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Abstract. It is well known that every planar graph contains a vertex
of degree at most 5. A theorem of Kotzig states that every 3-connected
planar graph contains an edge whose endvertices have degree-sum at
most 13. Recently, Fabrici and Jendrol’ proved that every 3-connected
planar graph G that contains a k-vertex path, a path on k vertices,
contains also a k-vertex path P such that every vertex of P has degree
at most 5k. A result by Enomoto and Ota says that every 3-connected
planar graph G of order at least k contains a connected subgraph H

of order k such that the degree sum of vertices of H in G is at most
8k− 1. Motivated by these results, a concept of light graphs has been
introduced. A graph H is said to be light in a family G of graphs if
at least one member of G contains a copy of H and there is an integer
w(H,G) such that each member G of G with a copy of H also has a
copy K of H with degree sum

∑

v∈V (K)

degG(v) ≤ w(H,G).

In this paper we present a survey of results on light graphs in dif-
ferent families of plane and projective plane graphs and multigraphs.
A similar survey dealing with the family of all graphs embedded in
surfaces other than the sphere and the projective plane was prepared
as well.
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1 Introduction

The study of the structure of plane graphs (i.e. planar graphs embedded
in the plane without edge crossings) has its origin in the time of L. Euler. It
is connected with the result (Euler’s polyhedron formula discovered in 1750)
stating that in a convex polyhedron with n vertices, e edges and f faces,
n − e + f = 2. It was apparently discovered by Euler but first proved by
Legendre (see, e.g. [5], [107]). The graph theory version of the formula is
expressed in

Theorem 1.1 (Euler’s Polyhedron Formula). For a plane connected graph
with n vertices, e edges and f faces,

n− e+ f = 2 . (1)

�

Euler’s formula was not systematically exploited to any extent until the
late nineteenth century. Only then a renaissance of interest in metric and
combinatorial properties of solids started. A renewed interest in geometry
and combinatorics of convex solids culminated in the book by Steinitz and
Rademacher [124] published in 1934. This book presented an extraordinary
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result, known as Steinitz’ Theorem. Unfortunately, the theorem was couched
in such an archaic language that it was not appreciated for many years. Only
the reformulation of the theorem by Grünbaum in 1963 released a torrent of
results. This resulted in a cross-fertilization of geometry with both graph
theory and combinatorics, with benefits to all three areas. To be able to
formulate this, by our opinion, ”Fundamental Theorem on Polyhedral Graph
Theory” in modern terminology we need two definitions. The graph of a
polyhedron P is the graph consisting of the vertices and edges of P . A graph
G is polyhedral if it is isomorphic to the graph of some convex polyhedron.

Theorem 1.2 (Steinitz’ Theorem). A graph is polyhedral if and only if it is
planar and 3-connected. �

This result is deeper than it might at first appear: proofs and excellent
discussions may be found in ([43], [45], [107], [133]). What makes the theorem
so remarkable is its implication that a general class of 3-dimensional struc-
tures is equivalent to a certain class of 2-dimensional ones - that is, studying
convex polyhedra combinatorially does not require thinking of them in 3-
dimensional space. It is sufficient to investigate their graphs. Hence any
knowledge about 3-connected planar graphs indicates properties of convex
polyhedra.

Probably the most important impulse to study the structure of plane
graphs came from one of the most celebrated combinatorial problems - The
Four Colour Conjecture (4CC), posed in 1852. This conjecture was proved
in 1976 by Appel and Haken [4] and the result is well known as

Theorem 1.3 (The Four Colour Theorem). Vertices of every planar graph
can be coloured with four colours in such a way that adjacent vertices are
coloured with different colours. �

When trying to solve the 4CC, Birkhoff in 1912 reviewed several ideas due
to earlier writers and melded them into a systematic method of investigation.
The line of enquiry he suggested lead to the solution of the problem in 1976
(see Chapter 9 in [5]). This line is a common method for proofs of many
theorems concerning properties of plane graphs, see e.g. [4], [7], [9], [13],
[18], [25], [30], [54], [60], [112], [116], [118], [127], and [129].

If there are plane graphs that are counterexamples to a theorem, then
there must be among them a graph with the smallest number of vertices;
such a graph is said to be irreducible (or a minimal counterexample) with
respect to the theorem. The basic idea is to obtain more and more restrictive
conditions that an irreducible graph must satisfy, in the hope that eventually
we shall have enough conditions either to construct the graph explicitly, or,
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alternatively, to prove that it cannot exist. These restrictive conditions are
usually described in language of configurations.

A configuration H in a plane graph G is a connected subgraph H of G
together with degrees of vertices ofH in G. We call the set C of configurations
unavoidable in a given family G of plane graphs if at least one member of C
occurs in every graph belonging to G. As an example we note that the set
of vertices of degree less than six is in this sense unavoidable in the family
of all plane graphs. We also define a configuration H to be reducible (with
respect to a conjecture being proved) if it cannot occur in any graph that is
irreducible with respect to the conjecture.

Heawood observed in 1890 that if there is an irreducible plane graph with
respect to the 4CC then it belongs to the set A of plane triangulations with
minimum degree 5. Hence to prove 4CC it suffices to find a finite unavoidable
set U of reducible configurations in A. Appel and Haken [4] succeeded in
finding such a set consisting of 1879 configurations (see also [56], [130]).
In 1989 Appel and Haken [4] announced that proofs of the 4CC with only
1482, 1405, and 1256 configurations are possible. In a later streamling of the
proof of the 4CC Robertson, Sanders, Seymour, and Thomas [121] present
an unavoidable set of 633 reducible configurations.

Already in 1904, Wernicke [128] showed that every plane triangulation
of minimum degree 5 contains either two adjacent vertices of degree 5 or a
vertex of degree 5 adjacent to a vertex of degree 6. In above defined terms
this reads as follows: ”The set A of all plane triangulations with minimum
degree 5 has an unavoidable set of two configurations, namely, an edge with
both endpoints of degree 5, and an edge with endpoints of degrees 5 and 6.”

In 1922, Franklin [42] extended Wernicke’s result by proving that each
plane graph from the set A contains a vertex of degree 5 with two neigh-
bours each having degree at most 6. This yields an unavoidable set of three
configurations.

Attracted by the 4CC and the result of Franklin, the well-known analyst
H. Lebesgue realized that it would be very helpful to identify unavoidable sets
of configurations for different families of plane graphs. In his 1940 paper [100],
he presented several such lists. His fundamental theorem (see Theorem 2.1 in
Section 2 below) provides an unavoidable set of configurations for the family
of all 3-connected plane graphs.

However, there is a limit to what can be achieved with Lebesgue’s ap-
proach, and so stronger methods have been devised over the last three decades
in order to solve various long-standing structural and colouring problems on
plane graphs (for a survey of a portion of this area, see [18]). As a result,
many unavoidable sets of configurations for different families of plane graphs
have been discovered. They are scattered in many papers. It would be an
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honourable achievement to collect and classify them.
We restrict ourselves to sets F of connected graphs H for given families

G of embedded graphs that have the following property: There is a constant
ϕ(H,G), depending only on H and G, such that if the graph H is a proper
subgraph of a graph G in G, then G contains a copy of H whose all vertices
have degree at most ϕ(H,G) in G. When this holds, we call then graph H
light in G. The set F is the set of light graphs of G.

It is a well known fact easily deduced from Euler’s Formula that each plane
graph has a vertex of degree at most 5. Such a vertex can be interpreted as
a path on one vertex. Thus, the one-vertex path is light in the family of all
plane graphs. In 1955, Kotzig [97] showed that each 3-connected plane graph
contains an edge (i.e. a path with two vertices) having degree sum at most
13. We say that path with two vertices is light in the family of 3-connected
plane graph. The complete bipartite graphs K2,s for s ≥ 3 show that the
path with two vertices is not light in the family of all plane graphs. In 1997,
Fabrici and Jendrol’ proved that for each k the path with k vertices is light
in the family of all 3-connected plane graphs and no plane graph other than
a path is light in this family of graphs. Hence the set of light graphs of the
family of all 3-connected plane graphs consists exactly of paths.

In this paper we give a survey of results on light subgraphs in several
families of graphs embedded in the plane and the projective plane. Light
subgraphs of graphs embedded on surfaces other than the plane or the projec-
tive plane are considered in another survey paper [88]. However, in Section 9
we briefly mention recent results together with the most important results
concerning light subgraphs in graphs embedded in nonspherical surfaces.

2 Notation and preliminaries

All graphs considered throughout the paper have no loops or multiple
edges. Multigraphs can have multiple edges and loops. An embedding of
a connected planar graph (planar multigraph) into the plane M is called a
plane graph (a plane multigraph, respectively). If a planar (multi)graph G is
embedded in M, then the faces of G are the maximal connected regions of
M −G.

The facial walk of a face α of a connected plane multigraph G is the
shortest closed walk traversing all edges incident with α. The degree (or
size) of a face α is the length of its facial walk. The degree of a face α
in G is denoted by degG(α) or deg(α) if G is known from context. The
degree of the vertex v of a connected plane multigraph G is the number of
incidences of edges with v, where loops are counted twice. Analogously, the
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notation degG(v) or deg(v) is used for the degree of a vertex v. Vertices
and faces of degree i are called i-vertices and i-faces (or i-gons), respectively.
The numbers of i-vertices and i-faces of a connected plane multigraph G are
denoted ni(G) and fi(G), respectively, or ni and fi if G is known. We use
δ(G) to denote the minimum vertex degree of G.

We call an edge h an (a, b)-edge if the endvertices of h are an a-vertex
and a b-vertex. By ea,b(G) or ea,b we denote the number of (a, b)-edges in a
plane multigraph G.

For r ≥ 2, an r-face α is an (a1, a2, . . . , ar)-face if vertices x1, x2, . . . , xr,
in order along the facial walk incident with α have degrees a1, a2, . . . , ar,
respectively. A face of length 3, 4, or 5 is a triangle, a quadrangle, or a
pentagon, respectively. Now we are able to state the classical theorem of
Lebesgue [100] already mentioned in Section 1.

Theorem 2.1 (Lebesgue’s Theorem)). Every 3-connected plane graph con-
tains at least one of the following faces:

(i) an (a, b, c)-triangle with

a = 3 and 3 ≤ b ≤ 6 and 3 ≤ c, or a = 3 and b = 7 and 7 ≤ c ≤ 41,
or

a = 3 and b = 8 and 8 ≤ c ≤ 23, or a = 3 and b = 9 and 9 ≤ c ≤ 17,
or

a = 3 and b = 10 and 10 ≤ c ≤ 14, or a = 3 and b = 11 and
11 ≤ c ≤ 13, or

a = 4 and b = 4 and 4 ≤ c, or a = 4 and b = 5 and 5 ≤ c ≤ 19, or

a = 4 and b = 6 and 6 ≤ c ≤ 11, or a = 4 and b = 7 and 7 ≤ c ≤ 9,
or

a = 5 and b = 5 and 5 ≤ c ≤ 9, or a = 5 and b = 6 and 6 ≤ c ≤ 7, or

(ii) a (3, b, c, d)-quadrangle with

b = 3 and c = 3 and d ≥ 3, or b = 3 and c = 4 and 4 ≤ d ≤ 11, or

b = 4 and c = 3 and 4 ≤ d ≤ 11, or b = 3 and c = 5 and 5 ≤ d ≤ 7,
or

b = 5 and c = 3 and 5 ≤ d ≤ 7, or b = 4 and c = 4 and 4 ≤ d ≤ 5, or

b = 4 and c = 5 and d = 4, or

(iii) a (3, 3, 3, 3, d)-pentagon with 3 ≤ d ≤ 5. �
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Let V (H) denote the set of vertices of a graph H. If H is a subgraph of
a graph G, then the weight wG(H) of H in G is the sum of the degrees in G
of the vertices of H.

wG(H) =
∑

v∈V (H)

degG(v) .

Moreover, the weight wG(e) of an (a, b)-edge e is

wG(e) = a+ b .

If G is known from context, then we simply write w(H) = wG(H) and w(e) =
wG(e).

A path and a cycle on k distinct vertices are referred as a k-path and
a k-cycle, respectively. The length of a path or a cycle is the number of
edges it has. A k-path with vertices v1, v2, ..., vk in order is also called an
(a1, a2, ..., ak)-path when deg(vi) = ai for 1 ≤ i ≤ k.

A subgraph K1,3 of a graph G is called a (d; a, b, c)-star if its central vertex
has degree d and its three leaves have degrees a, b, and c in G.

For a connected plane multigraph G, let V,E, and F be the vertex set,
the edge set, and the face set of G, respectively. Since

∑

α∈F

deg(α) =
∑

v∈V

deg(v) = 2|E| ,

from (1) we can easily derive

∑

α∈F

(6 − deg(α)) + 2
∑

v∈V

(3 − deg(v)) = 12 (2)

∑

v∈V

(6 − deg(v)) + 2
∑

α∈F

(3 − deg(α)) = 12 (3)

∑

v∈V

(4 − deg(v)) +
∑

α∈F

(4 − deg(α)) = 8 (4)

Let P(δ, ρ) be the family of all 3-connected plane graphs (i.e. polyhedral
graphs, see Theorem 1.2) with minimum vertex degree at least δ and mini-
mum face size at least ρ. Let P(δ, ρ̄) be the family of all graphs in P(δ, ρ)
in which every face is a ρ-face. Define the family P(δ̄, ρ) analogously. The
family P(3, 3̄) is the family of all plane triangulations, and P(3, 4̄) is the
family of all 3-connected plane quadrangulations. By P(δ, ρ;R) we mean the
subfamily of P(δ, ρ) consisting of those members that satisfy the additional
requirements R. It is an easy consequence of the equalities (2),(3) and (4)
that P(δ, ρ) is nonempty only when (δ, ρ) ∈ {(3, 3), (3, 4), (4, 3), (3, 5), (5, 3)}.
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Let M(δ, ρ) be the family of all connected plane multigraphs with min-
imum vertex degree at least δ and minimum face size at least ρ. Note that
plane multigraphs from M(δ, ρ) are allowed to have loops. A plane multi-
graph G from the family M(3, 3) is a normal plane map. If a plane multi-
graph from M(3, 3) has only 3-faces, then it is a plane semitriangulation.
Note that semitriangulations may contain loops and multiple edges, but tri-
angulations do not have them.

Using (1) one can easily obtain

|E| ≤ 3|V | − 6 (5)

for each normal plane map with |V | ≥ 3.
For two graphs H and G we write G ∼= H when H and G are isomorphic.

For a graph K we say that G contains a copy of K if G has a subgraph H
such that H ∼= K.

3 Light edges

The theory of light subgraphs has its origin in two beautiful theorems
of Kotzig [97]. They state that every 3-connected plane graph contains an
edge of weight at most 13 in general, and at most 11 in the absence of 3-
vertices, respectively. These bounds are best possible, as can be seen from
the 3-connected plane graphs obtained from a graph of the icosahedron and
dodecahedron, respectively, by placing a vertex inside each face and make it
adjacent to all vertices of that face.

Kotzig’s result was further developed in various directions. We shall
discuss some of them in subsequent sections. Here we only mention that in
1972 Erdös conjectured (see [46]) that Kotzig’s theorem is valid for all planar
graphs with minimum vertex degree at least 3 regardless of connectivity.
This conjecture was proved (but never published) by Barnette (see [46])
and independently by Borodin [7]. The theorem of Kotzig was published in
1955 in Slovak. Therefore, its original proof [97] is not readily accessible,
but Grünbaum [45] in 1975 sketched a proof in English. Other proofs can
be deduced from [7], [8], [10], [15], [69]. Here we present a simple proof
from [68] that uses the Discharging Method, a method used in the proof of
the Four Color Theorem (see [4], [121], [129]). (The idea of discharging is
due to Heesch [53]). This method is a common technique for proving results
on planar graphs, see e.g. [118]. We prove the theorem in a stronger form
that includes Erdös’ conjecture.
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Theorem 3.1 (Kotzig’s Theorem). Every normal plane map contains a
(3, a)-edge with 3 ≤ a ≤ 10, or a (4, b)-edge with 4 ≤ b ≤ 7, or a (5, c)-
edge with 5 ≤ c ≤ 6. The bounds 10, 7, and 6 are best possible.

Proof. Let G be a counterexample on a set V of n vertices that has the
maximum number of edges, say m, among all counterexamples on n vertices.
Let f be the number of faces of G. Call edges of the desired type light edges.

By the choice of G, it must be a semitriangulation. Suppose G has a k-
face α with k ≥ 4. Because G has no light edges, each edge has an endvertex
of degree at least 6, so α has two vertices x and y that are not consecutive
on the boundary of α and both have degree at least 6.

Inserting a diagonal xy into the face α yields a counterexample having
the same vertex set as G but one edge more, a contradiction.

Because G is a semitriangulation, (3) may be rewritten

∑

v∈V

(deg(v) − 6) = −12 . (6)

Consider an initial charge function ϕ : V → Q such that ϕ(v) = deg(v)−6
for each v ∈ V . Therefore (3.1) is equivalent to

∑

v∈V

ϕ(v) = −12 .

We use the following rule to transform ϕ into a new charge function
ψ : V → Q by redistributing charges locally so that

∑

v∈V

ϕ(v) =
∑

v∈V

ψ(v).

Rule. If uv is an edge of G with deg(u) ≥ 7 and deg(v) ≤ 5, then the vertex

u sends to v the charge 6−deg(v)
deg(v)

.

Let ψ(x) denote the resulting charge at a vertex x. Since charge sent to
v is deducted from u, we have

∑

x∈V

ψ(x) = −12 .

We are going to show that ψ is a nonnegative function, which will trivially
be a contradiction.

Observe that a k-vertex sends charge to at most ⌊k
2
⌋ vertices. The charge

sent to a neighbour of degree d is 6−d
d

, where d ≤ 5. A k-vertex begins with
charge k−6. By the definition of light edges, a 7-vertex sends charge only to
5-vertices, giving charge at most 3× (1

5
) and hence retaining positive charge.

For k ∈ {8, 9, 10}, a k-vertex may give charge to neighbours of degree 4 or
5 and have given away at most ⌊k

2
⌋ × (1

2
), retaining nonnegative charge. For
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k ≥ 11, a k-vertex may also give charge to neighbours of degree 3, thus giving
charge at most ⌊k

2
⌋ × 1 and retaining nonnegative charge.

The bounds 10 and 6 are best possible, as can be seen from the graphs
mentioned at the beginning of Section 3. An example showing that also 7 is
best possible can be found in [9].

This finishes the proof.

A result weaker than the Kotzig’s Theorem was known already to Lebes-
que in 1940. From his Theorem 2.1 it follows that every 3-connected plane
graph contains an edge e with w(e) ≤ 14.

Now we turn our attention to the problem of guaranteeing many light
edges (i.e. edges having weight at most 13) in families of plane graphs and
multigraphs.

Kotzig’s Theorem (Theorem 3.1) states that
∑

i+j≤13 ei,j > 0 for every
3-connected planar graph.
Grünbaum [46] conjectured that for every 3-connected plane graph the fol-
lowing is true:

20 e3,3 + 15 e3,4 + 12 e3,5 + 10 e3,6 +
20

3
e3,7 + 5 e3,8 +

10

3
e3,9 + 2 e3,10

+ 12 e4,4 + 7 e4,5 + 5 e4,6 + 4 e4,7 +
8

3
e4,8 +

2

3
e4,9

+ 4 e5,5 + 2 e5,6 +
1

3
e5,7 + 12 e6,6 ≥ 120.

Jucovič [94], [95] made first steps towards this conjecture by proving a
weaker inequality.

For the class of normal plane maps, which includes the class of 3-connec-
ted plane graphs, Borodin [10] obtained the following result. (Recall that a
normal plane map is a plane multigraph in which every vertex degree and
every face size is at least 3.)

Theorem 3.2 ([10]). Every normal plane map satisfies

40 e3,3 + 25 e3,4 + 16 e3,5 + 10 e3,6 +
20

3
e3,7 + 5 e3,8 +

5

2
e3,9 + 2 e3,10

+
50

3
e4,4 + 11 e4,5 + 5 e4,6 +

5

3
e4,7 +

16

3
e5,5 + 2 e5,6 ≥ 120 ;

Moreover, each coefficient in this inequality is best possible. �

The sharpness of coefficients in Theorem 3.2 and in those below is understood
in the sence that none of the coefficients can be decreased while keeping all
the other αij constant without violating the correspondent relation.
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In fact, the conjecture of Grünbaum is false. The following result by
Fabrici and Jendrol’ [36] gives the sharpest inequality of this sort for 3-
connected plane graphs.

Theorem 3.3 ([36]). Every 3-connected plane graph satisfies

20 e3,3 + 25 e3,4 + 16 e3,5 + 10 e3,6 +
20

3
e3,7 + 5 e3,8 +

5

2
e3,9 + 2 e3,10

+
50

3
e4,4 + 11e4,5 + 5 e4,6 +

5

3
e4,7 +

16

3
e5,5 + 2 e5,6 ≥ 120 ;

Moreover, each coefficient is best possible. �

The inequalities for normal maps and 3-connected planar graphs differ
only in the coefficient of e3,3. As was later proved by Borodin, Theorem
3.3 is valid for all normal plane maps with the exception of exactly one
multigraph.

In the subclass of all normal plane maps with minimum degree at least
4 we have e3,j = 0 for 3 ≤ j ≤ 10. Borodin proved the corresponding sharp
result for this family.

Theorem 3.4 ([10]). Every normal plane map of minimum degree at least
4 satisfies

50

3
e4,4 + 11 e4,5 + 5 e4,6 +

5

3
e4,7 +

16

3
e5,5 + 2 e5,6 ≥ 120

Moreover, each of these coefficients is best possible. �

Already in 1904 in his work on the Four Color Problem, Wernicke [128]
established the inequality e5,5 +e5,6 > 0 for every graph G ∈ P(5, 3). Further
contributions are due to Grünbaum [44], [46], Fisk (see [47]), Grünbaum and
Shephard [47], and Borodin [11]. Borodin and Sanders [23] found the best
possible light edge inequality for plane graphs of minimum degree 5.

Theorem 3.5 ([23]). Every normal plane map of minimum vertex degree at
least 5 satisfies

14

3
e5,5 + 2e5,6 ≥ 120 .

Moreover, the coefficients 14
3

and 2 are best possible. �

If in Theorem 3.4 we set e4,j = 0 for 4 ≤ j ≤ 7, then the resulting
inequality differs from that of Theorem 3.5 only in the coefficient of e5,5.

We close this section with few very recent results.
A planar graph embeddable in the plane in such a way that every vertex lies
on the boundary of single region is called an outerplanar graph. Hackmann
and Kemnitz [48] recently proved
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Theorem 3.6 ([48]). Every outerplanar graph with minimum degree at least
2 contains a (2, 2)-edge, a (2, 3)-edge, or a (2, 4, 2)-path. �

The following theorem states that the family of plane graphs with mini-
mum degree 5 contains a light 3-star.

Theorem 3.7 ([72]). Every planar graph with minimum degree 5 contains a
(5; 6, 6, 6)-star or a (5; 5, b, c)-star with 5 ≤ b ≤ 6 and 5 ≤ c ≤ 7.
Moreover, the bounds 6 and 7 are best possible. �

The next theorem is a strengthening of Theorems 3.1 and 3.7.

Theorem 3.8 ([49]). Every planar graph G with minimum degree at least 3
contains

(i) a (3, b)-edge with 3 ≤ b ≤ 10, or

(ii) an (a, 4, b)-path with
a = 4 and 4 ≤ b ≤ 10, or
a = 5 and 5 ≤ b ≤ 9, or
6 ≤ a ≤ 7 and 6 ≤ b ≤ 8, or

(iii) a (5; a, b, c)-star with
4 ≤ a ≤ 5 and 5 ≤ b ≤ 6 and
5 ≤ c ≤ 7, or a = b = c = 6.

Moreover, for every S ∈ {(3, 10)-edge, (4, 4, 9)-path, (5, 4, 8)-path, (6, 4, 8)-
path, (7, 4, 7)-path, (5; 5, 6, 7)-star, (5; 6, 6, 6)-star} there is a 3-connected
plane graph H containing S and no other configuration from the above list.

�

Theorem 3.8 has an application in a problem of colouring of vertices of
the square of a planar graph posed by Wegner [126] in 1977 (see also Jensen
and Toft [93], p. 51).
The square G2 of a graph G is a graph with the same vertex set V (G). Two
vertices x and y are adjacent in G2 if and only if their distance in G is at
most 2. For a graph G let ∆(G) and χ(G) denote its maximum degree and
chromatic number, respectively.

Corollary 3.9 ([49]). Let G be a planar graph of maximum degree ∆(G) ≥
11. Then

χ(G2) ≤ 2∆(G) + 19 .
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Proof. If there is a counterexample, then let H be one with the fewest ver-
tices. Evidently the minimum degree of H is at least 3. By Theorem 3.8
the graph H contains an (a, b)-edge xy with degH(x) = a, degH(y) = b and
degH2(x) ≤ 2∆(H) + 18 with values a = 3 and b ≤ 10, or a = 4 and b ≤ 7,
or a = 5 and b ≤ 6. If the edge uv is contracted into a vertex z and all
multiple edges are replaced by single edges, then the resulting graph H∗ has
the same maximum degree because, in H∗, deg(z) ≤ 11. By the minimality
of H the graph H∗ is not a counterexample. Thus the square of H∗ has a
colouring with 2∆(H) + 19 colours. This colouring induces a colouring with
2∆(H) + 19 colours of the graph H in which all vertices except x and y are
coloured. Now assign the color of vertex z to the vertex y. As the vertex x
has at most 2∆(H)+ 18 neighbours in H2 it can be coloured with one of the
available 2∆(H) + 19 colours, a contradiction.

The bound of Corollary 3.9 is better than 2∆ + 25, the bound obtained
recently by van den Heuvel and McGuiness [54].

The requirement of minimum degree at least 3 in the above theorems
cannot be relaxed, as one can see from the graphs K1,r and K2,r for r ≥ 3.
Next theorem goes deeper to the structure of planar graphs.

Theorem 3.10 ([2]). Every connected planar graph of order at least 2 con-
tains either

(i) two vertices having degree sum ≤ 4, or

(ii) two 3-vertices at distance two, or

(iii) an edge e of weight at most 11 incident with two 3-faces, or

(iv) an edge g of weight at most 9 incident with a 3-face, or

(v) an edge h of weight at most 7.

Moreover the bounds 11, 9, and 7 are tight. �

An edge e of a 3-connected graph G is contractible if the graph G ⊙ e
obtained by contracting the edge e is also 3-connected. Recently Dvořák and
Škrekovski strengthened original Kotzig’s Theorem by proving

Theorem 3.11 ([28]). Every 3-connected planar graph distinct from K4 con-
tains a contractible (a, b)-edge with a+ b ≤ 13.

For other results in this direction, see Borodin [8], [10], [11], [18], Borodin,
Kostochka, and Woodall [22], Borodin and Sanders [23], Cole, Kowalik, and
Škrekovski [27], Jucovič [95], Sanders [123], and Zaks [131], [132].

13



4 Light subgraphs of order three

Trying to solve the Four Color Conjecture, Franklin [42] in 1922 proved
that every 3-connected plane graph G with minimum degree at least 5, con-
tains a 3-path with weight 17, the bound being best possible. In 1993, Ando,
Iwasaki, and Kaneko obtained the analogous result for all 3-connected plane
graphs. Namely, they proved

Theorem 4.1 (([3])). Every G ∈ P(3, 3) contains a 3-path with weight at
most 21. Moreover the bound 21 is sharp.

The following result, which strengthens Kotzig’s Theorem (Theorem 3.1)
was proved by Jendrol’ [66].

Theorem 4.2 (([66])). Every G ∈ P(3, 3) contains an (a, b, c)-path, where

(i) 3 ≤ a ≤ 10 and b = 3 and 3 ≤ c ≤ 10, or

(ii) 4 ≤ a ≤ 7 and b = 4 and 4 ≤ c ≤ 7, or

(iii) 5 ≤ a ≤ 6 and b = 5 and 5 ≤ c ≤ 6, or

(iv) a = 3 and 3 ≤ b ≤ 4 and 4 ≤ c ≤ 15, or

(v) a = 3 and 5 ≤ b ≤ 6 and 4 ≤ c ≤ 11, or

(vi) a = 3 and 7 ≤ b ≤ 8 and 4 ≤ c ≤ 5, or

(vii) a = 3 and 3 ≤ b ≤ 10 and c = 3, or

(viii) a = 4 and b = 4 and 4 ≤ c ≤ 11, or

(ix) a = 4 and b = 5 and 5 ≤ c ≤ 7, or

(x) a = 4 and 6 ≤ b ≤ 7 and 4 ≤ c ≤ 5.

Moreover, in each of the cases (iii), (iv), (vi), and (vii) the upper bounds
on parameters a, b, c can be obtained simultaneously. Furthermore, there is a
graph in P(3, 3) having only (4, 7, 4)-paths and (7, 4, 7)-paths from the above
list. �

The requirement of 3-connectedness in the above theorems is fundamental
because of the following theorem. We present a proof of this theorem with a
proof technique that is typical in this area.
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Theorem 4.3 ([70]). For every connected plane graph H of order at least 3
and every integer m with m ≥ 3, there exists a 2-connected plane graph G
such that each copy of H in G contains a vertex A with

degG(A) ≥ m.

Proof. Augment H to a triangulation T with vertex set V (H). Let [uvw] be
the outer 3-face of T . For m ≥ 2, let Dm be the plane graph obtained from
the double 2m-pyramid with poles z1 and z2 by deleting every second edge
of the equatorial cycle of length 2m. If we insert into a 3-face [z1xy] of Dm

the triangulation T so that the vertex u coincides with z1, the vertices v and
w with x and y, respectively, then we obtain the required graph G. If H has
at least three vertices, then each copy of H in G contains at least one of the
vertices z1 or z2, which have degree at least 2m.

The graph G from the proof of Theorem 4.3 contains a 3-face incident
with two 3-vertices. Borodin [16] observed that if such faces are excluded the
requirement of 3-connectivity can be omitted. More precisely he has proved
the following statement.

Theorem 4.4 ([16]). Each normal plane map G having no 3-face incident
with two 3-vertices has the following two properties:

(i) G has either a 3-path P with w(P ) ≤ 18 or a vertex of degree ≤ 15
adjacent to two 3-vertices

(ii) G has either a 3-path P
′

with w(P
′

) ≤ 17 or an edge e with w(e) ≤ 7.

�

Already in 1940 Lebesgue [100] proved that each 3-connected plane graph
G of minimum degree 5 contains a 3-cycle C bounding a 3-face α with w(C) ≤
19. Kotzig [98] improved this result to w(C) ≤ 18 and conjectured in [99]
that 17 is the best upper bound. Borodin confirmed this.

Theorem 4.5 ([6]). Every G ∈ P(5, 3) contains a 3-face α with wG(α) ≤ 17.
This bound is best possible. �

This theorem has a beautiful corollary. It confirms the conjecture of
Grünbaum from 1975, see [45], that every 5-connected plane graph is cycli-
cally 11-connected. Let us sketch a proof of this statement. A graph is
cyclically k-connected for some k ≥ 1 if there is no set S of fewer than k
edges with property that G−S has two components each containing a cycle.
Let G be a graph from P(5, 3). Consider a face α of weight at most 17 of
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G. Choose S to be the set of edges incident with vertices of α but not on
the boundary of α. Clearly |S| ≤ 11 and the graph G−S has two componts
each containing a cycle.

Earlier, in 1972, Plummer [115] proved that the cyclic connectivity of
these graphs is at most 13.

Many papers have studied the structural properties of different classes of
plane triangulations; see e.g. [98], [99], Borodin [11], [14], [17], [20], Jendrol’
[69], Sanders [123], and Borodin and Sanders [23]. In 1999, Jendrol’ [69]
proved the following theorem, which includes earlier results by Lebesgue
[100], Kotzig [98], [99], and Borodin [14].

Theorem 4.6 ([69]). Each plane triangulation of order at least 5 contains
an (a, b, c)-triangle, where

(i) a = 3 and b = 4 and 4 ≤ c ≤ 35, or

(ii) a = 3 and b = 5 and 5 ≤ c ≤ 21, or

(iii) a = 3 and b = 6 and 6 ≤ c ≤ 20, or

(iv) a = 3 and b = 7 and 7 ≤ c ≤ 16, or

(v) a = 3 and b = 8 and 8 ≤ c ≤ 14, or

(vi) a = 3 and b = 9 and 9 ≤ c ≤ 14, or

(vii) a = 3 and b = 10 and 10 ≤ c ≤ 13, or

(viii) a = 4 and b = 4 and c ≥ 4, or

(ix) a = 4 and b = 5 and 5 ≤ c ≤ 13, or

(x) a = 4 and b = 6 and 6 ≤ c ≤ 17, or

(xi) a = 4 and b = 7 and 7 ≤ c ≤ 8, or

(xii) a = 5 and b = 5 and 5 ≤ c ≤ 7, or

(xiii) a = 5 and b = 6 and c = 6.

Moreover, the result is nearly sharp in the following sense: If c(k) denotes
the upper bound on c in the above case (k), then c(i) ≥ 30, c(ii) ≥ 18, c(iii)=
20, c(iv) ≥ 7, c(v)= 14, c(vi) ≥ 11, c(vii) ≥ 12, c(viii)= ∞, c(ix) ≥ 10, c(x)
≥ 10, c(xi) ≥ 7 and c(xii)= 7. �

Theorem 4.6 points out that if a plane triangulation has no (4, 4)-edge,
then it contains a light triangle. Borodin [17] went further. He proved
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Theorem 4.7 ([17]). If in a plane triangulation T there is no path consisting
of k vertices of degree 4 for some k ≥ 1, then

(i) T contains a 3-face with weight at most max{37, 10k + 17}, and

(ii) T contains a (3, 4)-edge or a 3-face with weight at most max{29, 5k+8}.
These bounds are best possible. �

In a connection with results mentioned in this section, the following prob-
lem seems to be interesting.

Problem 4.8. Find the best versions of Theorem 4.2 and Theorem 4.6.

In each of the cases (iii), (iv), (vi), and (vii) of Theorem 4.2, the upper
bounds on parameters are tight and can be obtained independently from the
others. Furthermore, there is a graph G ∈ P(∋,∋) having only (4,7,4)-paths
and (7,4,7)-paths from the list of the Theorem.

Similarly we are interested in the best version of Theorem 4.6. As we
have mentioned, in the cases (iii), (v), (viii), (xii), and (xiii) the assertions of
Theorem 4.6 are best possible. For the other cases we believe the following
Conjecture is true:

Conjecture 4.9 ([68]). If c(k) denotes the upper bound on c in the case (k) of
Theorem 4.6, then c(i)= 30, c(ii)= 18, c(iv)= 14, c(vi)= 2, c(vii)= 12, c(ix)=
10 and c(xi)= 7. �

For a plane graph G from P(3, 3), let fi,j,k be the number of 3-faces
that are incident with an i-vertex, a j-vertex, and a k-vertex. As proved by
Lebesgue [100], f5,5,5+ 2

3
f5,5,6+ 3

7
f5,5,7+ 1

4
f5,5,8+ 1

9
f5,5,9+ 1

3
f5,6,6+ 2

21
f5,6,7 ≥ 120

holds for every graph G ∈ P(5, 3). This result of Lebesgue and Theorem 4.5
are strengthened in the next Theorem proved by Borodin [12] except for the
optimality of the coefficient 5 of f5,5,7. Its optimality was proved by Borodin
and Sanders in [23].

Theorem 4.10. If G is a graph from P(5, 3), then

18f5,5,5 + 9f5,5,6 + 5f5,5,7 + 4f5,6,6 ≥ 144 .

Moreover, all of these coefficients are best possible. �

One can expect similar inequalities when restricting to other subfamilies
of plane graphs.
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5 Subgraphs with restricted degrees

In this section we prove two basic results that are typical for this topic
and have served as a starting point for a theory of light subgraphs that we
shall describe in further sections. Because of Theorem 4.3 we only deal with
the family of 3-connected plane graphs. The first result is due to Fabrici and
Jendrol’.

Theorem 5.1 ([37]). If G is a 3-connected plane graph having a k-path where
k is a positive integer, then G contains a k-path whose all vertices have degree
at most 5k in G. Moreover, the bound 5k is tight.

Proof. (a) The upper bound. Suppose the theorem is not true, and let G
be a counterexample on n vertices that has the most edges among all coun-
terexamples on n vertices. Let us call a vertex major if its degree exceeds 5k,
otherwise, it is minor. The crucial point is that maximality of the counterex-
ample guarantees that every major vertex is incident only with triangular
faces. If a major vertex u lies on a face α with size at least 4, then a chord
can be inserted joing u to a vertex v not adjacent to v. The edge uv cannot
lie on any path consisting of minor vertices only, so maximality guarantees
the desired k-path in the original graph.

Now let M be the subgraph of G induced by the major vertices. Since
M is a plane graph, it has a vertex x of degree at most 5. Since x is a major
vertex in G, the claim above guarantees that the subgraph induced by x and
its neighbour contains a wheel. The neighbour of x in G form a cycle C
with at least 5k + 1 vertices and, since degM(x) ≤ 5, there are at most 5
major vertices on this cycle. By the pigeonhole principle, the cycle contains
a k-path whose all vertices are all minor in G; a contradiction.

(b) The sharpness of the bound. Now we construct a 3-connected plane
graph G in which every k-path has a vertex u of degree at least 5k. The
construction begins with the dodecahedron. Into each of its 5-faces we insert
a new vertex x and join it to all vertices incident with this face. The result is
a graph all faces of which are triangles [xyz] with deg(x) = 5 and deg(y) =
deg(z) = 6. Into every triangle of this graph we insert a subdivided 3-star
consisting of a central vertex v and three paths px, py, pz from v to x, y, z,
respectively, with px of length

⌈

k+2
2

⌉

and py and pz of length
⌊

k−2
2

⌋

. Now
make x adjacent to all vertices of px and py, and similarly make y adjacent
to all of py and pz, and z adjacent to all of pz and px. Observe that in the
resulting graph G all the vertices of type x have degree 5k, the vertices of
type y and z have degrees at least 6k − 6 and every other vertex has degree
at most 6. It is easy to see that each k-path contains at least one vertex of
type x, y or z. �
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It is natural to ask a more general question: Does every 3-connected plane
graph G having a copy of a connected plane graph H different from a path
also contain a copy of H such that its vertices have bounded degrees in G ?
The answer is surprisingly negative. Fabrici and Jendrol’ proved

Theorem 5.2 ([37]). If H is a connected plane graph other than a path, and
m is an integer greater than 3, then there is a 3-connected plane graph T
such that each copy of H in T has a vertex y with degree at least m.

Proof. Augment H to a triangulation T0 with vertex set V (H). Into each
triangle [uvw] of T0 insert a wheel with a central vertex z and with m spokes
zxi for 1 ≤ i ≤ m. Join the vertex u to xi for 1 ≤ i ≤ ⌊m

3
⌋, the vertex v to

xj for ⌊m
3
⌋ ≤ j ≤ ⌊2m

3
⌋, and the vertex w to x1 and to xt for ⌊2m

3
⌋ ≤ t ≤ m.

The result is the desired triangulation T . One can easily check that each
vertex of T that lies in T0 has degree at least m in T , as does the center of
each inserted wheel. The vertices of degrees less than k induce m-cycles in
T . Therefore, as H is not a path, each copy of H in T contains at least one
vertex of degree ≥ m.

Madaras improved Theorem 5.1 by proving the following result.

Theorem 5.3 ([101]). If G is a 3-connected plane graph containing a vertex
of degree at least k, where k is a positive integer, then G contains a k-path
on which k−1 vertices have degree at most 5

2
k in G and the remaining vertex

has degree at most 5k in G. �

6 Maximum degree problems

The problems mentioned in the previous sections suggest the formulation
of more general problems.

Problem 6.1. Let H be a family of graphs and let H be a connected graph
that is a proper subgraph of at least one member of H. Let ϕ(H,H) be the
smallest integer m with the property that every graph G in H, that contains
H, contains a copy of H whose all vertices have degree at most m in G.
Determine the value of ϕ(H,H) for given H and H.

If such a ϕ(H,H) does not exist then we write ϕ(H,H) = +∞. If
ϕ(H,H) < +∞, then we call the graph H light in the family H.

Here we consider the family H = P(δ, ρ) of all 3-connected plane graphs
(i.e. the family of all polyhedral graphs [43]) with minimum vertex degree at
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least δ and minimum face size at least ρ, where δ and ρ are at least 3. In the
sequel, let Pk and Ck denote the k-path and the k-cycle, respectively, and let

ϕ(δ, ρ;H) = ϕ(H,P(δ, ρ)) and ϕ(δ, ρ̄,H) = ϕ(H,P(δ, ρ̄)) .

The result for P1 derived from Euler’s formula can be rewritten as ϕ(3, 3;
P1) = 5. Kotzig [97] (see also Section 3) proved that each graph G ∈ P(3, 3)
contains an edge e with w(e) ≤ 13. This implies ϕ(3, 3;P2) = 10. Theorem
4.1 provides ϕ(3, 3;P3) = 15. Fabrici and Jendrol’ (see Section 5) generalized
these results to arbitrary k-paths. Their Theorem 5.1 states that the k-
path Pk is light in the family P(3, 3) for every k. Next theorem summarizes
results concerning the constant ϕ(Pk,G) for several families of 3-connected
plane graphs G. (Brackets indicate the papers, where the results are proved.)

Theorem 6.2.

(i) ϕ(3, 3;Pk) = 5k for all k ≥ 1. [36]

(ii) ϕ(4, 3;Pk) = 5k − 7 for all k ≥ 8. [35]

(iii) 5
⌊

k
2

⌋

≤ ϕ(3, 4;Pk) ≤ 5
2
k for all k ≥ 2. [50]

(iv) 5k − 325 ≤ ϕ(5, 3;Pk) ≤ 5k − 7 for all k ≥ 68. [32]

(v) 5
3
k − 80 ≤ ϕ(3, 5;Pk) ≤ 5

3
k for all k ≥ 935. [74]

(vi) 2k + 2 ≤ ϕ(Pk,F) ≤ ∈‖ + ∋ for all k ≥ 2. [57]

(Here F is the family of 4-connected planar graphs) �

Note that the precise values of ϕ(4, 3;Pk) are known also for all k ≤ 7,
see [35]. We can also show that the lower bound in (iv) cannot be smaller
than 5k − 125 if k ≥ 714 and that the upper bound in (v) is valid for all
k ≥ 2.

Theorem 5.2 asserts that the paths are the only light graphs in the family
P(3, 3). This motivates the following

Problem 6.3. For a given infinite family G of plane graphs determine all
connected planar graphs that are light in G. �

The next theorem provides results of this type.

Theorem 6.4. If G ∈ {P(3, 3),P(3, 4),P(4, 3),F}, where F is the family
of 4-connected planar graphs, then a graph H is light in the family G if and
only if H is k-path Pk for some k ≥ 1. �
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The proof of Theorem 6.4 for the family P(3, 4) is by Harant, Jendrol’
and Tkáč [50], for P(4, 3) by Fabrici, Hexel, Jendrol’ and Walther [35], and
for the family F by Mohar [108].

In the families P(3, 3),P(3, 4), and P(4, 3), only the paths Pk are light.
The situation changes significantly for the families P(5, 3) and P(3, 5). From
Theorem 6.1 it follows that each k-path for every k ≥ 1 is light in both
families P(5, 3) and P(3, 5). Recently, Hajduk and Soták [52] showed that,
for every k ≥ 6, the k-path Pk with a certain small graph attached to one of
its ends is light in the family P(5, 3) (and in P(3, 5)).

Next theorem excludes some families of graphs to be light

Theorem 6.5 ([32], [73], [74]).

(i) No plane connected graph H with maximum degree at least 5 or with
a block having at least 11 vertices is light in P(5, 3̄) (and, hence, in
P(5, 3)).

(ii) No plane connected graph H with maximum degree at least 4 or with a
block having at least 19 vertices is light in P(3, 5). �

From the classical result of Lebesgue [100] (see Theorem 2.1) it follows
that the 3-cycle C3 is light in P(5, 3) and the 5-cycle C5 is light in P(3, 5).
Recently Jendrol’ and Madaras in [72] proved that the star K1,r for r ≥ 3 is
light in P(5, 3) if and only if r ∈ {3, 4}. However, the problem of determining
all graphs that are light in P(5, 3), or in P(3, 5) remains open. Jendrol’ et
al. [73] proved the following theorem (For ϕ(C10) see [104]).

Theorem 6.6 ([73]). The r-cycle Cr is light in the family P(5, 3̄) of all plane
triangulations with minimum degree 5 if and only if 3 ≤ r ≤ 10. Moreover

ϕ(C3) = 7 , ϕ(C4) = 10 , ϕ(C5) = 10 ,

10 ≤ ϕ(C6) ≤ 11 , 15 ≤ ϕ(C7) ≤ 17 , 15 ≤ ϕ(C8) ≤ 29 ,

19 ≤ ϕ(C9) ≤ 41, and 20 ≤ ϕ(C10) ≤ 415 ,

where ϕ(Ck) = ϕ(5, 3̄;Ck). �

In [55] there is a question for which k ≥ 11 the cycle Ck is light in the
family of all 5-connected plane triangulation. The answer is rather surprising

Theorem 6.7 ([56]). The k-cycle Ck is light in the family of all 5-connected
plane triangulation for every k at least 3. �
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Hexel and Soták conjecture that, for every k ≥ 3 the k-cycle Ck is light in
the family of all 5-connected planar graphs. More results concerning light
graphs in subfamilies of plane graphs with high connectivity can be found in
[108] and [57].

An analogue of Theorem 6.4 for the family P(3, 5̄) is

Theorem 6.8 ([74]). The r-cycle Cr is light in the family P(3, 5̄) if and
only if r ∈ {5, 8, 11, 14}. Moreover ϕ(3, 5̄;C5) = 5, 6 ≤ ϕ(3, 5̄;C8) ≤ 7,
10 ≤ ϕ(3, 5̄;C11) ≤ 11 and 10 ≤ ϕ(3, 5̄;C14) ≤ 17. �

By Theorem 6.8 the only cycles that are candidates for being light in
P(3, 5) are C5, C8, C11 and C14. As we mentioned above, C5 is light in this
family. In [74] the cycles C8 and C11 are proved to be not light there. It is
an open question whether C14 is light in P(3, 5).

The 3-cycle is light in P(5, 3) and not light in P(4, 3). The question arises
for which subclasses other than P(5, 3) the 3-cycle is light? Let P(4, 3, Et)
denote the family of all graphs in P(4, 3) having no path consisting of t
vertices all having degree 4. Borodin [17] showed that the triangle C3 is light
in P(4, 3̄, Et) for all t ≥ 1. Mohar, Škrekovski, and Voss [111] showed that
the cycle C4 is light in P(4, 3, Et) for t ∈ {2, 3, 4}; so C4 is light in P(4, 3, Et)
for 1 ≤ t ≤ 4. Further, C4 is not light in P(4, 3, Et) for all t ≥ 23. For
5 ≤ t ≤ 22 this question is open. For r ≥ 5 and t ≥ 3 the cycle Cr is
not light in P(4, 3, Et). For t = 2 Mohar, Škrekovski, and Voss proved the
following result.

Theorem 6.9 ([111]). The r-cycle Cr is light in the family P(4, 3, E2) of all
3-connected plane graphs of minimum degree at least 4 and edge-weight at
least 9 if and only if r ∈ {3, 4, 5, 6}. Moreover,

ϕ(4, 3, E2;C3) = 12 , ϕ(4, 3, E2;C4) ≤ 22 ,

ϕ(4, 3, E2;C5) ≤ 107 , ϕ(4, 3, E2;C6) ≤ 107 .

�

From a theorem of Borodin [6] it follows: ϕ(5, 3;C3) = 7. Soták (personal
communication) proved ϕ(5, 3;C4) = 11 and ϕ(5, 3;C5) = 10. The proof that
ϕ(5, 3, C6) ≤ 107 is by Mohar et al. [111]. The lightness of the 7-cycle in
P(5, 3) is proved by Madaras et al. [106]. These results are summarized in
the next Theorem.

Theorem 6.10. The r-cycle Cr is light in P(5, 3) if r ∈ {3, 4, 5, 6, 7}, and
is not light in P(5, 3) if r ≥ 11. Moreover,

ϕ(5, 3;C3) = 7 , ϕ(5, 3;C4) = 11 , ϕ(5, 3;C5) = 10 ,

ϕ(5, 3;C6) ≤ 107 , ϕ(5, 3;C7) ≤ 359 .
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It is an open question whether in the class P(5, 3) the cycles C8, C9, C10

are light or not.
For a plane graphG let the edge weight of G, w(G), be equal to min{w(e) :

e ∈ E(G)}; the dual edge weight w∗(G) be the edge weight of the dual of
the graph G. Let P(δ, ρ;w,w∗) be the family of all polyhedral maps with
minimum vertex degree at least δ, minimum face size at least ρ, edge weight
at least w, and dual edge weight at least w∗. The family P(δ, ρ;w,w∗) is
not empty for 35 quadruples (δ, ρ;w,w∗), see [40]. In fact each of these
families is infinite. Ferencová and Madaras [41] have considered the question
which cycles are light in the family P(δ, ρ;w,w∗). They received several very
interesting results. As an illustration we mention the following one.

Theorem 6.11 ([41]). The cycles C3 and C10 are light in the family P(3, 3; 6,
13) while the cycles Ck for 4 ≤ k ≤ 9 and for k ≥ 21 are not light there. �

It would be interesting to determine the sets of light cycles for families
P(δ, ρ; w,w∗).

Jendrol’ and Madaras [72] showed for r ≥ 3 that the star K1,r is light in
P(5, 3) if and only if r ∈ {3, 4}. Mohar, Škrekovski, and Voss [111] proved
that this is also true in the class P(4, 3, E2). For t ≥ 3 the only star that is
light in P(4, 3, Et) is K1,3, see [111].

7 Maximum degree of light families

In section 6 we have defined a light subgraph H in a family H of graphs.
Here we introduce the concept of a light family L of graphs in a family H of
graphs.

Problem 7.1. Let H be a family of graphs, and let L be a finite family of
connected graphs having the property that every member of L is a proper
subgraph of at least one member of H. Let ϕ(L,H) be the smallest integer t
with the property that every graph G in H that has a subgraph H belonging
to L, has such a subgraph H whose vertices all have degree at most t in G.
Determine the value ϕ(L,H) for a given pair of families L and H.

If such a ϕ(L,H) does not exist, then we write ϕ(L,H) = +∞. If
ϕ(L,H) < +∞, then we call the family L light in the family H. When
L is the family Tk of all trees on k vertices, and H = P(δ, ρ), we write
τ(k, δ, ρ) instead of ϕ(Tk,P(δ, ρ)).
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Obviously, T1 = {P1}, T2 = {P2}, T3 = {P3}, and {Pk} ⊂ Tk for all k ≥ 4.
Hence τ(k, δ, ρ) = ϕ(δ, ρ;Pk) for 1 ≤ k ≤ 3, and τ(k, δ, ρ) ≤ ϕ(δ, ρ;Pk). For
P(3, 3) Fabrici and Jendrol’ proved:

Theorem 7.2 ([38]).

(i) τ(1, 3, 3) = 5,

(ii) τ(2, 3, 3) = 10,

(iii) τ(k, 3, 3) = 4k + 3 for any k ≥ 3.

The theorem can be reformulated, as follows:

Theorem 7.3. Every 3-connected planar graph G of order at least k ≥ 3 has
a connected subgraph K of order k such that the degree of every vertex of K
in G is at most 4k + 3.
The bound 4k + 3 is best possible. �

If the minimum degree of graphs of H is increased to 4 then a slightly
smaller bound is obtained by Fabrici.

Theorem 7.4 ([32]). τ(k, 4, 3) = 4k − 1 for any k ≥ 4. �

In the paper [57] of Hexel and Walther and that of Hexel [55] the reader
can find several bounds on τ(k, δ, ρ) for 4-connected graphs.

Here we provide a result that gives a necessary condition for a fixed family
L of connected plane graphs to be light in P(3, 3).

Theorem 7.5. If L is a finite family of connected plane graphs H such that
△(H) ≥ 3 or δ(H) ≥ 2, then L is not light in P(3, 3).

Proof. Let K be the disjoint union of all graphs from the family L. Let T0 be
a plane triangulation of K, that is the graph obtained from K by inserting
necessary edges into K to obtain a plane triangulation. The rest is the same
as in the proof of Theorem 5.2, using K as H and m arbitrarily large.

Corollary 7.6. If L is a light family in P(3, 3) then L contains a k-path for
some k. �

Theorem 7.2 leads to the following problem:

Problem 7.7. Find an optimal set Sk of trees on k vertices such that
ϕ(Sk,P(3, 3)) = 4k + 3.

Applying Theorems 5.1 and 7.2 we can easily get the following.
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Theorem 7.8. If L = {Pk, K1,3}, then ϕ(L,P(3, 3)) = 4k + 3. �

The next theorem generalizes this result. For i ≥ 0, let Si denote a
generalized 3-star with a central vertex of degree 3, where the three paths
with a common end vertex have i + 1 vertices. Obviously, S0 = K1 and
S1 = K1,3.

Theorem 7.9 ([89]). Let k and i be integers, k ≥ 3 and 1 ≤ i ≤ k
2
. If

Li = {Pk, Si}, then ϕ(Li, P (3, 3)) = min{5k, 4(k + i) − 1}. �

8 Weight problems

In generalizing Kotzig’s Theorem there are several other natural direc-
tions. Two possibilities are as follows. Let k ≥ 1 be an integer.

Problem 8.1. Find the smallest integer f = f(k, δ, ρ) such that whenever a
graph G ∈ P(δ, ρ) contains at least k vertices, there is a connected subgraph
H of G of order k having weight

wG(H) ≤ f(k, δ, ρ) .

Problem 8.2. Find the smallest integer w = w(k, δ, ρ) such that whenever
a graph G ∈ P(δ, ρ) contains a k-path, there is a k-path P in G with weight

wG(P ) ≤ w(k, δ, ρ) .

The precise values of w(k, δ, 3) and f(k, ρ, ρ) are known only for small k,
e.g. w(1, 3, 3) = f(1, 3, 3) = 5, w(2, 3, 3) = f(2, 3, 3) = 13 and w(2, 4, 3) =
f(2, 4, 3) by Kotzig [97], w(2, 5, 3) = f(2, 5, 3) = 11 by Wernicke [128],
w(3, 5, 3) = f(3, 5, 3) = 17 by Franklin [42], and w(3, 3, 3) = f(3, 3, 3) = 21
by Ando, Iwasaki and Kaneko [3]. For greater k only estimations are known.

The Problem 8.1 was investigated first time by Enomoto and Ota [31].
In 1999 they proved the following results.

Theorem 8.3 ([31]). If k ≥ 4, then

8k − 5 ≤ f(k, 3, 3) ≤ 8k − 1 ,

8k − 5 ≤ f(k, 4, 3) ≤ 8k − 3, and

f(k, 5, 3) ≤ 7k − 2 .

There exist infinitely many k such that 7k − 4 ≤ f(k, 5, 3). �

They expect the following to be true.
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Conjecture 8.4 ([31]). If k is an integer, k ≥ 4, then

f(k, 3, 3) = 8k − 5 .

Problem 8.2 was firstly formulated in [37]. In [37] and [38] it was proved
that

k log2 k ≤ w(k, 3, 3) ≤ 5k2 .

Madaras [101] improved the upper bound showing that w(k, 3, 3) ≤ 5
2
k(k+1).

Presently the best know upper bound on w(k, 3, 3) is by Fabrici, Harant, and
Jendrol’ [34].

Theorem 8.5 ([34]). Let k be an integer, k ≥ 4. Then

(i) every plane triangulation T that contains a k-path, contains also a k-
path P with weight

wT (P ) ≤ k2 + 13k , and

(ii) every 3-connected planar graph that contains a k-path, contains also a
k-path P with weight

wG(P ) ≤ w(k, 3, 3) ≤ 3

2
k2 + O(k) .

�

The restrictions to 4-connected plane graphs brings a different behaviour.
In 2000 Mohar [108] proved a beautiful result.

Theorem 8.6 ([108]). Let G be a 4-connected plane graph on n vertices, and
let k be an integer, 1 ≤ k ≤ n. Then G contains a k-path P with weight

wG(P ) ≤ 6k − 1 .

The bound is sharp. �

In fact Theorem 8.6 is a corollary of the following results because 4-
connected plane graphs are know to be hamiltonian due to a theorem of
Tutte [125].

Theorem 8.7 ([108]). Let H be a hamiltonian planar graph on n vertices
and let k be an integer, 1 ≤ k ≤ n. Then H contains a k-path P with weight

wH(P ) ≤ 6k − 1 .

The bound is tight.
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Proof. For a planar hamiltonian graph H on n vertices, let Cn be a Hamilton
cycle through vertices v1, v2, ..., vn in order. Let Ri be the part of Cn on

vertices vi, vi+1, ..., vi+k−1 (indices modulo n). Let w(Ri) =
i+k−1
∑

j=i

degH(vj)

denote the weight of Ri in H (that is, the sum of degrees in H of vertices of
Ri). Then

n
∑

i=1

w(Ri) = k
∑

v∈V (H)

deg(v) = 2k
∣

∣E(H)
∣

∣ ≤ 2k(3n− 6) .

The last inequality follows from the well known corollary (2.4) of Euler’s
formula. Hence, one of the paths, say Rj, has weight at most 2k(3n− 6)/n.
Since this is less than 6k, we obtain wH(Rj) ≤ 6k − 1. On the other hand,
there are 5-connected plane triangulations which contain precisely 12 vertices
of degree 5, and all other vertices are 6-vertices. Moreover, the 5-vertices are
as far away from each other as we like. This completes the proof.

Clearly 2-connected outerplanar graphs are hamiltonian. Using the idea
of Mohar, one can prove that every 2-connected outerplanar graph has a light
k-path of the weight at most 4k − 1. The next theorem is by Fabrici [33].

Theorem 8.8 ([33]). Let G be an outerplanar graph on n vertices and let
1 ≤ k ≤ n. Then G contains a k-path P with weight

wG(P ) ≤ 4k − 2 .

The bound is tight. �

In [38] for every k ≥ 4 one can find a construction of a 3-connected plane
graph G in which each k-path has weight at least k log k. Developing the
ideas of Mohar’s proof of Theorem 8.7, Fabrici et al. [34] showed that in
3-connected planar graphs with long cycles one can find k-paths of weight
linear in k for k relatively small to the circumference.

Theorem 8.9 ([34]). For a 3-connected plane graph G let c(G) be the length
of a longest cycle in G. If c(G) ≥ σ|V (G)| for some constant σ > 0 then for
any k, 1 ≤ k ≤ c(G), G contains a k-path P with weight

wG(P ) ≤
( 3

σ
+ 3

)

k .

�

We believe that the following is true
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Conjecture 8.10. For every k ≥ 4, w(k, 3, 3) = O(k log2 k).

For the families P(δ, ρ) with (δ, ρ) 6= (3, 3) we know that w(k, 5, 3) ≤
w(k, 4, 3) ≤ 5k2 − 7k for k ≥ 8 by [35], w(k, 3, 4) ≤ 5

2
k2 for k ≥ 4 by [50] and

w(k, 3, 5) ≤ 5
3
k2 by [74]. Mohar [108] constructed 3-connected planar graphs

proving that w(k, 4, 3) ≥ 9
16
k log2 k and w(k, 5, 3) ≥ 3

10
k log2 k.

Using the notion of weight one can define light graphs in an equivalent
form. We start with the following.

Problem 8.11. Let H be family of graphs and let H be a connected graph
that is a proper subgraph of at least one member of H. Let w(H,H) be the
smallest integer with the property that every graph G in H, that contains H,
contains a copy K of H with weight wG(K) ≤ w(H,H). Determine the value
w(H,H) for given H and H.

If such a w(H,H) does not exists then we write w(H,H) = +∞. It
is easy to see that H is light in H if and only if w(H,H) < +∞. Let
w(δ, ρ;H) := w(H,P(δ, ρ)). Problem 8.11 can be now formulated

Problem 8.12. Determine the precise value of w(δ, ρ;H) for all light graphs
H in the family P(δ, ρ) for all admissible pairs (δ, ρ).

The known precise results concerning this problem not mentioned in
Section 4 are listed here: Theorem 2.1 of Lebesgue yield: w(3, 5;P4) =
12, and w(3, 5;P5) = 17. Jendrol’ and Madaras [72] proved w(5, 3;P4) =
w(5, 3;K1,3) = 23, and recently Borodin and Woodall [24] showed that
w(5, 3̄;C4) = 25, and w(5, 3̄;C5) = 30, and w(5, 3;K1,4) = 30. Madaras
[102] proved that w(4, 3̄;P4) ≤ 31 and w(5, 3̄;P5) = 29.

Analogously we can define the value w(L,H) for a finite family of con-
nected graphs L and a family H having the properties mentioned in Section
7. Namely, every member of L is a proper subgraph of at least one member
of H. Let w(L,H) be the smallest integer t with the property that every
graph G in H that has a subgraph belonging to L has such a subgraph H
whose vertices have degrees in G such that sum to at most w(L,H).

Madaras and Škrekovski [105] investigated the conditions related to weig-
ht of a fixed subgraph of plane graphs that can enforce the existence of light
graphs in families of plane graphs. For the families of plane graphs and
triangulations whose edges are of weight at least w they study the necessary
and sufficient conditions for lightness of certain graphs according to values
of w. We like some of their results:

Theorem 8.13 ([105]). Let R(w) be the family of all planar graphs of min-
imum degree at least 3 whose edges are of weight at least w.
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(i) The 4-path P4 is light in R(w) if and only if 8 ≤ w ≤ 13.

(ii) The k-cycle Ck, k ∈ {3, 4}, is light in R(w) if and only if 10 ≤ w ≤ 13.

(iii) The star K1,4 is light in R(w) if and only if 9 ≤ w ≤ 13. �

9 Light subgraphs of graphs embedded on

surfaces

In this section we discuss light subgraphs of connected graphs embedded
into surfaces other than the sphere.

Throughout this section we use terminology of [110]. However, we recall
some definitions. An orientable surface Sg of genus g is obtained from the
sphere by adding g handles. Correspondingly, a nonorientable surface Nq

of genus q is obtained from the sphere by adding q crosscaps. The Euler
characteristic is defined by

χ(Sg) = 2 − 2g and χ(Nq) = 2 − q .

By a surface M we mean either an orientable surface Sg or a nonorientable
surface Nq. By the genus g (the nonorientable genus q) of a graph G we
mean the smallest integer g (q) such that G has an embedding into Sg (Nq,
respectively).

If a graph G is embedded in a surface M then the connected regions
of M − G are called the faces of G. If each face is an open disc then the
embedding is called a 2-cell embedding. If each vertex has degree at least
3 and each vertex of degree h is incident with h different faces then G is
called a map in M. If, in addition, G is 3-connected and the embedding has
”representativity” at least three, then G is called a polyhedral map in M,
see e.g. Robertson and Vitray [120]. Let us recall that the representativity
(or face width) of a (2-cell) embedded graph G into a surface M is equal to
the smallest number k such that M contains a noncontractible closed curve
that intersects the graph G in k points. We say that H is a subgraph of a
polyhedral map G if H is a subgraph of the underlying graph of the map G.

For a map G let V (G), E(G) and F (G) be the vertex set, the edge set and
the face set G, respectively. For a map G on a surface M, Euler’s formula
states

∣

∣V (G)
∣

∣ −
∣

∣E(G)
∣

∣ +
∣

∣F (G)
∣

∣ = χ(M) .

In 1990, Ivančo [62] generalized the Theorem 3.1 of Kotzig in the following
way:
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Theorem 9.1 ([62]). If G is a connected graph of orientable genus g and
minimum degree at least 3, then G contains an edge e of weight

w(e) ≤
{

2g + 13 for 0 ≤ g ≤ 3
4g + 7 for g ≥ 3 .

Furthermore, if G does not contain 3-cycles, then

w(e) ≤
{

8 for g = 0
4g + 5 for g ≥ 1 .

Moreover, all bounds are best possible. �

An analogous result for graphs on non-orientable surfaces proved by Jen-
drol’ and Tuhársky [77] is as follows

Theorem 9.2 ([77]). If G is a connected graph of minimum degree at least
3 on a nonorientable surface of genus q ≥ 1, then G contains an edge e with
weight

w(e) ≤







2q + 11 for 1 ≤ q ≤ 2 ,
2q + 9 for 3 ≤ q ≤ 5 ,
2q + 7 for q ≥ 6 .

Furthermore, if G does not contain 3-cycles, then G contains on edge e with
weight

w(e) ≤
{

8 for q = 1 ,
2q + 5 for q ≥ 2 .

Moreover, all bounds are best possible. �

For the projective plane (the nonorientable surface of the smallest genus)
using the same ideas as in the proof of Theorem 3.1, one can easily prove

Theorem 9.3. Every connected projective planar graph of minimum degree
at least 3 contains a (3, a)-edge with 3 ≤ a ≤ 10, or a (4, b)-edge with 4 ≤
b ≤ 7 or a (5, c)-edge with 5 ≤ c ≤ 6. The bounds 10, 7, and 6 are best
possible. �

The bounds in Theorem 9.1 and 9.2 can be essentially improved if em-
bedded graphs have a ”large” number of vertices. Namely, the following
holds:

Theorem 9.4 ([78]). Let G be a normal map on surface M of Euler char-
acteristic χ(M) ≤ 0 and let n be the number of vertices of G. If

(a)
∑

(degG(x) − 6) > 48|χ(M)|, or
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(b) n > 26|χ(M)|,

then G contains an (a, b)-edge such that

(i) a = 3 and 3 ≤ b ≤ 12, or

(ii) a = 4 and 4 ≤ b ≤ 8, or

(iii) 5 ≤ a ≤ 6 and 5 ≤ b ≤ 6.

The bounds 12, 8, and 6 are best possible. �

Nothing seems to be done in the following

Problem 9.5. Find an analogue of Theorem 3.3 for polyhedral maps on
manifolds M of Euler characteristic χ(M) ≤ 0.

For the projective plane, Sanders established sharp inequalities.

Theorem 9.6 ([123]). Every normal projective planar map satisfies the fol-
lowing inequality:

40 e3,3 + 25 e3,4 + 16 e3,5 + 10 e3,6 +
20

3
e3,7 + 5 e3,8 +

5

2
e3,9 + 2 e3,10

+
50

3
e4,4 + 11 e4,5 + 5 e4,6 +

5

3
e4,7

+
16

3
e5,5 + 2 e5,6 ≥ 60 .

�

Each of these coefficients is best possible.

In Theorem 9.6 we have the same coefficients as in the planar case (The-
orem 3.2), but on the right side the value 120 has been weakened to 60.

In the subclass of all normal projective planar graphs with minimum
degree at least 4 we have e3,j = 0 for 3 ≤ j ≤ 10. Sanders proved that in the
resulting inequality all coefficients are best possible.

Theorem 9.7 ([123]). Every normal projective plane map of minimum degree
four satisfies the inequality

50 e4,4 + 33 e4,5 + 15 e4,6 + 5 e4,7 + 16 e5,5 + 6 e5,6 ≥ 180 ,

and each of these coefficients is best possible. �
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Theorem 9.8 ([123]). Every projective plane map of minimum degree five
satisfies the inequality

16 e5,5 + 7 e5,6 ≥ 210 ,

and each of these coefficients is best possible. �

If in Theorem 9.7 we use e4,j = 0 for 4 ≤ j ≤ 7 then an inequality is
obtained which differs in the coefficient of e5,5.

Theorem 9.9 ([123]). Every projective plane map of minimum degree five
satisfies the inequality

18 f5,5,5 + 9 f5,5,6 + 5 f5,5,7 + 4 f5,6,6 ≥ 72 ,

and each of these coefficients is best possible. �

Euler’s formula implies (with some terms left out) 3v3 +2v4 + v5 ≥ 12 for
the plane and 3v3 + 2v4 + v5 ≥ 6 for the projective plane. Most of the above
inequalities differ only on the right side, where 12 appears for the normal
plane maps and 6 for the normal projective plane maps. This is completely
true if the minimum degrees are 3 or 4, respectively. The only inequality that
does not follow precisely these lines is the light edge inequality for graphs of
minimum degree five. For the plane, the coefficient of e5,5 went from 8/15
to 7/15. For the projective plane, it is lowered from 8/15 to 16/35. Each
other coefficient of the inequalities in the projective plane case is equal to
the corresponding coefficient in the plane case.

Using the same arguments as for the planar case it is possible to prove
the following analogues of Theorem 3.1 and Theorem 7.3

Theorem 9.10 ([38]). Every 3-connected projective planar graph G that con-
tains a k-path contains also such a path whose all vertices have degree at most
5k in G. The bound 5k is best possible. �

Theorem 9.11 ([83]). Let k ≥ 3. Then every 3-connected projective planar
graph G of order at least k contains a connected subgraph H of order k whose
vertices all have degree at most 4k + 3 in G. �

We generalized these and other results on light subgraphs to surfaces M

with nonpositive Euler characteristics. For details on these results, see [88].
In the next subsections we give a brief survey only. We mention that all
other theorems of Section 7 are also true for 3-connected projective planar
graphs.

Theorem 9.12 ([79]). Each polyhedral map G on M that contains a k-
path contains also such a k-path whose all vertices have degree at most

k
⌊

(5+
√

49−24χ(M))

2

⌋

in G. The equality holds for even k. �
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Let Kn and K−
n denote the complete graph on n vertices and the graph

obtained from it by deleting one edge, respectively. For odd k we can show:

Theorem 9.13 ([82]). For each odd k greater than 4
3

⌊

5+
√

49−24χ(M)

2

⌋

+ 1:

(i) the upper bound in Theorem 9.12 is attained at infinite many orientable
surfaces and at infinite nonorientable surfaces, where these surfaces are
characterized by the fact that each of these surfaces has a triangular
embedding of a K−

n ;

(ii) the upper bound in Theorem 9.12 is not attained at infinite many ori-
entable surfaces and at infinite many nonorientable surfaces, where
these surfaces are characterized by the fact that each of these surfaces
has a triangular embedding of a K−

n (in this case an upper bound is
⌊

(

k − 1

3

)5 +
√

49 − 24χ(M)

2

⌋

.

�

A polyhedral map G is called large if it has a large number of vertices or
large positive k-charge, where the positive charge of G is

∑

degG(u)>6k

(degG(u)−

6k).

Theorem 9.14 ([80], [81]). Every large polyhedral map on a surface M of
nonpositive Euler characteristic that contains a k-path contains also such a
k-path whose all vertices have degree, in G, at most 6k for k = 1 or even
k ≥ 2 and at most 6k − 2 for odd k ≥ 3. Moreover, these bounds are tight.
�

The upper bound on maximum degree of vertices of light paths of poly-
hedral maps on a surface M depends on

√

|χ(M)|. In arbitrary embedding of
3-connected graphs (multigraphs) in M this degree bound is a linear function
of |χ(M)|.
Theorem 9.15 ([84]). Each 3-connected multigraph G on M without loops
and 2-faces that has a k-path contains also such a k-path whose all vertices
have degree at most (6k − 2ε)(1 + |χ(M)|/3) in G, where ε = 0 if k ≥ 2 is
even, and ε = 1 if k ≥ 3 is odd. The bounds are best possible. �

Theorem 9.16 ([85]). For 3-connected graphs on M the precise degree bound
is

2 +

⌊

(

6k − 6 − 2ε
)

(

1 +
∣

∣χ(M)
∣

∣/3
)

⌋

for k ≥ 4 .

�
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Fabrici, Hexel, Jendrol’, and Walther [35] proved that each 3-connected
plane graph of minimum degree at least 4 that has a k-path contains also
such a k-path whose all vertices have degree at most 5k−7 in G. This bound
is sharp for k ≥ 8. For surfaces other than the sphere, we have

Theorem 9.17 ([86]). For k ≥ 8, each large polyhedral map G on M of
minimum degree at least 4 that contains a k-path contains such a k-path
whose vertices have degree at most 6k − 12 in G. This bound is sharp for
even k, and it must be at least 6k − 14 for odd k. �

In 3-connected plane graphs of minimum degree at least 5 only the upper
bound 5k − 7 [35] is known. For large polyhedral maps on 2-manifolds M,
the degree bound is not a linear function on k.

Theorem 9.18 ([86]). Let k ≥ 66 be an integer. Each large polyhedral map
G on M of minimum degree at least 5 that contains a k-path contains such a
k-path whose all vertices have degree at most 6k − log2 k + 2. Moreover, the
exact bound is at least 6k − 72 log2 k − 132. �

In families of polyhedral maps of Theorem 9.11, 9.13 and 9.16 and in
embeddings of 3-connected multigraphs (Theorem 9.14), and in embeddings
of 3-connected graphs (Theorem 9.15) only k-paths are light for every k.

In the families of large polyhedral maps of minimum degree at least 5
on surfaces of nonpositive genus one can prove the existence of other light
graphs. We have obtained that the cycle C3 is light there (see [90]) as well as
all proper spanning subgraphs H of the complete graph K4, while K4 itself is
not light (see [91]). The 5-cycle C5 and the 5-cycle with one or two diagonals
are light in this class as well (see [92]). For other results see [87].

Fabrici and Jendrol’ [38] proved that each 3-connected plane graph G of
order at least k contains a connected subgraph of order k whose all vertices
have degree at most 4k + 3. We have proved that this holds also for the
projective plane. For polyhedral maps on M, the degree bound for connected
subgraphs of order k again depends on

√

|χ(M)|. (This result is not presented
here). For polyhedral maps with many vertices we proved

Theorem 9.19 ([83]). For k ≥ 2, each polyhedral map on M having at least
(8k2 + 6k − 6)|χ(M)| + 1 vertices contains a connected subgraph of order k
whose all vertices have degree at most 4k+ 4. This bound is best possible. �

For polyhedral maps the bound depends on
√

|χ(M)|. In arbitrary em-
beddings of 3-connected graphs (multigraphs) in M the bound is a linear
function of |χ(M)|.
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Theorem 9.20 ([84]). For k ≥ 2 each 3-connected multigraph G on M that
has no loops or 2-faces and has order at least k contains a connected subgraph
of order k whose all vertices have degree at most

⌊

(4k+ 4)(1 + |χ(M)|
3

)
⌋

in G.
This bound is sharp. �

Theorem 9.21 ([85]). For 3-connected graphs on M, the precise degree bound
is

2 +

⌊

(

4k − 2
)

(

1 +
|χ(M)|

3

)⌋

for k ≥ 5 .

�

Theorem 9.22 ([84]). For both large 3-connected multigraphs on M without
loops and 2-faces and for large 3-connected graphs on M having at least k ≥ 2
vertices the precise degree bound is 4k + 4. �

We finish this section with an analogue of Theorem 8.9 recently proved
by Kawarabayashi et al. [96].

Theorem 9.23 ([96]). For any non-spherical surface M and any positive in-
teger t there exist positive integers r(M) and n0 = n0(M, t) such that if G is a
3-connected graph with n ≥ n0 vertices embedded into M with representativity
r(M), then G has a connected subgraph H of t vertices such that

wG(H) =
∑

v∈V (H)

degG(v) ≤ 8t− 1 .

10 Related topics

The concept of the weight of an edge, of a face, of a path, or of a cycle
respectively, as presented in this survey has served as a starting point for
research in several other directions. We briefly mention some of them.

1. A graph is called 1-planar if it can be drawn in the plane so that
each its edge is crossed by at most one other edge. An investigation of 1-
planar graphs was introduced by Ringel [119] in 1965. He proved, among
other results, that each 1-planar graph contains a vertex of degree at most
7. Fabrici and Madaras in [39] have started an investigation of the existence
of light subgraphs in the family of 1-planar graphs. They have proved that
each 3-connected 1-planar graph contains an edge with both endvertices of
degree at most 20. They also have presented similar results concerning larger
structures in 1-planar graphs with additional constrains. Hudák and Madaras
[61] found out that each 1-planar graph of minimum degree 5 and girth 4
contains a 5-vertex adjacent to a vertex of degree at most 6, a 4-cycle whose
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every vertex has degree at most 9 and a 4-star K1,4 with all vertices having
degree at most 11. It would be very interesting to determine the set of all
light graphs in the family of 1-planar graphs.

2. The idea of light edges was used by P. Erdös who formulated in
1990 at the conference in Prachatice (Czechoslovakia) the following max-min
problem (see [63]): For a graph G = (V,E), its edge weight w(G) is defined as
min{w(e)|e ∈ E}. Let G(n,m) denote the family of all graphs with V = |n|
vertices and |E| = m edges. Determine the value

W (n,m) = max{w(G)|G ∈ G(n,m)} .

Ivančo and Jendrol’ [63] have proved several partial results. Recently Jen-
drol’ and Schiermeyer [76] have found a complete solution to Erdös’s question
and characterized all graphs on n vertices and m edges attaining this mini-
mum weight.

A graph G from G(n,m) having no isolated vertices is degree-constrained
if a = 2m

n
< 2δ, where a is the average degree of G and δ = δ(G) is min-

imum degree of G. Bose, Smid, and Wood [26] proved that every degree-
constrained graph has an edge uv with both deg(u) and deg(v) at most ⌊d⌋
where d = aδ

2δ−a
. Moreover, they investigate matchings consisting of light

edges in degree-constrained graphs.

3. The idea of a light path has been considered also in the family of all
K1,r-free graphs, r ≥ 3, i.e. graphs without K1,r as an induced subgraph.
Harant et al. [51] proved among others the following rather surprising result.

Theorem 10.1 ([51]). If G is a K1,r-free graph on n vertices, where r ≥ 3,
then each induced path of length at least 2r − 1 and each induced cycle of
length at least 2r in G has the weight at most (2r − 2)(n− α0), where α0 is
the independence number of G. Moreover, this bound is tight. �

Recently, Voigt presented to the conference Cycles and Colourings 2010
the following generalization of the above theorem.

Theorem 10.2 ([117]). Let G be a connected K1,r-free graph, r ≥ 3, of order
n and independence number α0. If H is a k-colourable induced subgraph of
G, then its weight w(H) in G is

w(H) =
∑

v∈V (H)

degG(v) ≤ k(r − 1)(n− α0) .

The bound is tight. �
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4. For a polyhedral map G the p-vector is defined in [43] to be a sequence
p = (fi|i ≥ 3) where fi denotes the number of i-gonal faces of G. Rosenfeld
[122] started to investigate the problem of characterization of p-vectors of
3-connected non-regular plane graphs (i.e. non-regular polyhedral graphs)
whose edges have the same, constant, weight. Jendrol’ and Jucovič [71] made
first steps in dealing with this problem for polyhedral maps on orientable
surfaces. There is a lot of open problems in this topic, see e.g. [65], [71].

5. Similarly, Jucovič [64] suggested studying polyhedral maps with con-
stant weight of faces. By the weight of a face α we mean the sum of degrees
of vertices incident with α. All Platonic solids and all duals to Archimedean
solids have constant face weights. Ivančo and Trenkler [64], and Horňák
and Ivančo [58] determined the number of nonisomorphic 3-connected plane
graphs having prescribed face weight w. There are infinitely many such
graphs if and only if 16 ≤ w ≤ 21 or w = 23 or w = 25. There is exactly
one such graph if w = 9 or w = 11; for w = 14 there are four, and for
w = 15 there are ten such graphs. For the remaining w ≥ 12 there are ex-
actly two such graphs. For w = 10 no such graph exists. Nothing is known
about polyhedral maps with constant face weight on surfaces other than the
sphere.

6. The idea of the weight of an edge e = uv being the degree sum of
the endvertices u and v motivated Jendrol’ and Ryjáček [75] to introduce the
concept of tolerance of the edge e. The tolerance τ(e) of the edge e = uv is
defined to be the absolute value of the difference of degrees of the vertices u
and v,

τ(e) =
∣

∣ deg(u) − deg(v)
∣

∣ .

Necessary and sufficient conditions for the existence of connected planar
and 3-connected planar graphs with constant edge tolerance appeared in
[75]. Several constructions of graphs with constant edge tolerance for gen-
eral graphs appear in Acharya and Vartak [1]. An open problem is to find
necessary and sufficient conditions for graphs with constant edge tolerance
embedded into surfaces different from the sphere.

7. Motivated by ”light” results, Mohar [109] considered analogical prob-
lems for infinite planar graphs. He used the discharging method to prove
some new results in this direction. The general outline of the method is pre-
sented in [109]. Many applications are given there, including results on light
subgraphs and the following: Planar graphs with only finitely many vertices
of degree at most 5 and with subexponential growth contain arbitrarily large
finite submaps of the tessellation of the plane or of some tessellation of the
cylinder by equilateral triangles.
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8. We feel a need to write down few remarks concerning the Lebesgue’s
Theorem (Theorem 2.1). It was published in 1940 but it remained unnoticed
until 1967 when Ore’s book [113] appeared. Ore was aware of the importance
of the theorem and therefore he included it into his book together with a
complete proof (using Lebesgue’s theory of the Euler’s contributions) and
with corollaries. But only after its application in an Ore and Plummer’s
[114] problem on cyclic colouring of plane graphs by Plummer and Toft [116]
the theorem started to attract people. (Note that the cyclic colouring is a
colouring of vertices of plane graphs in such a way that the vertices incident
with the same face receive different colours.) To prove the conjecture of
Plummer and Toft [116] (see also [93]) that every 3-connected plane graph
G has a cyclic colouring of its vertices with ∆∗ + 2 colours (here ∆∗ means
the size of the largest face in G) there were attempts to improve some terms
in the theorem.

Recall that the unavoidable set by Lebesgue’s theorem (see Theorem 2.1)
consists of six infinite series of faces, namely series of (3, b, c)-triangles for
3 ≤ b ≤ 6 and c ≥ 3, (4, 4, c)-triangles for c ≥ 4, and (3, 3, 3, d)-quadrangles
for d ≥ 3, and 126 individual faces. Horňák and Jendrol’ [59] reduced two
infinite series of (3, b, c)-triangles for 5 ≤ b ≤ 6 and c ≥ 5 to finite ones.
Namely they proved the existence of an unavoidable set of configurations
consisting of four infinite series and 160 individual configurations.

Note that, in general, none of infinite series of (3, b, c)-triangles for 3 ≤
b ≤ 4, c ≥ 3, (4, 4, c)-triangles for c ≥ 4, and (3, 3, 3, d)-quadrangles for k ≥ 3
can be omitted. In [60] Horňák and Jendrol’ replaced the serie of (4, 4, c)-
triangles with few individual terms together with a configuration consisting
of a chain of three quadrangles.

On the other side Borodin [19] succesfully reduced individual terms of the
theorem to 95 by letting all six infinite series (3, b, c)-triangles for 3 ≤ b ≤ 6,
(4, 4, c)-triangles, and (3, 3, 3, c)-quadrangles, all with c ≥ 3. In his paper
[19] Borodin posed the following problem: Find the best possible version(s)
of Lebesgue’s theorem.

For other discussions concerning the Lebesgue theorems readers are re-
commended to [19], [21], and [59]. (For a present situation concerning the
conjecture of Plummer and Toft, see e.g. [29], [30].)
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[60] M. Horňák, S. Jendrol’On a Conjecture by Plummer and Toft, J. Graph
Theory 30 (1999), 177-189.

[61] D. Hudák, T. Madaras On local structure of 1-planar graphs of min-
imum degree 5 and girth 4, Discuss. Math. Graph Theory 29 (2009),
385–400.
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