# On a conjecture about Wiener index in iterated line graphs of trees 

M. Knor, P. Potočnik ${ }^{\dagger}$ R. Škrekovski ${ }^{\ddagger}$

September 28, 2011


#### Abstract

Let $G$ be a graph. Denote by $L^{i}(G)$ its $i$-iterated line graph and denote by $W(G)$ its Wiener index. There is a conjecture which claims that there exists no nontrivial tree $T$ and $i \geq 3$, such that $W\left(L^{i}(T)\right)=W(T)$, see [5]. We prove this conjecture for trees which are not homeomorphic to the claw $K_{1,3}$ and $H$, where $H$ is a tree consisting of 6 vertices, 2 of which have degree 3 .


## 1 Introduction

Let $G=(V(G), E(G))$ be a graph. For any two of its vertices, say $u$ and $v$, by $d(u, v)$ we denote the distance from $u$ to $v$ in $G$. The Wiener index of $G, W(G)$, is defined as

$$
W(G)=\sum_{u \neq v} d(u, v),
$$

where the sum is taken through all unordered pairs of vertices of $G$. Wiener index was introduced by Wiener in 1947, see [15]. In the next decades, it was intensively studied by chemists, as it is related to many physical properties of organical molecules, see [9]. Graph theoretists reintroduced this parameter as the distance in 1970 and transmission in 1984, see [6] and [14], respectively. Recently, graph theoretic aspects of Wiener index are intensively studied, see e.g. [7] and [8], or surveys [3] and [4].

[^0]By definition, if $G$ has a unique vertex, i.e., if $G=K_{1}$, then $W(G)=0$. In this case we say that the graph $G$ is trivial. We set $W(G)=0$ also when the set of vertices (and therefore also the set of edges) of $G$ is empty.

The line graph of $G, L(G)$, has vertex set identical with the set of edges of $G$. Two vertices of $L(G)$ are adjacent if and only if the corresponding edges are adjacent in $G$. Iterated line graphs are defined inductively as follows:

$$
L^{i}(G)= \begin{cases}G & \text { if } i=0 \\ L\left(L^{i-1}(G)\right) & \text { if } i>0\end{cases}
$$

In [1], the following theorem was proved.
Theorem 1.1 [1] If $T$ is a tree on $n$ vertices, then $W(L(T))=W(T)-\binom{n}{2}$.
Since $\binom{n}{2}>0$ if $n \geq 2$, there is no nontrivial tree for which $W(L(T))=W(T)$. However, there are trees $T$ satisfying $W\left(L^{2}(T)\right)=W(T)$, see for example [2]. In [5] the following conjecture was posed (see also [3]).

Conjecture 1.2 [5] Let $T$ be a nontrivial tree and $i \geq 3$. Then $W\left(L^{i}(T)\right) \neq W(T)$.
Denote by $P_{n}$ a path on $n$ vertices. If $n \geq 2$, then $W\left(P_{n}\right)>W\left(P_{n-1}\right)$. Since $L\left(P_{n}\right)=P_{n-1}$ if $n \geq 2$, while $L\left(P_{1}\right)$ is an empty graph, it follows that $W\left(L^{i}\left(P_{n}\right)\right)<$ $W\left(P_{n}\right)$ for every $i \geq 1$ provided that $n \geq 2$. Hence, Conjecture 1.2 is trivially true for paths of length at least 1 .

In [11], we prove that for every graph $G$ the function $W\left(L^{i}(G)\right)$ is convex in variable $i$. The following corollary is a straightforward consequence of this fact.

Corollary 1.3 Let $T$ be a tree such that $W\left(L^{3}(T)\right)>W(T)$. Then for every $i \geq 3$ the inequality $W\left(L^{i}(T)\right)>W(T)$ holds.

Let $G$ be a graph. A pendant path (or a ray for short) $R^{\prime}$ in $G$ is a (directed) path, the first vertex of which has degree at least 3 , its last vertex has degree 1, and all of its internal vertices (if any exist) have degree 2 in $G$. Observe that if $R^{\prime}$ has length $t, t \geq 2$, then the edges of $R^{\prime}$ correspond to vertices of a ray $R$ in $L(G)$ of length $t-1$. In [11] we proved the following theorem.

Theorem 1.4 [11] Let $T$ be a tree distinct from a path and the claw $K_{1,3}$ such that all of its rays have length 1 . Then $W\left(L^{3}(T)\right)>W(T)$.

Here we extend this statement to trees with arbitrarily long rays. Denote by $H$ a tree on 6 vertices, two of which have degree 3 and four of which have degree 1 . (That is, H is the graph which "looks" like the letter H.) The main result of this paper is the following theorem.

Theorem 1.5 Let $T$ be a tree not homeomorphic to a path, claw $K_{1,3}$ and $H$. Then $W\left(L^{3}(T)\right)>W(T)$.

Recall that graphs $G_{1}$ and $G_{2}$ are homeomorphic if and only if the graphs obtained from them by repeatedly removing a vertex of degree 2 (and making its two neighbours adjacent) are isomorphic. Combining Corollary 1.3 and Theorem 1.5 we obtain the following corollary, which proves Conjecture 1.2 for the trees $T$ satisfying the assumption in Theorem 1.5.

Corollary 1.6 Let $T$ be a tree not homeomorphic to a path, claw $K_{1,3}$ and $H$. Then $W\left(L^{i}(T)\right)>W(T)$ for every $i \geq 3$.

We remark that trees homeomorphic to the claw $K_{1,3}$ and the graph $H$ are considered in forthcoming papers, see $[12,13]$.

For a tree $T$, let $D(T)=W\left(L^{3}(T)\right)-W(T)$. We prove $D(T)>0$ by induction on the length of the longest ray in $T$. By Theorem $1.4, D(T)>0$ if the longest ray has length 1 . Now we describe the induction step:

We suppose that $D(T)>0$ for all trees rays of which have length at most $l+1$. We would like to extend this statement to trees with rays of length at most $l+2$. Let $a^{\prime}$ be the last vertex of a ray of length $l+1$ in $T, l \geq 0$. Since we extend only one ray in turn, namely the ray terminating at $a^{\prime}$, we assume that all rays of $T$ have lengths at most $l+2$. Add to $T$ one new vertex $b^{\prime}$ and the edge $a^{\prime} b^{\prime}$, and denote the resulting tree by $T^{*}$. Denote by $a$ the edge of $T$ containing $a^{\prime}$ and denote by $b$ the edge $a^{\prime} b^{\prime}$. Then $a b$ is an edge of $L\left(T^{*}\right)$ and the degree of $b$ is 1 in $L\left(T^{*}\right)$. Moreover, $a$ is an endvertex of a ray of length $l$ in $L(T)$ and $b$ is an endvertex of a ray of length $l+1$ in $L\left(T^{*}\right)$; see Figure 1. By the assumption, all rays of $L(T)$ have lengths at most $l+1$. Let

$$
\Delta T=D\left(T^{*}\right)-D(T)
$$

In the next section we present an exact formula for $\Delta T$. In Section 3 we prove $\Delta T \geq 0$ and this will establish Theorem 1.5 (for more detailed explanation see the proof of Theorem 1.5).


Figure 1: Description of the induction step for $l=2$.

Now we introduce notation used throughout the paper. Since we work repeatedly with line graphs of trees, we simplify the notation and write $L G$ rather than $L(G)$. The degree of a vertex $z$ is denoted by $d_{z}$. If there are more graphs containing the vertex $z$, then $d_{z}$ denotes the degree of $z$ in $L T$ (whatever the meaning of $T$ at that point will be). Similarly, by $d(z, w)$ we denote the distance from $z$ to $w$, and this distance is preferably considered in $L T$ (rather than $T$ ). When no confusion is likely, any path starting at $u$ and terminating at $v$ will be denoted by $u-v$.

## 2 Preliminaries

Analogously as a vertex of $L(G)$ corresponds to an edge of $G$, a vertex of $L^{2}(G)$ corresponds to a path of length two in $G$. For $x \in V\left(L^{2}(G)\right)$, we denote by $B_{2}(x)$ the corresponding path in $G$. For two subgraphs $S_{1}$ and $S_{2}$ of $G$, by $d\left(S_{1}, S_{2}\right)$ we denote the shortest distance in $G$ between a vertex of $S_{1}$ and a vertex of $S_{2}$. If $S_{1}$ and $S_{2}$ share $s$ edges, then we set $d\left(S_{1}, S_{2}\right)=-s$.

Let $x$ and $y$ be two vertices of $L^{2}(G)$, such that $u$ is the center of $B_{2}(x)$ and $v$ is the center of $B_{2}(y)$. Then $d_{L^{2}(G)}(x, y)=d\left(B_{2}(x), B_{2}(y)\right)+2$; see [10, 11].

Let $u, v \in V(G), u \neq v$. Denote by $\beta_{i}(u, v)$ the number of pairs $x, y \in$ $V\left(L^{2}(G)\right)$, with $u$ being the center of $B_{2}(x)$ and $v$ being the center of $B_{2}(y)$, such that $d\left(B_{2}(x), B_{2}(y)\right)=d(u, v)-2+i$. Since $d(u, v)-2 \leq d\left(B_{2}(x), B_{2}(y)\right) \leq d(u, v)$, we see that $\beta_{i}(u, v)=0$ for all $i \notin\{0,1,2\}$. In [11] the following statement was proved:

Proposition 2.1 Let $G$ be a connected graph. Then

$$
\begin{aligned}
W\left(L^{2}(G)\right) & =\sum_{u \neq v}\left[\binom{d_{u}}{2}\binom{d_{v}}{2} d(u, v)+\beta_{1}(u, v)+2 \beta_{2}(u, v)\right] \\
& +\sum_{u}\left[3\binom{d_{u}}{3}+6\binom{d_{u}}{4}\right],
\end{aligned}
$$

where the first sum runs through all unordered pairs of distinct vertices $u, v \in V(G)$ and the second one runs through all $u \in V(G)$.

We apply Proposition 2.1 to line graphs of trees. Let us recall the structure of these graphs. For any tree $F$, the graph $L F$ consists of cliques in the following sense: Denote by $\mathcal{C}(L F)$ the set of maximal cliques of $L F$. Then every vertex of $L F$ belongs to at most two cliques from $\mathcal{C}(L F)$; each pair of cliques from $\mathcal{C}(L F)$ intersects in at most one vertex; and the cliques of $\mathcal{C}(L F)$ have a "tree structure", i.e., there are no cliques $C_{0}, C_{1}, \ldots, C_{t-1}, t \geq 3$, such that $C_{i}$ and $C_{i+1}$ have nonempty intersection, $0 \leq i \leq t-1$, the addition being modulo $t$.

We start with an exact formula for $\Delta T$. For $u \in V(L T) \backslash\{a\}$, let

$$
\begin{equation*}
h_{L T}(u)=\left(\binom{d_{u}}{2} d_{a}-1\right) d(u, a)+\left(d_{u}-1\right)\left(d_{u} d_{a}-d_{a}-\frac{1}{2} d_{u}\right)-2-\phi(u, a), \tag{1}
\end{equation*}
$$

where

$$
\phi(u, a)= \begin{cases}\left(d_{a}-1\right)\left(d_{u}-2\right) & \text { if } d(u, a)=1 \\ 0 & \text { otherwise }\end{cases}
$$

Proposition 2.2 For a nontrivial tree, the following equality holds:

$$
\Delta T=\sum_{u} h_{L T}(u)+\frac{1}{2} d_{a}\left(d_{a}-1\right)\left(2 d_{a}-1\right)-3,
$$

where the sum is taken over all vertices $u \in V(L T) \backslash\{a\}$.
Proof Let $F$ be a tree and let $u$ and $v$ be distinct vertices of $L F$. Consider vertices $x, y \in V\left(L^{2}(L F)\right)$ such that $u$ is the center of $B_{2}(x)$ and $v$ is the center of $B_{2}(y)$. Due to the clique structure of $L F$, there is a unique shortest $u-v$ path in $L F$. Denote this path by $u=a_{0}, a_{1}, \ldots, a_{t}=v$. If $d\left(B_{2}(x), B_{2}(y)\right)=d(u, v)-2$, then we must have $a_{1} \in V\left(B_{2}(x)\right)$ and $a_{t-1} \in V\left(B_{2}(y)\right)$. There are $\left(d_{u}-1\right)$ ways to choose the other endvertex of $B_{2}(x)$, and there are ( $d_{v}-1$ ) ways to choose the other endvertex of $B_{2}(y)$. Hence, $\beta_{0}(u, v)=\left(d_{u}-1\right)\left(d_{v}-1\right)$.

Now we find $\beta_{1}(u, v)$. We distinguish two cases: $d(u, v) \geq 2$ and $d(u, v)=1$.
Suppose first $d(u, v) \geq 2$. In this case $u$ and $v$ do not belong to a common clique from $\mathcal{C}(L F)$. If $d\left(B_{2}(x), B_{2}(y)\right)=d(u, v)-1$, then either $a_{1} \in V\left(B_{2}(x)\right)$ or $a_{t-1} \in V\left(B_{2}(y)\right)$, but not both. In the first case we obtain $\left(d_{u}-1\right)\binom{d_{v}-1}{2}$ pairs $x, y$ and in the second case $\binom{d_{u}-1}{2}\left(d_{v}-1\right)$ pairs $x, y$. Thus

$$
\beta_{1}(u, v)=\left(d_{u}-1\right)\binom{d_{v}-1}{2}+\binom{d_{u}-1}{2}\left(d_{v}-1\right) .
$$

Suppose now that $d(u, v)=1$. In this case, $u$ and $v$ belong to a common clique. All pairs $x, y$ mentioned in the previous case contribute to $\beta_{1}(u, v)$, but we have to add pairs $x, y$ such that $v \notin V\left(B_{2}(x)\right), u \notin V\left(B_{2}(y)\right)$ and $d\left(B_{2}(x), B_{2}(y)\right)=$ $d(u, v)-1=0$. For these pairs, the paths $B_{2}(x)$ and $B_{2}(y)$ share at least one of their endvertices. Denote by $\alpha_{L F}(u, v)$ the number of these extra pairs. Then

$$
\beta_{1}(u, v)=\left(d_{u}-1\right)\binom{d_{v}-1}{2}+\binom{d_{u}-1}{2}\left(d_{v}-1\right)+\alpha_{L F}(u, v) .
$$

Since we do not need to evaluate $\alpha_{L F}(u, v)$ in general, we postpone this computation until later. To simplify the notation, we set $\alpha_{L F}(u, v)=0$ for all pairs $u$, $v$ such that $d(u, v) \geq 2$.

We have $\binom{d_{u}}{2}\binom{d_{v}}{2}$ pairs $x, y \in V\left(L^{2}(L F)\right)$ such that $u$ is the center of $B_{2}(x)$ and $v$ is the center of $B_{2}(y)$. Since

$$
\begin{aligned}
\binom{d_{u}}{2}\binom{d_{v}}{2}= & \left(d_{u}-1\right)\left(d_{v}-1\right)+\left(d_{u}-1\right)\binom{d_{v}-1}{2}+\binom{d_{u}-1}{2}\left(d_{v}-1\right) \\
& +\binom{d_{u}-1}{2}\binom{d_{v}-1}{2}
\end{aligned}
$$

we obtain $\beta_{2}(u, v)=\binom{d_{u}-1}{2}\binom{d_{v}-1}{2}-\alpha_{L F}(u, v)$. By Proposition 2.1, it follows that

$$
\begin{align*}
W\left(L^{2}(L F)\right)= & \sum_{u \neq v}\left[\binom{d_{u}}{2}\binom{d_{v}}{2} d(u, v)+\left(d_{u}-1\right)\binom{d_{v}-1}{2}\right. \\
& \left.+\binom{d_{u}-1}{2}\left(d_{v}-1\right)+2\binom{d_{u}-1}{2}\binom{d_{v}-1}{2}-\alpha_{L F}(u, v)\right] \\
& +\sum_{u}\left[3\binom{d_{u}}{3}+6\binom{d_{u}}{4}\right] . \tag{2}
\end{align*}
$$

Now we evaluate $W\left(L^{3}\left(T^{*}\right)\right)-W\left(L^{3}(T)\right)=W\left(L^{2}\left(L T^{*}\right)\right)-W\left(L^{2}(L T)\right)$; see the notation following Corollary 1.6. The graph $L T^{*}$ has one more vertex than $L T$, namely the vertex $b$ of degree 1 , and the degree of $a$ increased by 1 to $d_{a}+1$ in $L T^{*}$. Therefore, all the terms of (2) for pairs $u, v$ which do not contain neither $a$ nor $b$ cancell out in $W\left(L^{2}\left(L T^{*}\right)\right)-W\left(L^{2}(L T)\right)$. However, we need to subtract the terms for pairs $u, a$ in $L T$ and to add the terms for pairs $u, a$ in $L T^{*}, u \in V(L T) \backslash\{a\}$. We can ignore the terms containing $b$ in $L T^{*}$, since the degree of $b$ is 1 , and thus $b$ cannot be a center of $B_{2}(y)$ for any $y \in V\left(L^{2}\left(L T^{*}\right)\right)$. (Observe that all terms of (2) are 0 if one of the vertices has degree 1.) As regards the second sum in (2), we have to subtract the term corresponding to $a$ in $L T$ and add the terms corresponding to $a$ and $b$ in $L T^{*}$, the second one being 0 since the degree of $b$ is 1 in $L T^{*}$. Denote by $\Delta \alpha(u, v)$ the difference $\alpha_{L T^{*}}(u, v)-\alpha_{L T}(u, v)$ and denote by $\Delta W L^{2}$ the difference $W\left(L^{2}\left(L T^{*}\right)\right)-W\left(L^{2}(L T)\right)$. By (2), it follows that

$$
\begin{aligned}
\Delta W L^{2}= & -\sum_{u}\left[\binom{d_{u}}{2}\binom{d_{a}}{2} d(u, a)+\left(d_{u}-1\right)\binom{d_{a}-1}{2}+\right. \\
& \left.+\binom{d_{u}-1}{2}\left(d_{a}-1\right)+2\binom{d_{u}-1}{2}\binom{d_{a}-1}{2}-\alpha_{L T}(u, a)\right] \\
& +\sum_{u}\left[\binom{d_{u}}{2}\binom{d_{a}+1}{2} d(u, a)+\left(d_{u}-1\right)\binom{d_{a}}{2}+\right. \\
& \left.+\binom{d_{u}-1}{2} d_{a}+2\binom{d_{u}-1}{2}\binom{d_{a}}{2}-\alpha_{L T^{*}}(u, a)\right] \\
& -3\binom{d_{a}}{3}-6\binom{d_{a}}{4}+3\binom{d_{a}+1}{3}+6\binom{d_{a}+1}{4}
\end{aligned}
$$

$$
\begin{align*}
= & \sum_{u}\left[\binom{d_{u}}{2} d_{a} d(u, a)+\left(d_{u}-1\right)\left(d_{a}-1\right)\right. \\
& \left.\left.+\binom{d_{u}-1}{2}+2\binom{d_{u}-1}{2}\left(d_{a}-1\right)-\Delta \alpha(u, v)\right)\right] \\
& +\frac{1}{4} d_{a}\left(d_{a}-1\right)\left[-2\left(d_{a}-2\right)-\left(d_{a}-2\right)\left(d_{a}-3\right)\right. \\
& \left.+2\left(d_{a}+1\right)+\left(d_{a}+1\right)\left(d_{a}-2\right)\right] \\
= & \sum_{u}\left[\binom{d_{u}}{2} d_{a} d(u, a)+\left(d_{u}-1\right)\left(d_{u} d_{a}-d_{a}-\frac{1}{2} d_{u}\right)-\Delta \alpha(u, a)\right] \\
& +\frac{1}{2} d_{a}\left(d_{a}-1\right)\left(2 d_{a}-1\right) . \tag{3}
\end{align*}
$$

Now we determine $\Delta \alpha(u, a)$. For $u \in V(L T) \backslash\{a\}$, the distance from $u$ to $a$ in $L T$ is the same as in $L T^{*}$. Therefore $\Delta \alpha(u, a)=\alpha_{L T^{*}}(u, a)-\alpha_{L T}(u, a)=0-0=0$ if $d(u, a) \geq 2$. If $d(u, a)=1$, then in order to evaluate $\alpha_{L T^{*}}(u, a)-\alpha_{L T}(u, a)$ we need to count pairs $x, y$ such that $b \in V\left(B_{2}(y)\right)$. Denote by $C$ the clique of $\mathcal{C}(L T)$ containing both $a$ and $u$. The order of $C$ is $d_{a}+1$. We distinguish two cases.

- Both endvertices of $B_{2}(x)$ are in $C$ : We have $\binom{d_{a}-1}{2}$ choices for $B_{2}(x)$ in this case since $a \notin V\left(B_{2}(x)\right)$. For each of these choices there are two choices for $B_{2}(y)$ such that $B_{2}(x)$ and $B_{2}(y)$ share an endvertex and $b \in V\left(B_{2}(y)\right)$. Therefore there are $2\binom{d_{a}-1}{2}$ pairs $x, y$ contributing to $\Delta \alpha(u, v)$ in this case.
- Only one endvertex of $B_{2}(x)$ is in $C$ : For this vertex we have $d_{a}-1$ choices, since $a \notin V\left(B_{2}(x)\right)$, and for the other endvertex of $B_{2}(x)$ we have $d_{u}-d_{a}$ choices. In this case, for every $x$ there is a unique $y$ such that $B_{2}(x)$ and $B_{2}(y)$ share an endvertex and $b \in V\left(B_{2}(y)\right)$. Thus there are $\left(d_{a}-1\right)\left(d_{u}-d_{a}\right)$ pairs $x, y$ contributing to $\Delta \alpha(u, v)$ in this case.

Hence,

$$
\begin{equation*}
\Delta \alpha(u, v)=2\binom{d_{a}-1}{2}+\left(d_{a}-1\right)\left(d_{u}-d_{a}\right)=\left(d_{a}-1\right)\left(d_{u}-2\right)=\phi(u, a) \tag{4}
\end{equation*}
$$

Now we evaluate $W\left(T^{*}\right)-W(T)$. If $F$ is a tree with $n_{0}$ vertices, then $W(L F)=$ $W(F)-\binom{n_{0}}{2}$, by Theorem 1.1. Denote by $n_{1}$ the number of vertices of $L F$. Since $n_{1}=n_{0}-1$, we have $W(F)=W(L F)+\binom{n_{1}+1}{2}$. Denote by $n$ the number of vertices of $L T$. Then

$$
\begin{aligned}
W\left(T^{*}\right)-W(T) & =W\left(L T^{*}\right)+\binom{n+2}{2}-W(L T)-\binom{n+1}{2} \\
& =W\left(L T^{*}\right)-W(L T)+n+1
\end{aligned}
$$

In $W\left(L T^{*}\right)-W(L T)$, all terms for pairs $u, v$ which do not contain $b$ will cancell out. Therefore

$$
\begin{align*}
W\left(T^{*}\right)-W(T) & =\sum_{u} d(u, b)+d(a, b)+n+1 \\
& =\sum_{u}^{u}(d(u, a)+1)+1+\sum_{u} 1+2 \\
& =\sum_{u}(d(u, a)+2)+3 \tag{5}
\end{align*}
$$

where the sum goes once again through $n-1$ vertices $u \in V(L T) \backslash\{a\}$.
Since $\Delta T=D\left(T^{*}\right)-D(T)=W\left(L^{3}\left(T^{*}\right)\right)-W\left(T^{*}\right)-W\left(L^{3}(T)\right)+W(T)=$ $\Delta W L^{2}-\left(W\left(T^{*}\right)-W(T)\right)$, combining (3), (4) and (5) we obtain the required result.

## 3 Proof of Theorem 1.5

We prove that $\Delta T \geq 0$ for every tree $T$ which is not homeomorphic to a path, claw $K_{1,3}$ or the graph $H$. Let $l, a^{\prime}, b^{\prime}, a, b, T^{*}$ and $\Delta T$ be as in the discussion following Corollary 1.6. As explained there, we proceed by induction on $l$.

First we prove that $\Delta T \geq 0$ for the case $l=0$. In this case, $a^{\prime}$ is adjacent to a vertex of degree at least 3 in $T$, implying that in $L T$ we have $d_{a} \geq 2$.

Let $v$ be an endvertex of a ray (a pendant path) $R$ in $L T$, i.e., $d_{v}=1$. By $\bar{v}$ we denote the first vertex of $R$, i.e., a vertex at shortest distance to $v$ whose degree is at least 3. Due to the clique structure of $L T$ described after Proposition 2.1, we have:

Observation 3.1 If $u$ and $v$ are distinct vertices of degree 1 in $L T$, then $\bar{u} \neq \bar{v}$.
We use Obseravtion 3.1 repeatedly in the following proofs.
Lemma 3.2 Let $T$ be a tree different from a path in which all rays have length at most $l+2$, and let $l=0$. Then $\Delta T \geq 0$.

Proof We find a lower bound for $\sum_{u} h_{L T}(u)$. Consider four cases:

- $d_{u}=1$ : Then $d(u, a)>1$, and thus $h_{L T}(u)=-d(u, a)-2$ by (1).
- $d_{u}=2$ : Since $\left(d_{a}-1\right)\left(d_{u}-2\right)=0$, we see that $\phi(u, a)=0$ in this case as well. By (1) we obtain

$$
h_{L T}(u)=\left(d_{a}-1\right) d(u, a)+d_{a}-3 \geq d_{a}-1+d_{a}-3=2 d_{a}-4 \geq 0
$$

since $d_{a} \geq 2$.

- $d_{u} \geq 3$ and $d(u, a) \geq 2$ : By (1) it follows that

$$
\begin{aligned}
h_{L T}(u) & =\left(\binom{d_{u}}{2} d_{a}-1\right) d(u, a)+\left(d_{u}-1\right)\left(d_{u} d_{a}-d_{a}-\frac{1}{2} d_{u}\right)-2 \\
& \geq 5 d(u, a)+\left(d_{u}-1\right) \frac{1}{2}\left[d_{a}\left(d_{u}-2\right)+d_{u}\left(d_{a}-1\right)\right]-2 \\
& \geq 5 d(u, a)+5-2 \\
& \geq d(u, a)+11
\end{aligned}
$$

as $d_{u} \geq 3, d_{a} \geq 2$ and $d(u, a) \geq 2$.

- $d_{u} \geq 3$ and $d(u, a)=1$ : By (1) it follows that

$$
\begin{aligned}
h_{L T}(u)= & \left(\binom{d_{u}}{2} d_{a}-1\right) d(u, a)+\left(d_{u}-1\right)\left(d_{u} d_{a}-d_{a}-\frac{1}{2} d_{u}\right)-2 \\
& -\left(d_{a}-1\right)\left(d_{u}-2\right) \\
\geq & 5 d(u, a)+{d_{u}}^{2} d_{a}-\frac{1}{2} d_{u}{ }^{2}-3 d_{u} d_{a}+\frac{3}{2} d_{u}+3 d_{a}-\frac{3}{2}-\frac{5}{2} \\
= & 5 d(u, a)+\frac{1}{2}\left[\left(2 d_{a}-1\right)\left(d_{u}\left(d_{u}-3\right)+3\right)-5\right] \\
\geq & d(u, a)+6
\end{aligned}
$$

as $d_{u} \geq 3, d_{a} \geq 2$ and $d(u, a)=1$.
Hence,

$$
h_{L T}(u) \geq \begin{cases}-d(u, a)-2 & \text { if } d_{u}=1  \tag{6}\\ 0 & \text { if } d_{u}=2 \\ d(u, a)+6 & \text { if } d_{u} \geq 3\end{cases}
$$

Since $l=0$, all rays of $T$ have length at most 2, implying that all rays of $L T$ have length at most 1 . Hence, if $d_{u}=1$, then $d(u, \bar{u})=1$ in $L T$. Thus

$$
h_{L T}(u)+h_{L T}(\bar{u}) \geq-d(u, a)-2+d(\bar{u}, a)+6=-d(\bar{u}, a)-3+d(\bar{u}, a)+6 \geq 0 .
$$

Denote by $V_{1}$ the set of vertices of degree 1 in $V(L T) \backslash\{a\}$. By Observation 3.1, $\bar{u} \neq \bar{v}$ whenever $u, v \in V_{1}, u \neq v$. Therefore, by (6) it follows that

$$
\sum_{u} h_{L T}(u) \geq \sum_{u \in V_{1}}\left(h_{L T}(u)+h_{L T}(\bar{u})\right) \geq 0
$$

Since $d_{a} \geq 2$, we have $\frac{1}{2} d_{a}\left(d_{a}-1\right)\left(2 d_{a}-1\right) \geq 3$, implying that

$$
\Delta T=\sum_{u} h_{L T}(u)+\frac{1}{2} d_{a}\left(d_{a}-1\right)\left(2 d_{a}-1\right)-3 \geq 0
$$

by Proposition 2.2.

Now we prove that $\Delta T \geq 0$ for all $l \geq 1$, i.e., from now on we consider $l \geq 1$. In this case $\phi(u, a)=0$ since $d_{a}=1$, which simplifies the expression for $h_{L T}(u)$ in (1). The problem is that $h_{L T}(u)<0$ even if $d_{u}=2$, suggesting that we need sharper estimations. We prove $\Delta T \geq 0$ by induction on the number of vertices of degree at least 3 in $T$.

Let $G$ be a graph. A path of length at least one in $G$ is interior path if its endvertices have degrees both at least 3 , its interior vertices (if any) have degree 2 in $G$, and its edges are bridges of $G$. In the next lemma we show that it suffices to prove $\Delta T \geq 0$ for trees whose interior paths have lengths at most 2 , i.e., we reduce the class of trees for which we need to prove $\Delta T \geq 0$.

Lemma 3.3 Let $T^{s}$ be obtained from $T$ by subdividing one edge of an interior path of length $t, t \geq 2$, and let $l \geq 1$. Then $\Delta T^{s} \geq \Delta T$.

Proof Denote by $P^{\prime}$ the interior path of $T$, whose edge was subdivided to obtain $T^{s}$. Since $P^{\prime}$ has length $t \geq 2$, the edges of $P^{\prime}$ form an interior path $P$ of length $t-1 \geq 1$ in $L T$. Obviously, $L T^{s}$ can be obtained from $L T$ by subdividing one edge of $P$. Denote by $e$ the endvertex of $P$, which has among the vertices of $P$ the greatest distance from $a$. Let $L T^{s}$ be obtained from $L T$ by subdividing that edge of $P$ which is incident to $e$. Denote the new vertex by $w$. Observe that for every vertex $u \in V(L T)$, the degree of $u$ in $L T$ is the same as its degree in $L T^{s}$.

Since the degree of $a$ is the same in $L T^{s}$ as in $L T$, namely 1 , by Proposition 2.2 it suffices to show that $\sum_{u \in V\left(L T^{s}\right) \backslash\{a\}} h_{L T^{s}}(u) \geq \sum_{u \in V(L T) \backslash\{a\}} h_{L T}(u)$. We distinguish three cases.

- $u$ is a vertex of $L T$ such that $e$ does not lie on $u-a$ path in $L T$ : Then $d_{L T^{s}}(u, a)=d_{L T}(u, a)$, implying that $h_{L T^{s}}(u)=h_{L T}(u)$ and $h_{L T^{s}}(u)-h_{L T}(u)=$ 0 , see (1).
- $u$ is a vertex of $L T$, such that $e$ lays on $u-a$ path in $L T$ : Then $d_{L T^{s}}(u, a)=$ $d_{L T}(u, a)+1$, implying that $h_{L T^{s}}(u)-h_{L T}(u)=\binom{d_{u}}{2}-1$ since $d_{a}=1$; see (1). Thus $h_{L T^{s}}(u)-h_{L T}(u)=-1$ if $d_{u}=1, h_{L T^{s}}(u)-h_{L T}(u)=0$ if $d_{u}=2$ and $h_{L T^{s}}(u)-h_{L T}(u) \geq 2$ if $d_{u} \geq 3$.
- $u=w$ : Since the degree of $w$ is 2 in $L T^{s}$, we see that $h_{L T^{s}}(w)=-2$, by (1).

Every vertex $u$ of degree 1 in $L T$ is an endvertex of a ray starting at vertex $\bar{u}$ of degree at least 3. By Observation 3.1, if $u$ and $v$ are distinct vertices of degree 1 in $L T$, then $\bar{u} \neq \bar{v}$. Denote by $V_{e}$ the set of vertices $u$ of $L T$ such that $d_{u}=1$ and $e$ lays on $u-a$ path. Observe that $e \neq \bar{u}$ for any $u \in V_{e}$.

Denote $\Delta h=\sum_{u \in V\left(L T^{s}\right) \backslash\{a\}} h_{L T^{s}}(u)-\sum_{u \in V(L T) \backslash\{a\}} h_{L T}(u)$. By the analysis above only vertices of $V_{e} \cup\{w\}$ contribute negative value to $\Delta h$. Therefore

$$
\begin{aligned}
\Delta h \geq & \sum_{u \in V_{e}}\left[\left(h_{L T^{s}}(u)-h_{L T}(u)\right)+\left(h_{L T^{s}}(\bar{u})-h_{L T}(\bar{u})\right)\right] \\
& +\left(h_{L T^{s}}(e)-h_{L T}(e)\right)+h_{L T^{s}}(w) \\
\geq & \sum_{u \in V_{e}}(-1+2)+2-2 \geq 0 .
\end{aligned}
$$

Hence $\Delta T^{s} \geq \Delta T$.

Let $F$ be a tree with a ray of length $l+1$ terminating in the edge $a$. Denote by $S_{L F}$ the set of first edges of rays of $F$. Then $S_{L F}$ is also a set of vertices of $L F$. These vertices have degree at least 3 , with the exception when the corresponding edge is incident to vertices of degree 1 and 3 in $F$. Let $u \in S_{L F}$. If there is a ray in $L F$ starting at $u$, then denote by $R_{L F}(u)$ the set of vertices (other than $a$ ) of this ray; otherwise set $R_{L F}(u)=\{u\}$. Since $l \geq 1$, there is a ray in $L F$ starting at $\bar{a}$ and $\bar{a} \neq s$. Observe also that $R_{L F}(u) \cap R_{L F}(v)=\emptyset$ whenever $u, v \in S_{L F}, u \neq v$.

Lemma 3.4 Let $F$ be a tree rays of which have length at most $l+2, l \geq 1$. Moreover, one ray of $F$ has length exactly $l+1$ and this ray terminates by the edge $a$. Let $c \in S_{L F}$ be a vertex of a clique from $\mathcal{C}(L F)$ of order $r \geq 3$. Then

Proof We distinguish three cases.

- $c=\bar{a}$ : Then $R_{L F}(c)$ has one vertex of degree $r$, namely $c$ with $d(c, a)=l$, and $l-1$ vertices of degree 2 . Since the degree of $a$ is 1 , by (1) we have

$$
\begin{aligned}
\sum_{u \in R_{L F}(c)} h_{L F}(u) & =\left(\binom{r}{2}-1\right) d(c, a)+(r-1)\left(\frac{r-2}{2}\right)-2+(l-1)(-2) \\
& =\left(\binom{r}{2}-3\right) l+\binom{r-1}{2}
\end{aligned}
$$

- $c \neq \bar{a}$ and $\left|R_{L F}(c)\right|=1$ : Since the degree of $c$ is $r-1$, by (1) we obtain

$$
\sum_{u \in R_{L F}(c)} h_{L F}(u)=h_{L F}(c)=\left(\binom{r-1}{2}-1\right) d(c, a)+(r-2)\left(\frac{r-3}{2}\right)-2 .
$$

- $c \neq \bar{a}$ and $\left|R_{L F}(c)\right| \geq 2$ : Then $R_{L F}(c)$ has one vertex of degree $r$, namely $c$, one vertex of degree 1 at distance at most $d(c, a)+l+1$ from $a$ and at most $l$ vertices of degree 2 since all rays of $L F$ have length at most $l+1$. By (1) it follows that

$$
\begin{aligned}
\sum_{u \in R_{L F}(c)} h_{L F}(u) \geq & \left(\binom{r}{2}-1\right) d(c, a)+(r-1)\left(\frac{r-2}{2}\right)-2 \\
& -(d(c, a)+l+1)-2+l(-2) \\
= & \left(\binom{r}{2}-2\right) d(c, a)-3 l+\binom{r-1}{2}-5 .
\end{aligned}
$$

Before we state the lemmas necessary for the basis of induction, we give the proof of induction step. That is, we prove that if $\Delta T^{h} \geq 0$ for every tree $T^{h}$ homeomorphic to $T$ rays of which have lengths at most $l+2$, then $\Delta T^{g h} \geq 0$ for all trees $T^{g h}$ homeomorphic to $T^{g}$ rays of which have lengths at most $l+2$, where $T^{g}$ is obtained from $T$ by inserting a star at the end of one ray of $T$ (of course, we cannot attach this star to $a^{\prime}$ ).

Let $R^{\prime}$ be a ray of $T$ which does not terminate at $a^{\prime}$. Remove $R^{\prime}$ from $T$ and replace it by a path $P R^{\prime}$ of length $i, 1 \leq i \leq 2$. Denote by $c^{\prime}$ the vertex of degree 1 in $P R^{\prime}$. Now attach to $c^{\prime}$ exactly $j-1$ rays, each of length at most $l+2$, and denote the resulting graph by $T_{i, j}, j \geq 3$. In the next two lemmas we prove that $\Delta T_{i, j} \geq 0$.


Figure 2: The trees $T$ and $T_{2,3}$ in the case $l=2$.

Lemma 3.5 Suppose that $\Delta T^{h} \geq 0$ for all trees $T^{h}$ homeomorphic to $T$ rays of which have lengths at most $l+2, l \geq 1$, and in which the ray terminating in the edge a has length $l+1$. Then $\Delta T_{i, 3} \geq 0$ for all $i \in\{1,2\}$.

Proof Since $\Delta T^{h} \geq 0$ for all trees homeomorphic to $T$ rays of which have length at most $l+2$, we may assume that the length of $R^{\prime}$ is exactly $l+2, l \geq 1$. Then the
edges of $R^{\prime}$ form a ray $R$ in $L T$ of length $l+1$. Denote by $e$ the first vertex of $R$. By (1) it follows that

$$
\sum_{u \in R_{L T}(e) \backslash\{e\}} h_{L T}(u)=-2 l-(d(e, a)+l+1)-2=-d(e, a)-3 l-3
$$

since $R_{L T}(e)$ has $l$ vertices of degree 2 and one vertex of degree 1 at distance $d(e, a)+$ $l+1$ from $a$. We distinguish two cases.

- $i=1$ : Then $P R^{\prime}$ has length 1 and the unique edge of $P R^{\prime}$ corresponds to the vertex $e$ in $L T_{1,3}$. In $L T_{1,3}$ the degree of $e$ is $d_{e}+3-2=d_{e}+1$ since $e$ is in two cliques from $\mathcal{C}\left(L T_{1,3}\right)$, one of them has order $d_{e}$ and the other one has order 3 . Denote by $c$ any one of the other two vertices of this clique of order 3. Since $d(c, a) \geq l+2$, we see that $d(c, a)-3 l-4 \geq-2 l-2$. Hence, by Lemma 3.4,

$$
\sum_{u \in R_{L T_{1,3}}(c)} h_{L T_{1,3}}(u) \geq \begin{cases}-2 & \text { if }\left|R_{L T_{1,3}}(c)\right|=1 \\ -2 l-2 & \text { if }\left|R_{L T_{1,3}}(c)\right| \geq 2\end{cases}
$$

Since $-2 l-2 \leq-2$, we have $\sum_{u \in R_{L T_{1,3}}(c)} h_{L T_{1,3}}(u) \geq-2 l-2$.
Denote

$$
\Delta h=\sum_{u \in V\left(L T_{1,3}\right) \backslash\{a\}} h_{L T_{1,3}}(u)-\sum_{u \in V(L T) \backslash\{a\}} h_{L T}(u) .
$$

In $\Delta h$ all terms cancel out, except the terms corresponding to vertices of rays starting at the clique of order 3 containing $e$, the vertex $e$ itself, and the vertices of $R_{L T}(e) \backslash\{e\}$. By (1) it follows that

$$
\begin{aligned}
\Delta h \geq & 2(-2 l-2)+\left(\binom{d_{e}+1}{2}-1\right) d(e, a)+d_{e}\left(\frac{d_{e}+1}{2}-1\right)-2 \\
& -\left(\binom{d_{e}}{2}-1\right) d(e, a)-\left(d_{e}-1\right)\left(\frac{d_{e}}{2}-1\right)+2+(d(e, a)+3 l+3) \\
\geq & \left(d_{e}+1\right) d(e, a)+\left(d_{e}-1\right)-l-1 \\
\geq & 4 d(e, a)-l+1 \geq 0
\end{aligned}
$$

since $d_{e} \geq 3$ and $d(e, a) \geq l+1$. By Proposition 2.2, $\Delta T_{1,3}-\Delta T=\Delta h \geq 0$, implying that $\Delta T_{1,3} \geq \Delta T \geq 0$.

- $i=2$ : Then $P R^{\prime}$ has length 2. One edge of $P R^{\prime}$ corresponds to $e$, while the other corresponds to a vertex of degree 3 , say $f$, in $L T_{2,3}$. Observe that the degree of $e$ is $d_{e}$ in $L T_{2,3}$ and the degree of $f$ is 3 in $L T_{2,3}$. Analogously as in the previous case, denote by $c$ any one of the two vertices of the triangle containing
$f, c \neq f$. Since $d(c, a)=d(e, a)+2 \geq l+3$, we see that $d(c, a)-3 l-4 \geq-2 l-1$. Hence, by Lemma 3.4

$$
\sum_{u \in R_{L T_{2,3}}(c)} h_{L T_{2,3}}(u) \geq \begin{cases}-2 & \text { if }\left|R_{L T_{2,3}}(c)\right|=1 \\ -2 l-1 & \text { if }\left|R_{L T_{2,3}}(c)\right| \geq 2\end{cases}
$$

Since $l \geq 1$ it follows that $-2 l-1 \leq-2$, implying that $\sum_{u \in R_{L T_{2,3}}(c)} h_{L T_{2,3}}(u) \geq$ $-2 l-1$. Denote

$$
\Delta h=\sum_{u \in V\left(L T_{2,3}\right) \backslash\{a\}} h_{L T_{2,3}}(u)-\sum_{u \in V(L T) \backslash\{a\}} h_{L T}(u) .
$$

In $\Delta h$ all terms cancell out, except the terms corresponding to vertices of rays starting at the clique of order 3 containing $f$, the vertex $f$ itself, and the vertices of $R_{L T}(e) \backslash\{e\}$. By (1) it follows that

$$
\begin{aligned}
\Delta h & \geq 2(-2 l-1)+(2 d(f, a)-1)+(d(e, a)+3 l+3) \\
& \geq 3 d(e, a)-l+2 \geq 0
\end{aligned}
$$

since $d(f, a)=d(e, a)+1$ and $d(e, a) \geq l+1$. By Proposition $2.2, \Delta T_{2,3}-\Delta T=$ $\Delta h \geq 0$, implying that $\Delta T_{2,3} \geq \Delta T \geq 0$.

In both cases the inequality $\Delta T_{i, 3} \geq 0$ holds, which completes the proof.

Now we extend the previous lemma to trees $T_{i, j}$ with higher $j$.
Lemma 3.6 Suppose that $\Delta T^{h} \geq 0$ for all trees $T^{h}$ homeomorphic to $T$ rays of which have lengths at most $l+2, l \geq 1$, and in which the ray terminating in the edge a has length $l+1$. Then $\Delta T_{i, j} \geq 0$ for all $j \geq 4$ and $i \in\{1,2\}$.

Proof We use the notation of the proof of Lemma 3.5. Analogously as in the proof of Lemma 3.5, assume that the length of $R^{\prime}$ is $l+2, l \geq 1$. Then again

$$
\sum_{u \in R_{L T}(e) \backslash\{e\}} h_{L T}(u)=-d(e, a)-3 l-3 .
$$

Let $c$ be one of the $j-1$ vertices of the clique of order $j$ obtained from the edges incident to $c^{\prime}$, other than $e$ (in the case $i=1$ ) or $f$ (in the case $i=2$ ). By Lemma 3.4 it follows that

$$
\sum_{u \in R_{L T_{i, j}}(c)} h_{L T_{i, j}}(u) \geq \begin{cases}\left(\begin{array}{c}
\left.\binom{-1}{2}-1\right) d(c, a)+\binom{j-2}{2}-2
\end{array}\right. & \text { if }\left|R_{L T_{i, j}}(c)\right|=1 \\
\left(\binom{j}{2}-2\right) d(c, a)-3 l+\binom{j-1}{2}-5 & \text { if }\left|R_{L T_{i, j}}(c)\right| \geq 2\end{cases}
$$

Since $j \geq 4$ and $d(c, a) \geq l+2 \geq 3$, in any case we have $\sum_{u \in R_{L T_{i, j}(c)}} h_{L T_{i, j}}(u) \geq 0$. Now if $i=1$, then $h_{L T_{i, j}}(e)-h_{L T}(e) \geq 0$ since the degree of $e$ is $d_{e}+j-2$ in $T_{i, j}$; see (1). On the other hand, if $i=2$, then $h_{L T_{i, j}}(e)=h_{L T}(e)$ while $h_{L T_{i, j}}(f) \geq 0$, since the degree of $f$ is $j \geq 4$ in $T_{i, j}$. Hence
$\Delta h=\sum_{u \in V\left(L T_{i, j}\right) \backslash\{a\}} h_{L T_{i, j}}(u)-\sum_{u \in V(L T) \backslash\{a\}} h_{L T}(u) \geq(j-1) \cdot 0+0+d(e, a)+3 l+3 \geq 0$.
By Proposition 2.2, $\Delta T_{i, j}-\Delta T=\Delta h \geq 0$, showing that $\Delta T_{i, j} \geq \Delta T \geq 0$.

Now we prove $\Delta T \geq 0$ for the basis of induction. In all graphs in this basis, $a^{\prime}$ is an endvertex of a ray of length $l+1$ and $a$ is the edge incident with $a^{\prime}$.

Lemma 3.7 Let $T$ be a tree homeomorphic to a star $K_{1, k}, k \geq 4$, in which all rays have lengths at most $l+2, l \geq 1$, and in which the ray terminating in the edge a has length $l+1$. Then $\Delta T \geq 0$.

Proof Here $\left|S_{L T}\right|=k$ and $\cup_{u \in S_{L T}} R_{L T}(u)=V(L T) \backslash\{a\}$ where $R_{L T}(u) \cap$ $R_{L T}(v)=\emptyset$ if $u \neq v$. Thus $\sum_{u} h_{L T}(u)=\sum_{c \in S_{L T}}\left(\sum_{u \in R_{L T}(c)} h_{L T}(u)\right)$. We prove that $\sum_{u \in R_{L T}(c)} h_{L T}(u) \geq 1$.

Choose $c \in S_{L T}$. By Lemma 3.4 it follows that

$$
\sum_{u \in R_{L T}(c)} h_{L T}(u) \geq \begin{cases}\left(\begin{array}{c}
\left.\binom{k}{2}-3\right) l+\binom{k-1}{2}
\end{array}\right. & \text { if } c=\bar{a} \\
\left.\binom{k-1}{2}-1\right) d(c, a)+\binom{k-2}{2}-2 & \text { if } c \neq \bar{a} \text { and }\left|R_{L T}(c)\right|=1 \\
\left.\binom{k}{2}-2\right) d(c, a)-3 l+\binom{k-1}{2}-5 & \text { if } c \neq \bar{a} \text { and }\left|R_{L T}(c)\right| \geq 2\end{cases}
$$

Since $d(c, a)=l+1$ in the last two cases, $k \geq 4$ and $l \geq 1$, in all three cases we conclude $\sum_{u \in R_{L T}(c)} h_{L T}(u) \geq 1$

We have $\sum_{u} h_{L T}(u)=\sum_{c \in S_{L T}}\left(\sum_{u \in R_{L T}(c)} h_{L T}(u)\right) \geq k \cdot 1 \geq 4$. Since $d_{a}=1$, we se that $\Delta T=\sum_{u} h_{L T}(u)-3$ by Proposition 2.2, implying that $\Delta T \geq 0$.

Denote by $H_{i, j}$ a tree having $i+j$ vertices, $i, j \geq 3$. One of these vertices has degree $i$, another one has degree $j$ and the remaining $i+j-2$ vertices have degrees 1. Obviously, the vertices of degrees $i$ and $j$ must be adjacent in $H_{i, j}$ and $H=H_{3,3}$.

Lemma 3.8 Let $T$ be a tree homeomorphic to $H_{3, j}, j \geq 4$, in which all rays have lengths at most $l+2, l \geq 1$, and in which the ray terminating in the edge a has length $l+1$. Suppose that the interior path of $H_{3, j}$ has length at most 2 and moreover suppose that the first vertex of the ray terminating in a has degree 3 . Then $\Delta T \geq 0$.

Proof Denote $e=\bar{a}$ and let $P^{\prime}$ be the unique interior path of $T$. If $P^{\prime}$ has length 1 , then the unique vertex of $L P^{\prime}$ (denote it by $v$ ) has degree $3+j-2 \geq 5$, while if $P^{\prime}$ has length 2 , then one of the vertices of $L P^{\prime}$ has degree 3 and the other (denote it by $v$ ) has degree $j \geq 4$. Since by (1), $h_{L T}(u) \geq 0$ if $d_{u} \geq 3$ and $h_{L T}(u) \geq 5 d(u, a)+1$ if $d_{u} \geq 4$, the vertices of $L P^{\prime}$ contribute to $\sum_{u \in V(L T) \backslash\{a\}} h_{L T}(u)$ by at least $5 d(v, a)+1 \geq 5 l+6$ since $d(v, a) \geq l+1$.

Denote by $c$ any one of the $j-1$ vertices of the clique of order $j$ from $\mathcal{C}\left(H_{3, j}\right)$, which is not in $L P^{\prime}$. By Lemma 3.4 it follows that

$$
\sum_{u \in R_{L T}(c)} h_{L T}(u) \geq \begin{cases}\left(\begin{array}{c}
\left.\binom{j-1}{2}-1\right) d(c, a)+\binom{j-2}{2}-2
\end{array}\right. & \text { if }\left|R_{L T}(c)\right|=1 \\
\left.\binom{j}{2}-2\right) d(c, a)-3 l+\binom{j-1}{2}-5 & \text { if }\left|R_{L T}(c)\right| \geq 2\end{cases}
$$

Since $j \geq 4$ and $d(c, a) \geq l+2 \geq 3$, in any case we have $\sum_{u \in R_{L T}(c)} h_{L T}(u) \geq 0$.
Now consider the rays attached to the clique of order 3 from $\mathcal{C}\left(H_{3, j}\right)$. By Lemma 3.4

$$
\sum_{u \in R_{L T}(e)} h_{L T}(u)=\left(\binom{3}{2}-3\right) l+\binom{3-1}{2}=1
$$

Denote by $f$ that vertex of the clique of order 3 from $\mathcal{C}\left(H_{3, j}\right)$ which is different from $e$ and which is not in $L P^{\prime}$. By Lemma 3.4 it follows that

$$
\sum_{u \in R_{L T}(f)} h_{L T}(u) \geq \begin{cases}-2 & \text { if }\left|R_{L T}(f)\right|=1 \\ d(f, a)-3 l-4 & \text { if }\left|R_{L T}(f)\right| \geq 2\end{cases}
$$

Since $d(f, a)=l+1$ and $l \geq 1$, in any case we have $\sum_{u \in R_{L T}(f)} h_{L T}(u) \geq-2 l-3$.
Now summing up the inequalities above we obtain

$$
\sum_{u} h_{L T}(u) \geq(5 l+6)+(j-1) \cdot 0+1+(-2 l-3)=3 l+4 \geq 3
$$

Since $d_{a}=1$, we have $\Delta T=\sum_{u} h_{L T}(u)-3$ by Proposition 2.2, showing that $\Delta T \geq 0$.

Denote by $Y_{i, j}, 1 \leq i, j \leq 2$, a tree having three vertices of degree 3, namely $y_{1}^{\prime}$, $y_{2}^{\prime}$ and $y_{3}^{\prime}$. All the other vertices of $Y_{i, j}$ have degree at most 2 . There are two interior paths in $Y_{i, j}$, namely $y_{1}^{\prime}-y_{2}^{\prime}$ and $y_{2}^{\prime}-y_{3}^{\prime}$, and their lengths are $i$ and $j$, respectively. Moreover, there are five rays in $Y_{i, j}$. Two such rays start at $y_{1}^{\prime}$, one starts at $y_{2}^{\prime}$ and two start at $y_{3}^{\prime}$. Of course, one of these rays has length exactly $l+1$ and it terminates in $a^{\prime}$.

Lemma 3.9 Let $T$ be the tree $Y_{i, j}, 1 \leq i, j \leq 2$, in which all rays have lengths at most $l+2, l \geq 1$. Then $\Delta T \geq 0$.

Proof Denote by $x_{1}, x_{2}, x_{3}, x_{4}$ and $x_{5}$ the five vertices of $S_{L T}$ corresponding to the first edges of rays starting at $y_{1}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}$ and $y_{3}^{\prime}$, respectively. Since the degrees of $y_{1}^{\prime}, y_{2}^{\prime}$ and $y_{3}^{\prime}$ are 3 in $T$, all $x_{1}, x_{2}, \ldots, x_{5}$ are vertices of cliques of order 3 in $L T$. Let $x_{t}=\bar{a}, 1 \leq t \leq 5$. By Lemma 3.4

$$
\sum_{u \in R_{L T}\left(x_{t}\right)} h_{L T}(u)=1
$$

For all other $x_{r}, 1 \leq r \leq 5$ and $r \neq t$, by Lemma 3.4 we obtain

$$
\sum_{u \in R_{L T}\left(x_{r}\right)} h_{L T}(u) \geq \min \left\{-2, d\left(x_{r}, a\right)-3 l-4\right\}
$$

Since $l \geq 1$, this minimum equals $d\left(x_{r}, a\right)-3 l-4$ if $d\left(x_{r}, a\right) \leq l+4$. If $d\left(x_{r}, a\right)=l+5$ then $\sum_{u \in R_{L T}\left(x_{r}\right)} h_{L T}(u) \geq \min \{-2,-2 l+1\} \geq-2 l$.

Now we consider vertices corresponding to the edges of interior paths. If such a path has length 1 , then its unique edge corresponds to a vertex, say $e$, the degree of which is 4 in $L T$. By (1) it follows that

$$
h_{L T}(e)=5 d(e, a)+1 .
$$

On the other hand if such a path has length 2, then its edges correspond to two vetices, say $e$ and $f$, both of degree 3. Suppose that $e$ is closer to $a$ than $f$. By (1) it follows that

$$
h_{L T}(e)+h_{L T}(f)=2 d(e, a)-1+2 d(f, a)-1=4 d(e, a) .
$$

In what follows, we list contributions to $\sum_{u} h_{L T}(u)$ first by vertices of rays starting at $x_{1}, x_{2}, \ldots, x_{5}$ and then by the vertices corresponding to edges of paths $y_{1}^{\prime}-y_{2}^{\prime}$ and $y_{2}^{\prime}-y_{3}^{\prime}$. By symmetry, there are two cases to consider. First, suppose that $t=1$, i.e., $\bar{a}=x_{1}$. We distinguish 4 subcases.

- $i=j=1$ : Then $d\left(x_{2}, a\right)=l+1, d\left(x_{3}, a\right)=l+2$ and $d\left(x_{4}, a\right)=d\left(x_{5}, a\right)=l+3$.

Since $l \geq 1$, we see that

$$
\sum_{u} h_{L T}(u) \geq 1+(-2 l-3)+(-2 l-2)+2(-2 l-1)+(5 l+6)+(5 l+11) \geq 2 l+11 \geq 3 .
$$

- $i=1$ and $j=2$ : Analogously as above we obtain

$$
\sum_{u} h_{L T}(u) \geq 1+(-2 l-3)+(-2 l-2)+2(-2 l)+(5 l+6)+(4 l+8) \geq l+10 \geq 3
$$

- $i=2$ and $j=1$ : Then

$$
\sum_{u} h_{L T}(u) \geq 1+(-2 l-3)+(-2 l-1)+2(-2 l)+(4 l+4)+(5 l+16) \geq l+17 \geq 3
$$

- $i=j=2$ : Here $d\left(x_{4}, a\right)=d\left(x_{5}, a\right)=l+5$. Hence

$$
\sum_{u} h_{L T}(u) \geq 1+(-2 l-3)+(-2 l-1)+2(-2 l)+(4 l+4)+(4 l+12) \geq 13 \geq 3
$$

Now suppose that $t=3$, i.e., $\bar{a}=x_{3}$. By symmetry, it suffices to consider 3 subcases.

- $i=j=1$ : Then $d\left(x_{1}, a\right)=d\left(x_{2}, a\right)=l+2$ and also $d\left(x_{4}, a\right)=d\left(x_{5}, a\right)=l+2$.

Since $l \geq 1$, we see that

$$
\sum_{u} h_{L T}(u) \geq 2(-2 l-2)+1+2(-2 l-2)+(5 l+6)+(5 l+6) \geq 2 l+5 \geq 3
$$

- $i=1$ and $j=2$ : Then the following holds

$$
\sum_{u} h_{L T}(u) \geq 2(-2 l-2)+1+2(-2 l-1)+(5 l+6)+(4 l+4) \geq l+5 \geq 3
$$

- $i=j=2$ : Then

$$
\sum_{u} h_{L T}(u) \geq 2(-2 l-1)+1+2(-2 l-1)+(4 l+4)+(4 l+4) \geq 5 \geq 3
$$

Since $\Delta T=\sum_{u} h_{L T}(u)-3$ by Proposition 2.2 , we conclude that $\Delta T \geq 0$.

Now we prove $\Delta T \geq 0$ for the last graph of the basis of induction. Denote by $X_{k}, k \geq 4$, the tree having two vertices of degree 3 , namely $y_{1}^{\prime}$ and $y_{2}^{\prime}$, and one vertex of degree $k$, namely $y_{3}^{\prime}$. All other vertices of $X_{k}$ have degree at most 2. There are two interior paths in $X_{k}$, namely $y_{1}^{\prime}-y_{2}^{\prime}$ and $y_{2}^{\prime}-y_{3}^{\prime}$, both of length at most 2 . Moreover, there are $k+2$ rays in $X_{k}$. Two such rays start at $y_{1}^{\prime}$, one starts at $y_{2}^{\prime}$ and the remaining $k-1$ start at $y_{3}^{\prime}$.

Lemma 3.10 Let $T$ be the tree $X_{k}, k \geq 4$, in which all rays have lengths at most $l+2, l \geq 1$. Suppose that the ray having length $l+1$ and terminating at $a^{\prime}$ starts at $y_{1}^{\prime}$. Then $\Delta T \geq 0$.

Proof We use the notation of the proof of Lemma 3.9. Denote by $x_{1}, x_{2}, x_{3}, x_{4}$, $\ldots x_{k+2}$ the $k+2$ vertices of $S_{L T}$ corresponding to the first edges of rays starting at $y_{1}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}, \ldots, y_{3}^{\prime}$, respectively. The vertices $x_{1}, x_{2}$ and $x_{3}$ are in cliques of order 3 , while $x_{4}, \ldots, x_{k+2}$ are in the clique of order $k$. Assume that $\bar{a}=x_{1}$. As shown in the proof of Lemma 3.9, we have $\sum_{u \in R_{L T}\left(x_{1}\right)} h_{L T}(u)=1$. Further, $\sum_{u \in R_{L T}\left(x_{2}\right)} h_{L T}(u) \geq$ $-2 l-3$ since $d\left(x_{2}, a\right)=l+1$. The vertices corresponding to edges of $y_{1}^{\prime}-y_{2}^{\prime}$ path
contribute to $\sum_{u} h_{L T}(u)$ by at least $\min \{5 d(e, a)+1,4 d(e, a)\}=4 d(e, a)=4 l+4$ as $d(e, a)=l+1$. Finally, $\sum_{u \in R_{L T}\left(x_{3}\right)} h_{L T}(u) \geq \min \left\{-2, d\left(x_{3}, a\right)-3 l-4\right\} \geq-2 l-2$ as $d\left(x_{3}, a\right) \geq l+2$.

Since the vertices corresponding to edges of $y_{2}^{\prime}-y_{3}^{\prime}$ path have degree $k+1$ (in the case when the length of $y_{2}^{\prime}-y_{3}^{\prime}$ is 1 ) or 3 and $k$ (in the case when the length of $y_{2}^{\prime}-y_{3}^{\prime}$ is 2 ), and since $h_{L T}(u) \geq 0$ if $d_{u} \geq 3$ by (1), the contribution of these vertices to $\sum_{u} h_{L T}(u)$ is nonnegative.

Finally, consider $\sum_{u \in R_{L T}\left(x_{i}\right)} h_{L T}(u)$ when $i \geq 4$. By Lemma 3.4 it follows that

$$
\sum_{u \in R_{L T}\left(x_{i}\right)} h_{L T}(u) \geq \begin{cases}\left.\binom{k-1}{2}-1\right) d\left(x_{i}, a\right)+\binom{k-2}{2}-2 & \text { if }\left|R_{L T}\left(x_{i}\right)\right|=1 \\ \left(\binom{k}{2}-2\right) d\left(x_{i}, a\right)-3 l+\binom{k-1}{2}-5 & \text { if }\left|R_{L T}\left(x_{i}\right)\right| \geq 2 .\end{cases}
$$

Since $d\left(x_{i}, a\right) \geq l+3, k \geq 4$ and $l \geq 1$, we obtain $\sum_{u \in R_{L T}\left(x_{i}\right)} h_{L T}(u) \geq \min \{7,11\}=$ 7.

Summing up these inequalities we obtain

$$
\sum_{u} h_{L T}(u) \geq 1+(-2 l-3)+(4 l+4)+(-2 l-2)+0+(k-1) 7=7 k-7 \geq 3 .
$$

Since $d_{a}=1$, by Proposition 2.2 we conclude that $\Delta T=\sum_{u} h_{L T}(u)-3 \geq 0$.

Now we summarize the proof of Theorem 1.5
Proof of Theorem 1.5 Let $T$ be a tree, not homeomorphic to a path, claw $K_{1,3}$ and $H$. We prove that $D(T)=W\left(L^{3}(T)\right)-W(T)>0$. Denote by $l+2, l \geq-1$, the length of a longest ray in $T$. If $l=-1$ then $D(T)=W\left(L^{3}(T)\right)-W(T)>0$ by Theorem 1.4.

Suppose that $l \geq 0$ and suppose that the statement of the theorem is true for all trees (not homeomorphic to a path, claw $K_{1,3}$ and $H$ ) rays of which have lengths at most $l+1$. Let $R_{1}^{\prime}, R_{2}^{\prime}, \ldots, R_{t}^{\prime}$ be rays of $T$ having length $l+2$. Further, denote by $c_{i}^{\prime}$ the first vertex of $R_{j}^{\prime}$, denote by $b_{i}^{\prime}$ its last vertex and denote by $a_{i}^{\prime}$ the neighbour of $b_{i}^{\prime}$ in $T, 1 \leq i \leq t$. Finally, denote by $T_{i}$ a tree obtained from $T$ by removing the vertices $b_{i+1}^{\prime}, b_{i+2}^{\prime}, \ldots, b_{t}^{\prime}$ and edges $a_{i+1}^{\prime} b_{i+1}^{\prime}, a_{i+2}^{\prime} b_{i+2}^{\prime}, \ldots, a_{t}^{\prime} b_{t}^{\prime}, 0 \leq i \leq t$. Then $T_{t}=T$ and $T_{0}$ is a tree rays of which have length at most $l+1$. By induction we have $D\left(T_{0}\right)=W\left(L^{3}\left(T_{0}\right)\right)-W\left(T_{0}\right)>0$. Let $\Delta T_{i}=D\left(T_{i+1}\right)-D\left(T_{i}\right), 0 \leq i \leq t-1$.

Suppose that $l=0$. All rays of $T_{i}$ have length at most $l+2$, and the ray $R_{i+1}^{\prime}$ terminating at $a_{i+1}^{\prime}$ has length $l+1$. Moreover, $T_{i+1}$ is obtained from $T_{i}$ by adding the vertex $b_{i+1}^{\prime}$ and the edge $a_{i+1}^{\prime} b_{i+1}^{\prime}$. Hence $\Delta T_{i} \geq 0$ by Lemma 3.2, $0 \leq i \leq t-1$, where the vertex $a_{i+1}^{\prime}$ and the tree $T_{i}$ play the role of $a$ and $T$, respectively. Consequently
$\sum_{i=0}^{t-1} \Delta T_{i} \geq 0$. Since

$$
0 \leq \sum_{i=0}^{t-1} \Delta T_{i}=D\left(T_{t}\right)-D\left(T_{0}\right)=\left[W\left(L^{3}(T)\right)-W(T)\right]-\left[W\left(L^{3}\left(T_{0}\right)\right)-W\left(T_{0}\right)\right]
$$

we have $W\left(L^{3}(T)\right)-W(T) \geq W\left(L^{3}\left(T_{0}\right)\right)-W\left(T_{0}\right)>0$.
Now suppose that $l \geq 1$. In $T_{i}$ shorten all interior paths of length at least 3 to paths of length 2 , and denote the resulting graph by $T_{i}^{-}$. Analogously as $T_{i+1}$ is obtained from $T_{i}$, the tree $T_{i+1}^{-}$is obtained from $T_{i}^{-}$by adding the vertex $b_{i+1}^{\prime}$ and the edge $a_{i+1}^{\prime} b_{i+1}^{\prime}$. We prove that $\Delta T_{i}^{-}=D\left(T_{i+1}^{-}\right)-D\left(T_{i}^{-}\right) \geq 0$ by induction on the number of vertices of degree at least 3 . Observe that $T_{i}^{-}$, as welll as $T_{i}$, is a tree, rays of which have length at most $l+2$ and the ray terminating at $a_{i+1}^{\prime}$ has length $l+1,0 \leq i \leq t-1$.

Denote by $V_{i}^{3}$ the set of vertices of degree at least 3 in $T_{i}^{-}$. We distinguish four cases.

- $\left|V_{i}^{3}\right|=1$ : Then $T_{i}^{-}$is homeomorphic to $K_{1, k}$. Since $T$ is not homeomorphic to $K_{1,3}$, it follows that $k \geq 4$. By Lemma 3.7 we have $\Delta T_{i}^{-} \geq 0$.
- $\left|V_{i}^{3}\right|=2$ : If the degree of $c_{i+1}^{\prime}$ is 3 , then $\Delta T_{i}^{-} \geq 0$ by Lemma 3.8 , since $T$ is not homeomorphic to $H=H_{3,3}$. On the other hand if the degree of $c_{i+1}^{\prime}$ is $k \geq 4$, then denote by $c^{\prime \prime}$ the other vertex of $V_{i}^{3}$. Remove the rays starting at $c^{\prime \prime}$ from $T_{i}^{-}$, and denote the resulting graph by $T^{\prime \prime}$. Then $T^{\prime \prime}$ is a tree, rays of which have length at most $l+2$, and $T^{\prime \prime}$ is homeomorphic to $K_{1, k}$. By Lemma 3.7 we have $\Delta T^{\prime \prime} \geq 0$. If the degree of $c^{\prime \prime}$ is 3 , then $\Delta T_{i}^{-} \geq 0$ by Lemma 3.5 , while if the degree of $c^{\prime \prime}$ is at least 4 then $\Delta T_{i}^{-} \geq 0$ by Lemma 3.6.
- $\left|V_{i}^{3}\right|=3$ : Denote by $T^{*}$ a graph obtained from $T_{i}^{-}$by removing the edges of all rays. Since $T^{*}$ is a tree, it has at least two vertices of degree 1. (We remark that in this case $T^{*}$ is a path.) Denote by $c^{\prime \prime}$ a pendant vertex in $T^{*}, c^{\prime \prime} \neq c_{i+1}^{\prime}$, the degree of which is the smallest possible in $T_{i}^{-}$. Finally, denote by $T^{\prime \prime}$ a tree obtained from $T_{i}^{-}$by removing all rays starting at $c^{\prime \prime}$. We distinguish two subcases.
- $T^{\prime \prime}$ is homeomorphic to $H$ : If the degree of $c^{\prime \prime}$ is 3 in $T$ then $\Delta T_{i}^{-} \geq 0$ by Lemma 3.9. Suppose that the degree of $c^{\prime \prime}$ is $k \geq 4$. By the choice of $c^{\prime \prime}$, the vertex $c_{i+1}^{\prime}$ is a leaf of $T^{*}$. Hence $T$ is $X_{k}$ and $c_{i+1}^{\prime}$ is the vertex $y_{1}^{\prime}$ in the notation of Lemma 3.10. Therefore $\Delta T_{i}^{-} \geq 0$ by Lemma 3.10.
- $T^{\prime \prime}$ is homeomorphic to $H_{i, j}, i \leq j$ and $j \geq 4$ : Since $T^{\prime \prime}$ is not homeomorphic to $H$, it follows that $\Delta T^{\prime \prime} \geq 0$ by the previous case (the case $\left|V_{i}^{3}\right|=2$ ). If the degree of $c^{\prime \prime}$ is 3 , then $\Delta T_{i}^{-} \geq 0$ by Lemma 3.5 ; while if the degree of $c^{\prime \prime}$ is at least 4 , then $\Delta T_{i}^{-} \geq 0$ by Lemma 3.6.

Thus we proved $\Delta T_{i}^{-} \geq 0$ for every tree $T_{i}^{-}$rays of which have length at most $l+2$ and $\left|V_{i}^{3}\right|=3$.

- $\left|V_{i}^{3}\right| \geq 4$ : Analogously as in the previous case, denote by $T^{\prime \prime}$ a tree obtained from $T_{i}^{-}$by removing all rays starting at a pendant vertex $c^{\prime \prime}$ of $T^{*}, c^{\prime \prime} \neq c_{i+1}^{\prime}$. By induction we assume that $\Delta T^{\prime \prime} \geq 0$. If the degree of $c^{\prime \prime}$ is 3 , then $\Delta T_{i}^{-} \geq 0$ by Lemma 3.5, while if the degree of $c^{\prime \prime}$ is at least 4 , then $\Delta T_{i}^{-} \geq 0$ by Lemma 3.6.

Hence, in any case we have $\Delta T_{i}^{-} \geq 0$. If $T_{i}^{-}=T_{i}$, then it follows that also $\Delta T_{i} \geq 0$. Otherwise form a sequence $T_{i}^{-}=F_{0}, F_{1}, \ldots, F_{r}=T_{i}$ such that $F_{j+1}$ is obtained from $F_{j}$ by subdividing one edge of one interior path, $0 \leq j \leq r-1$. By Lemma 3.3 we have $\Delta F_{j+1}-\Delta F_{j} \geq 0$. Hence $\sum_{j=0}^{r-1}\left(\Delta F_{j+1}-\Delta F_{j}\right) \geq 0$. Since

$$
0 \leq \sum_{j=0}^{r-1}\left(\Delta F_{j+1}-\Delta F_{j}\right)=\Delta T_{i}-\Delta T_{i}^{-}
$$

we see that $\Delta T_{i} \geq \Delta T_{i}^{-} \geq 0$.
Thus we proved that $\bar{\Delta} T_{i} \geq 0$ for every $i \in\{0,1, \ldots, t-1\}$. Hence $\sum_{i=0}^{t-1} \Delta T_{i} \geq 0$. Since

$$
0 \leq \sum_{i=0}^{t-1} \Delta T_{i}=D\left(T_{t}\right)-D\left(T_{0}\right)=\left[W\left(L^{3}(T)\right)-W(T)\right]-\left[W\left(L^{3}\left(T_{0}\right)\right)-W\left(T_{0}\right)\right]
$$

we conclude that $W\left(L^{3}(T)\right)-W(T) \geq W\left(L^{3}\left(T_{0}\right)\right)-W\left(T_{0}\right)>0$.

Acknowledgements. The first author acknowledges partial support by Slovak research grants VEGA 1/0871/11 and APVV-0223-10. All authors acknowledge the support of bilateral Slovak-Slovenian grant.

## References

[1] F. Buckley, Mean distance in line graphs, Congr. Numer. 32 (1981), 153-162.
[2] A.A. Dobrynin, Distance of iterated line graphs Graph Theory Notes New York 37 (1999), 50-54.
[3] A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications Acta Appl. Math. 66(3) (2001), 211-249.
[4] A. A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002), 247-294.
[5] A.A. Dobrynin, L.S. Melnikov, Some results on the Wiener index of iterated line graphs, Electronic notes in Discrete Mathematics 22 (2005), 469-475.
[6] R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976), 283-296.
[7] I. Gutman, S. Klavžar, B. Mohar (eds), Fifty years of the Wiener index, MATCH Commun Math. Comput. Chem. 35 (1997), 1-259.
[8] I. Gutman, S. Klavžar, B. Mohar (eds), Fiftieth Aniversary of the Wiener index, Discrete Appl. Math. 80(1) (1997), 1-113.
[9] I. Gutman, I. G. Zenkevich, Wiener index and vibrational energy, Z. Naturforsch. 57 A (2002), 824-828.
[10] L. Niepel, M. Knor, L'. Šoltés, Distances in iterated line graphs, Ars Combinatoria 43 (1996), 193-202.
[11] M. Knor, P. Potočnik, R. Škrekovski, Wiener index in iterated line graphs, submitted, (see also IMFM preprint series 48, article number 1128 (2010), http://www.imfm.si/preprinti/index.php?langlD=1).
[12] M. Knor, P. Potočnik, R. Škrekovski, Wiener index of iterated line graphs of trees homeomorphic to the claw $K_{1,3}$, in preparation.
[13] M. Knor, P. Potočnik, R. Škrekovski, Wiener index of iterated line graphs of trees homeomorphic to " $H$ ", in preparation.
[14] J. Plesník, On the sum of all distances in a graph or digraph, J. Graph Theory 8 (1984), 1-21.
[15] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69(1947), 17-20.


[^0]:    *Slovak University of Technology, Faculty of Civil Engineering, Department of Mathematics, Radlinského 11, 813 68, Bratislava, Slovakia, knor@math.sk.
    ${ }^{\dagger}$ Faculty of Mathematics and Physics, University of Ljubljana, and Institute of Mathematics, Physics and Mechanics, Jadranska 21, 1111 Ljubljana, Slovenia, primoz.potocnik@fmf.uni-lj.si.
    ${ }^{\ddagger}$ Faculty of Mathematics and Physics, University of Ljubljana, and Institute of Mathematics, Physics and Mechanics, Jadranska 21, 1111 Ljubljana, Slovenia, skrekovski@gmail.com.

