by just one, i.e., the square of a planar graph G of girth
at least six and sufficiently large maximum degree is (∆ + 2)-colorable.

1. Introduction

We study colorings of squares of planar graphs with no short cycles. The square
G2 of a graph G is the graph with the same vertex set in which two vertices are
joined by an edge if their distance in G is at most two. The chromatic number of
the square of a graph G is between ∆ + 1 and ∆2 + 1 where ∆ is the maximum
degree of G. However, it is not hard to infer from Brooks’ theorem that there
are only finitely many connected graphs for which the upper bound is attained.
On the other hand, the chromatic number of the square of a planar graph is
bounded by a function linear in the maximum degree (note that this does not
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follow directly from the 5-degeneracy of planar graphs [9]). A natural question
is when the chromatic number of the square of a planar graph is the lowest
possible, i.e., it is equal to ∆+1. Wang and Lih [19] conjectured that this is the
case for planar graphs with sufficiently large maximum degree that have girth
five or more. Borodin et al. [5] proved their conjecture for planar graphs of girth
seven and more (without being actually aware of the conjecture) and showed
that it is not true for planar graphs of girth five and six. In this paper, we show
that the conjectured bound is off just by one for graphs with girth six, i.e., the
chromatic number of the square of a planar graph with girth six and sufficiently
large maximum degree is at most ∆ + 2.

Let us now briefly survey the rich history of coloring of the squares of pla-
nar graphs. Wegner [20] proved that the squares of cubic planar graphs are
8-colorable. He conjectured that his bound can be improved:

Conjecture 1.1 (Wegner 1977): Let G be a planar graph with maximum
degree ∆. The chromatic number of G2 is at most 7, if ∆ = 3, at most ∆ + 5, if
4 ≤ ∆ ≤ 7, and

⌊

3∆
2

⌋

+ 1, otherwise.

If Conjecture 1.1 were true, the bounds would be the best possible. The reader
is welcome to see Section 2.18 in [12] for more details. Though Conjecture 1.1 has
been verified for several special classes of planar graphs, including outerplanar
graphs [14], it remains open for all values of ∆. However, there is a series of
partial results. The following upper bounds on the chromatic number of the
square of a planar graph with maximum degree ∆ have been established: 8∆ −
22 by Jonas [13], 3∆ + 5 by Wong [21], 3∆ + 9 for ∆ ≥ 8 by Jendrol’ and
Skupien [10], 2∆ + 18 for ∆ ≥ 12 by Madaras and Marcionová [15], 2∆ + 25 by
van den Heuvel and McGuiness [9], ⌈9∆/5⌉ + 2 for ∆ ≥ 749 by Agnarsson and
Halldórsson [1, 2], and ⌈9∆/5⌉ + 1 for ∆ ≥ 47 by Borodin, Broersma, Glebow
and van den Heuvel [4]. The best known upper bounds are due to Molloy and
Salavatipour [16, 17]: ⌈5∆/3⌉+78 for all ∆ and ⌈5∆/3⌉+25 for ∆ ≥ 241. Some
of the above results were obtained by identifying so-called light structures in
planar graphs—the reader is welcome to see the survey [11]. Coloring of higher
powers of planar graphs was addressed by Agnarsson and Halldórsson [1, 2] who
established an asymptotically tight upper bound on their chromatic numbers.

In this paper, we are interested in colorings of the squares of planar graphs
with no short cycles. There are several upper bounds on the chromatic num-
ber of the squares of such planar and non-planar graphs: if the girth of a
(not necessarily planar) graph G with maximum degree ∆ is at least 7, then
χ(G2) ≤ O(∆2/ log ∆) [3]. Since the incidence graphs of finite projective planes
have girth six and the chromatic number of their squares is Θ(∆2), the assump-
tion on the girth cannot be further decreased. The following bounds for planar
graphs were proven by Wang and Lih [19]:

• χ(G2) ≤ ∆ + 5 if G is a planar graph of girth at least seven,

• χ(G2) ≤ ∆ + 10 if G is a planar graph of girth at least six, and
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• χ(G2) ≤ ∆ + 16 if G is a planar graph of girth at least five.

In addition, they conjectured the following:

Conjecture 1.2 (Wang and Lih 2003): For any integer g ≥ 5, there exists
an integer M(g) such that if G is a planar graph of girth g and maximum degree
∆ ≥ M(g), then χ(G2) = ∆ + 1.

The conjecture is known to be false for g ∈ {5, 6} and true for g ≥ 7 with
M(7) = 30 [5] and M(9) = 16 [6]. Our main result is that Conjecture 1.2 is also
almost true for g = 6 (Theorem 7.1): if G is a planar graph of maximum degree
∆ ≥ 8821 and its girth is at least six, then χ(G2) ≤ ∆ + 2. Since Conjecture 1.2
does not hold for g = 6, the bound on the chromatic number is the best possible
(also see Proposition 8.1). We are aware that the threshold on ∆ can be improved,
but we decided to focus solely on proving the statement for sufficiently large ∆
without trying to optimize the threshold. However, one cannot expect to be able
to easily obtain a significantly smaller threshold on ∆ since quite a big threshold
also appears in a similar result of [7] that the squares of planar graphs of girth
six, sufficiently large maximum degree ∆, and with the additional assumption
that each edge is incident with a vertex of degree two, are (∆ + 1)-colorable.

It is natural to ask whether an analogous statement can hold for planar graphs
of girth five. We conjecture this is indeed the case:

Conjecture 1.3: There exists an integer M such that the square of every pla-
nar graph G with maximum degree ∆ ≥ M and girth at least 5 is (∆ + 2)-
colorable.

Since in Section 8, we exhibit a construction of planar graphs G with girth six
and arbitrarily large maximum degree ∆ with χ(G2) = ∆ + 2, the bound given
in Conjecture 1.3 would be the best possible. The only upper bound that we are
aware of is ∆ + 16 given by Wang and Lih [19].

2. Preliminaries

In this section, we introduce notation used throughout the paper. All graphs
considered in the paper are simple, i.e., without parallel edges and loops. A d-
vertex is a vertex of degree exactly d. An (≤ d)-vertex is a vertex of degree at
most d. Similarly, an (≥ d)-vertex is a vertex of degree at least d. A k-thread
is an induced path comprised of k 2-vertices. The set of all the neighbors of a
vertex v is called the neighborhood of v and the neighborhood enhanced by v is
called the closed neighborhood of v.

An ℓ-face is a face of length ℓ (counting multiple incidences, i.e., bridges inci-
dent to the face are counted twice). If the boundary of a face f forms a connected
subgraph, then the subgraph formed by the boundary (implicitly equipped with
the orientation determined by the embedding) is called the facial walk. A face f
is said to be biconnected if its boundary is formed by a single simple cycle. The
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neighbors of a vertex v on the facial walk are called f -neighbors of v. Note that if
f is biconnected, then each vertex incident with f has exactly two f -neighbors.

Let us consider a biconnected face f , and let v1, . . . , vk be (≥ 3)-vertices
incident to f listed in the order on the facial walk of f . The type of f is a k-
tuple (ℓ1, . . . , ℓk) where ℓi is the length of the 2-thread between vi and vi+1. In
particular, if vi and vi+1 are f -neighbors, then ℓi is zero. Two face types are
considered to be the same if they can be types of the same face, i.e., they differ
only by a cyclic rotation and/or a reflection.

Some of our arguments are based on elementary facts on list colorings (choos-
ability of graphs). List colorings were introduced independently by Erdős, Rubin
and Taylor [8] and Vizing [18]. A graph G is said to be ℓ-choosable if for any
assignment of lists L(v) of sizes ℓ to the vertices of G, there exists a proper
coloring c of G such that c(v) ∈ L(v) for every vertex v. The gap between the
list chromatic number (the smallest ℓ for which the graph is ℓ-choosable) and
the usual chromatic number can be arbitrary large: for every integer ℓ, there
exists a bipartite graph that is not ℓ-choosable. However, the only simple fact
that we need in our consideration is the following: any cycle of even length is
2-choosable. The reader can figure out details of a simple proof of this statement
him/herself or can consult [8].

The proof of our main result is based on the discharging method. For an
integer D ≥ 8821, a graph G is called D-good if its maximum degree is at most
D and the chromatic number of G2 is at most D + 2. A planar graph G of
girth at least 6 and maximum degree at most D is D-minimal if G is not D-
good but every proper subgraph of G is D-good. If G is a D-minimal graph,
then G is connected. Observe that G is also 2-connected: otherwise, color the
blocks of G separately and afterwards permute the colors so that the colors of
the cut-vertices match and the colors of their neighbors are pairwise distinct. In
particular, the minimum degree of a D-minimal graph is at least two.

A vertex is said to be small if its degree is at most 1763, and it is said to be
big otherwise.

In Sections 3–7, we show that there is no D-minimal graph. We assume that
there is a D-minimal graph and assign charge to its vertices and its faces. The
total amount of initial charge will be negative. We then redistribute charge in two
phases as determined by the rules presented in Sections 5 and 6. We eventually
obtain contradiction with our assumption that there exists a D-minimal graph
by showing that the total final amount of charge is non-negative.

3. Reducible configurations

Let us first describe several configurations that cannot appear in a D-minimal
graph. Such a configuration is called reducible.

Lemma 3.1: The following configurations are reducible:

1. A small vertex u and a vertex v joined by a 2-thread.
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Figure 1: The reducible configuration from Lemma 3.1(5). The vertices that are not removed
in the proof are represented by full circles.

2. Vertices u and v joined by two 2-threads.

3. A small vertex v joined by a 1-thread to a vertex u of degree at most six,
such that all the neighbors of u are small.

4. Two adjacent 3-vertices u and v such that all the neighbors of u and v are
small and at least one of the neighbors of u is a 2-vertex.

5. The configuration in Figure 1, where v2, v4, v6, y3 and y5 are 3-vertices, v3,
v5, x2, x6, z3 and z5 are 2-vertices, and w3 and w5 are small vertices (there
is no restriction on the degrees of v1 and x4).

Proof: Let G be a D-minimal graph, in particular, χ(G2) > D + 2. We deal
with the configurations separately. In each of the cases, we first assume that
G contains the configuration described in the statement of the lemma and we
obtain contradiction by showing that G is not D-minimal.

1. Let x and y be the vertices of the 2-thread, where x is the vertex adjacent
to u. Consider the graph G′ = G \ {x, y}. Since G is D-minimal, the square
of G′ is (D + 2)-colorable. Since the degree of v in G′ is at most D − 1,
there are at least two colors distinct from the colors of v and its neighbors.
At least one of them (call it γ) is distinct from the color of u. Assign the
color γ to the vertex y. Since u is small, the degree of x in G2 is at most
1763 + 3 < D. Therefore, we can choose a color distinct from colors of u,
its neighbors in G′, v and y for x. We obtained a proper coloring of G2 by
(D + 2) colors. This contradicts the D-minimality of G.

2. Let the vertices of the 2-threads be x1, x2, y1 and y2 where xi is adjacent
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to yi and u for i = 1, 2. The square of the graph G′ = G \ {x1, x2, y1, y2} is
(D+2)-colorable by the D-minimality of G. Fix a coloring of G′ with D+2
colors. Let Cu and Cv be the sets of the colors which are assigned to no
vertex in the closed neighborhood of u and v, respectively. Since the degrees
of u and v in G′ are at most D−2, both Cu and Cv have sizes at least three.
Let cu and cv be the colors of u and v, respectively. Let C ′

u = Cu \ {cv} and
C ′

v = Cv \ {cu}. Assign the list C ′
u to the vertices x1 and x2 and the list C ′

v

to the vertices y1 and y2. The subgraph of G2 induced by {x1, x2, y1, y2} is
a 4-cycle. This graph is 2-choosable. Therefore, its vertices can be colored
from the assigned lists. The coloring obtained by extending the coloring
of G′ to G in this way is a proper coloring of G2 with D + 2 colors that
contradicts our assumption that G is D-minimal.

3. Let x be the 2-vertex of the 1-thread. The square of the graph G′ = G\{x}
is (D + 2)-colorable. Fix such a coloring. The degree of u in G′2 is at most
5 · 1763 + 5 < D. Therefore, we can modify the coloring by changing the
color of u so that it is distinct from the color of v as well as from the colors
of the neighbors if u in G′2. The degree of x in G2 is at most 1763+7 < D.
Hence, we can extend this coloring to x. This contradicts the D-minimality
of G.

4. Let x be a 2-vertex adjacent to u. Let y be the vertex adjacent to x distinct
from u. Let w be the neighbor of u distinct from x and v. By the D-
minimality of G, the square of the graph G′ = G\{x, u} is (D+2)-colorable.
Fix such a coloring. The vertex y has degree at most D− 1 in G′, therefore
at least two colors are unused on closed neighborhood of y in G′. Choose
a color for x from the unused colors so that it is distinct from the color
of w. The degree of v in G′2 is at most 2 · 1763 + 2 < D. Therefore, it is
possible to change the color of v so that it is distinct from the colors of x
and w. Finally choose a color for u: its degree is at most 1763 + 6 < D in
G2. Therefore, it is always possible. This contradicts the D-minimality of
G.

5. The square of the graph G′ = G \ {v2, v3, v4, v5, v6, x2, x6, y3, y5, z3, z5} is
(D + 2)-colorable (the removed vertices are marked by empty circles in
Figure 1). Fix a coloring of G′ with D + 2 colors. Since the degree of x4 in
G′ is at most D − 3, there are at least four colors which are not assigned
to a vertex of the closed neighborhood of x4 in G′. Let L4 be the set of
the unused colors. The degree of v1 in G′ is at most D − 2, therefore the
set L1 of colors that do not appear on closed neighborhood of v1 has size
at least three. Let c5 be the color of w5 and c3 the color of w3. Assign the
list L1 to vertices v2 and v6, the list L4 to the vertex v4, the list L4 \ {c5}
to the vertex y5 and the list L4 \ {c3} to the vertex y3. All 2-vertices of
the configuration are adjacent only to small vertices. Therefore, if we were
able to color the subgraph G′′ of G2 induced by {v2, v4, v6, y3, y5} from the
lists, we could choose colors for the 2-vertices of the configuration carefully
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and extend the coloring to the coloring of the whole graph G2. This would
eventually contradict the D-minimality of G.

However, such a coloring of G′′ always exists. Choose a color for v4 from L4

arbitrarily, and remove this color from the lists of the remaining four ver-
tices. The graph G′′\{v4} is a 4-cycle. Since it is 2-choosable, the remaining
vertices of G′′ can be colored from the assigned lists.

2

4. Initial charge

We now describe the amounts of initial charge of vertices. The initial charge of
a d-vertex v is set to

ch(v) = d − 3,

and the initial charge of an ℓ-face f to

ch(f) = ℓ/2 − 3.

It is easy to verify that the sum of initial charges is negative:

Proposition 4.1: If G is a connected planar graph, then the sum of all initial
charges of the vertices and faces of G is −6.

Proof: Since G is connected, Euler’s formula yields that n + f = m + 2 where
n is the number of the vertices of G, m is the number of its edges and f is the
number of its faces. The sum of initial charges of the vertices of G is equal to

∑

v∈V (G)

(d(v) − 3) = 2m − 3n.

The sum of initial charges of the faces of G is equal to

∑

f∈F (G)

(

ℓ(f)

2
− 3

)

= m − 3f.

Therefore, the sum of initial charges of all the vertices and faces is 3m−3n−3f =
−6. 2

Note that the amounts of initial charge were chosen such that each face of
size at least 6 (consequently, each face of a D-minimal graph) has non-negative
charge, the charge of 6-faces is zero and only 2-vertices have negative charge of
−1 unit.
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5. The first discharging phase

The goal of the first phase is that each 2-vertex receives 2ε units of charge and
the amount of charge of other vertices and faces is not decreased too much where
ε = 1/588.

If u is a 2-vertex, an edge e = uv is void if either d(v) ∈ {2, 4, 5, 6}, or v is
a 3-vertex and all its neighbors are small. Intuitively, the void edges are those
through which it may be impossible to send any charge to u.

In order to simplify the analysis of final charge of big vertices, we send all
charge transfered from a big vertex through the edges incident to it. Each rule
that deals with big vertices specifies through which edge the charge is (considered
to be) sent. The value of ε and the bound on the degree of big vertices was chosen
in such a way that a big vertex is able to send 1−ε units of charge through each
edge incident to it, and its final charge is still non-negative.

If v is a big vertex, we call an edge uv red if one of the following conditions
holds:

• the vertex u is a 2-vertex, e 6= uv is the other edge incident to u, and e is
void, or

• the vertex u is a 3-vertex, x1 and x2 are the neighbors of u distinct from v,
both x1 and x2 are 2-vertices, and all the neighbors of x1 and x2 are small.

The edges incident to big vertices which are not red are called green. Intuitively,
the green edges are those through which the big vertex does not need to send
“too much” charge and the red ones are those through which almost one unit of
charge has to be sent.

In order to simplify the description of the rules, we define the following oper-
ation: if f is a 6-face and F is the set containing f and all the 6-faces sharing an
edge with f , a 6-face f is boosted from a vertex or face z when 3ε units of charge
are transferred from z to each face of F . Note that the charge of z decreases by
at most 21ε.

The discharging rules of the first phase are the following:

F1 Each (≥ 7)-face boosts all the 6-faces sharing an edge with it.

F2 If v is a big vertex, e is a green edge incident to it and f is a 6-face incident
to e, then the vertex v boosts f . The charge is sent through the edge e.

F3 If v is a small vertex of degree at least 4, then it boosts all the incident
6-faces.

F4 If v is a 2-vertex and f is a face incident to v, then f sends ε units of charge
to v.

Note that no charge is sent through a red edge in the first phase. We now
analyze the amounts of charge after the first phase:

Lemma 5.1: Let G be a D-minimal graph. After the first phase of discharging,
the following claims hold:
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1. at most 1/8 units of charge was sent through each green edge,

2. the charge of a small vertex of degree d ≥ 4 has decreased by at most d/16,

3. the charge of each 2-vertex is 2ε − 1, and

4. the charge of each face is non-negative.

Proof: We prove each claim separately:

1. Charge is sent through green edges only by Rule F2. Each green edge e is
incident to at most two 6-faces and thus the total amount of charge sent
through e is at most 42ε ≤ 1/8.

2. Charge is sent from small vertices only by Rule F3. A d-vertex is incident
to at most d 6-faces. Therefore, the total amount of sent charge is at most
21εd ≤ d/16.

3. Each 2-vertex receives ε units of charge from both the incident faces by
Rule F4. Therefore, its charge becomes 2ε − 1.

4. Charge is sent from faces by Rules F1 and F4. A d-face f shares an edge
with at most d 6-faces. Therefore, the total amount of charge sent from f
by Rule F1 is at most 21εd. Since at most d 2-vertices are incident to f , at
most εd units of charge are sent by Rule F4. In total, at most 22εd units of
charge are sent from f .

The charge of a d-face with d ≥ 7 after the first phase is at least

d

2
− 3 − 22εd =

(

1

2
− 22ε

)

d − 3 ≥
3

7
d − 3 ≥ 0.

Hence, if f is a (≥ 7)-face, its final charge is non-negative.

It remains to consider the case when f is a 6-face. Let k be the number
of 2-vertices incident to f . Observe that k does not exceed 3: otherwise f
contains at least four 2-vertices and it thus contains either a 3-thread or
two vertices connected by two 2-threads. Both configurations are reducible
by Lemma 3.1.

Initial charge of f is zero and f sends out charge of kε by Rule F4. If k = 0,
the final charge of f is non-negative. Assume that k > 0. It is sufficient to
prove that f receives at least 3ε units of charge by Rules F1, F2 and F3.
We show that f or one of the 6-faces incident to f is boosted during the
first phase.

If f shares an edge with a (≥ 7)-face, f is incident to a small vertex of
degree at least 4, or f is incident to a green edge, then f itself is boosted.
Therefore, we may assume that no edge incident to f is green, all the
vertices incident to f are either big or have degree 2 or 3, and all the faces
sharing an edge with f are 6-faces.

Let v1, . . . , v6 be the vertices of f in a cyclic order around the face.
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Suppose first that f is incident to at least two big vertices. Assume that
v1 is a big vertex. The second big vertex of f is v4: otherwise, the two big
vertices are either f -neighbors or share an f -neighbor and at least one of
the edges of f is green. If all the f -neighbors of v1 and v4 were 2-vertices,
then v1 and v4 would be joined by two 2-threads, which is impossible by
Lemma 3.1. Therefore at least one of the big vertices is adjacent to a 3-
vertex. Assume that v2 is a 3-vertex. But since v4 is big, the edge v1v2 is
green regardless of the degree of v3. Therefore, the face f is boosted.

If f is incident to no big vertex, then no two 2-vertices of f are adjacent
by Lemma 3.1(1). Assume that v2 is a 2-vertex. Therefore, v1 and v3 are
3-vertices. Let x1 and x3 be the neighbors of v1 and v3 not incident to f .
Since v6 and v4 are small, both x1 and x3 are big by Lemma 3.1(3). Let
f ′ be the 6-face incident to v2 distinct from f . Note that both x1 and x3

belong to the 6-face f ′ and share a common f ′-neighbor. Hence, at least
one of the edges incident to f ′ is green. Consequently, f ′ is boosted and f
receives the charge of 3ε units.

It remains to consider the case when f contains exactly one big vertex, say
v1. If v4 were a 2-vertex, we could use a similar argument as in the previous
paragraph to show that the other face incident to v4 is boosted. Therefore,
we can assume that v4 is a 3-vertex. In addition, either v2 or v3 is a 2-vertex,
since the edge v1v2 is not green.

First suppose that v2 is a 2-vertex. Hence v3 is a 3-vertex. Let x3 and x4 be
the neighbors of v3 and v4 not incident to f . If x3 is big, then the edge v1v2

is green. And, if x4 is big, then the edge x4v4 is green. In both the cases, f
receives the required charge. If both x3 and x4 are small, the configuration
is reducible by Lemma 3.1(4). The case that v6 is a 2-vertex is symmetrical.

Suppose now that both v2 and v6 are 3-vertices and v3 is a 2-vertex. We
may assume that the neighbors of v2 and v6 (including v5) distinct from v1

are 2-vertices: otherwise, one of the edges v1v2 and v1v6 would be green.
Let x2, x4 and x6 be the vertices adjacent to v2, v4 and v6 and not incident
to f . By Lemma 3.1(3), the vertex x4 is big. Let f3 and f5 be the faces
incident to v3 and v5 and distinct from f . Let y5 be the remaining vertex of
f5 distinct from x6, x4, v4, v5 and v6. Let y3 be the remaining vertex of f3

distinct from x2, x4, v2, v3 and v4. The degrees of both y3 and y5 must be 3:
they cannot be two by Lemma 3.1(1) and if one of them were greater than
3, then one of the edges y3x4 and y5x4 would be green and f would receive
charge because of boosting from f3 or f5. Let z3 and z5 be the neighbors of
y3 and y5 distinct from x6, x4 and x2. Both z3 and z5 must be 2-vertices and
all their neighbors must be small, since otherwise one of edges y3x4 or y5x4

is green. However, the resulting configuration is reducible by Lemma 3.1(5).
This finishes the proof of the claim.

2
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6. The second phase of discharging

In this phase we redistribute the charge so that the final charge of all vertices is
non-negative. The following rules are used during this phase:

S1 If v is a big vertex adjacent to a 2-vertex u, then v sends 1−ε units of charge
to u if uv is red and it sends 3/4 units of charge to u if uv is green. The
charge is sent through the edge uv.

S2 If v is a big vertex adjacent to a 3-vertex u and the edge uv is red, then v
sends (1 − ε)/2 units of charge to both the 2-vertices adjacent to u. The
charge is sent through the edge uv.

S3 Suppose that v is a big vertex adjacent to a 3-vertex u, the edge uv is green,
and x is a 2-vertex adjacent to u. If x has a big neighbor, then v sends
charge of 1/4 to x. Otherwise, v sends charge of 1/2 to x. The charge is
sent through the edge uv.

S4 If v is a big vertex adjacent to a d-vertex u, 4 ≤ d ≤ 6, then the vertex v
sends 3/4 units of charge to u. The charge is sent through the edge uv.

S5 If v is a d-vertex, 4 ≤ d ≤ 6, adjacent to a 2-vertex u, and if v has at least
one big neighbor, then v sends 1/2 units of charge to u.

S6 If v is a small vertex of degree d > 6 adjacent to a 2-vertex u, then v sends
1/2 units of charge to u.

We now analyze the amounts of charge sent during the second phase:

Lemma 6.1: Let G be a D-minimal graph. The following claims hold:

1. at most 3/4 units of charge was sent through each green edge during the
second phase,

2. at most 1 − ε units of charge was sent through each red edge during the
second phase, and

3. the charge of each vertex is non-negative after performing the first and the
second phase.

Proof: We prove each claim separately:

1. At most one of Rules S1, S3 and S4 applies to each green edge. At most
3/4 units of charge is sent through such an edge by any of the rules. The
only case in which this is not obvious is the case of Rule S3. However,
there can be at most one vertex x without a big neighbor that satisfies the
assumptions of the rule: otherwise the edge uv is red.

2. At most one of Rules S1 and S2 applies to each red edge and the charge
sent through such an edge is exactly 1 − ε by any of the rules.

3. Let v be a d-vertex of G. We consider several cases regarding the degree of
the vertex v:
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d = 2: Let x and y be the neighbors of v. It suffices to show that v received
at least 1 − ε units of charge during the second phase because charge
of v was at least 2ε after the first phase by Lemma 5.1.
Suppose first that x is big. If the edge vy is void, then the edge xv is
red and v received charge of 1 − ε from x by Rule S1. Assume that
the edge vy is not void and that the edge xv is green. Consequently, v
received 3/4 units of charge by Rule S1. Additionally, since vy is not
void, then either y is a 3-vertex and has a big neighbor w, or y is a
(≥ 7)-vertex. In the former case, v receives 1/4 units of charge from
w by Rule S3. In the latter case, y sends 1/2 units of charge to v by
Rules S1 or S6. In both the cases, the total charge received by v is at
least 1.
The final case is that both x and y are small. By Lemma 3.1(1), neither
x nor y has degree 2. We show that v receives at least (1 − ε)/2 units
of charge through x. Note that by symmetry v also receives at least
(1−ε)/2 units of charge through y, i.e., v receives 1−ε units of charge
in total. Let d′ be the degree of x. If 3 ≤ d′ ≤ 6, at least one neighbor
of x must be big by Lemma 3.1(3). Consequently, v receives at least
(1 − ε)/2 by one of Rules S2, S3 and S5. If d′ ≥ 7, then v receives 1/2
from x by Rule S6.

d = 3: None of the discharging rules changes the charge of a vertex of degree
three. Therefore, the final charge of v is zero.

4 ≤ d ≤ 6: The d-vertex v sent charge of at most d/16 units during the
first phase by Lemma 5.1(2). If v is not adjacent to a big vertex, then
it does not send anything during the second phase. Otherwise, it sends
at most (d − 1)/2 units of charge by Rule S5 and receives charge of at
least 3/4 units by Rule S4. Therefore, the final charge of v is

d − 3 −
d

16
−

d − 1

2
+

3

4
=

7d

16
−

7

4
≥ 0.

d ≥ 6 and v is small: The vertex v sends at most d/16 units of charge
during the first phase by Lemma 5.1(2) and at most d/2 units of charge
during the second phase by Rule S6. Therefore, the final charge of v is
at least

d − 3 −
d

16
−

d

2
=

7d

16
− 3 > 0.

v is big: All the charge sent out from the big vertex v was sent through
some of the edges incident to it. Charge is sent through a red edge e
only in the second phase and the total amount of such charge is at
most 1 − ε by the previous claim of this lemma. At most 1/8 units of
charge is sent through a green edge e in the first phase by Lemma 5.1
and at most 3/4 units in the second phase, thus in total 7/8 < 1 − ε.
Therefore, v has the final charge of at least d−3−(1−ε)d = εd−3 ≥ 0
(recall that v is a d-vertex with d > 1763).
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2

7. Final step

We now combine our arguments from the previous sections:

Theorem 7.1: If G is a planar graph of maximum degree ∆ ≥ 8821 and girth at
least six, then G has a proper L(1, 1)-labeling with span ∆+1, i.e., χ(G2) ≤ ∆+2.

Proof: If the statement of the theorem is false, then there exists a D-minimal
graph. Consider such a D-minimal graph G. Assign charge to the vertices and
the faces of G as described in Section 4. By Proposition 4.1, the sum of all
the charges is negative. Apply the discharging rules of the two phases described
in Sections 5 and 6. The final amount of charge of each face is non-negative
after the first phase by Lemma 5.1 and it is preserved during the second phase,
i.e., it is non-negative after the second phase. The final amount of charge of each
vertex is non-negative after the second phase by Lemma 6.1. Therefore, the total
final amount of charge is non-negative. We conclude that there is no D-minimal
graph. 2

8. The lower bound

For the sake of completeness, we also present a construction of planar graphs
G with χ(G2) = ∆ + 2 and girth six. This shows that our bound is the best
possible. A different construction of such graphs can be found in [5]. One of the
reasons that also led us to include our construction to this paper is that our
construction yields graphs with fewer vertices than that of [5].

Let G′
∆ be a graph of order 2∆ + 2 formed by two vertices x and y joined by

(∆ − 1) 2-threads and a vertex z joined to y by a 1-thread. Let G∆ be a graph
obtained by taking ∆−1 copies of G′

∆, identifying all the vertices z of the copies
into a single vertex v, and adding a vertex u joined to v by a 1-thread and by
an edge to the vertex x of each copy of G′

∆ (see Figure 2). Clearly, the girth of
G∆ is six and the maximum degree of G∆ is ∆. The chromatic number of G∆ is
determined in the next proposition:

Proposition 8.1: The chromatic number of the square of the graph G∆ is ∆+2
for every ∆ ≥ 2.

Proof: It is easy to construct a coloring of G2
∆ by ∆ + 2 colors. We focus on

showing that it cannot be colored by ∆ + 1 colors.
We first show that in any proper coloring of the square of G′

∆, the colors
assigned to x and z are distinct. Suppose for contradiction that there exists a
proper coloring of G′2

∆ by the colors 0, . . . , ∆ such that the colors of both x and
z are the same, say 0. Since the vertex y has degree ∆, either y or one of its
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x

y

z

u

w

x1 x2 x3

v

Figure 2: The graphs G′
4

and G4.

neighbors must have color 0. This is impossible because each of these vertices is
at distance at most two from x or z.

Suppose now that the graph G∆ can be colored by the colors 0, . . . , ∆. Let
x1, . . . , x∆−1 be the vertices of the copies of G′

∆ adjacent to the vertex u. Let w
be the vertex adjacent to u and distinct from all xi, 1 ≤ i < ∆. We may assume
that the color of v is 0. By the observation from the previous paragraph, the
color of each vertex xi is distinct from 0. The vertex u has degree ∆. Therefore,
either u or one of its neighbors has color 0. This is impossible since the colors
of vertices xi are distinct from 0 and both u and w are at distance at most two
from the vertex v. We conclude that there is no proper coloring of G2

∆ with ∆+1
colors. 2

References
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