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ABSTRACT 
 
In this paper we address the problem of option ranking in qualitative evaluation 

models. Current approaches make the assumptions that when qualitative data are suitably 
mapped into discrete quantitative data, they form monotone or closely linear tabular value 
functions. Although the power of using monotone and linear functions to model decision 
maker�’s preferences is impressive, there are many cases of non-linear decision 
preferences that need to be modeled using non-linear functions. In this paper, we present 
one possibility of how to capture the discrete non-linear decision maker preferences by 
employing copulas. Copulas are functions that manage to capture the non-linear 
dependences between random variables. Mainly, they are used for aggregation of two 
attributes. We extend the concept to multivariate case by introducing a hierarchical copula. 
That way we capture the non-linear dependences among all uniformly distributed variables. 
We use the obtained dependence structure for copula-based median regression which 
results into the required option ranking.  

The results show that this method may outperform the current approaches for 
qualitative option ranking of non-monotone decision preferences for a class of non-linear 
preferences. Furthermore, the mathematics behind copula functions allows extending their 
usage on preferences expressed with continuous attributes.  
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INTRODUCTION 

Solving problems described with qualitative attributes is part of our daily life. People 
manage to deal with small problems. However, with increased complexity of the problems, 
the need for computer tools to help in solving the problems increases too. The complexity of 
the qualitatively described problems increases when: 

 the number of attributes increase, 
 the set of possible values that the attributes may receive increases (in general people 

may consistently distinguish five levels, such as 5 grades at school, while experts may 
consistently distinguish up to 7 levels [1]) and 

 several options belong to the same qualitative class of preferable options, therefore it 
is difficult to identify the best one (when one has to choose from many varieties, the 
decision making becomes a difficult task [2]). 

In order to tackle these problems, a Qualitative-Quantitative (QQ) method [3, 4] was 
developed. QQ is an extension of the DEX [5] method and DEXi computer program [6] for 
multi-attribute decision making. DEXi has been successfully used in wide range of 
applications such as environmental [7], agricultural [8], and medicine and healthcare [9]. In 
DEX, the inference of discrete qualitative attributes is specified with a table, whose rows are 
interpreted as if-then rules. The QQ method maps qualitative attributes consistently into 
quantitative ones, which are evaluated yielding a numerical utility. QQ aggregates qualitative 
attributes that may be connected on one level or may build a hierarchical structure. Such a 
quantitative representation of the model brings the main asset of the method: it is used to 
distinguish among the options that belong into the same class by ordering them. 

The applicability of QQ method is limited to decision problems in which the qualitative 
attributes can be regarded as discrete values forming monotone or closely linear functions. A 
monotone function is the one for which the class always increases or remains constant with 
the increasing values of the attributes. A function is closely linear if it can be �‘sufficiently 
well�’ (usually within the [�–0.5, +0.5] range) approximated by a linear function. 

In order to overcome the problem of evaluation of non-monotone decision preferences, we 
propose to extend the QQ method by using techniques that will capture the non-linear 
dependencies among different attributes expressed qualitatively by the decision maker. 
Unlike conventional methods like correlation that summarize the linear dependence relation, 
we propose to use copulas [10].  

Copulas are functions that can capture the non-linear dependences between random 
variables. To use copulas in order to perform ranking of options that belong in the same class, 
we go through the following steps. We start with the determination of the marginal 
distribution function of each variable. Next, two marginal distribution functions are used to 
find a copula that models the non-linear dependence between them. If we have more than two 
attributes at hand, we construct a hierarchical copula iteratively. In particular, in each 
iteration we use the constructed copula and the marginal distribution of a new variable in 
order to form a new copula. The final copula represents the joint distribution function of all 
variables. We use the final joint distribution function to express the final class of an option as 
a function of its attributes. This is performed by employing quantile regression, or more 
precisely, a median regression [11], hence obtaining the most probable regression curve. 
Finally, the obtained regression function is used for ordering the options in each class. 
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USED METHODS 

Qualitative-Quantitative method 
In order to understand the problem at hand we give a short overview of the QQ method. 

QQ consists of three stages, as schematically presented in Figure 1.  

 
Figure 1 Schematic overview of the three stages of the QQ method 

In the first stage, the qualitative attributes QAi are mapped into discrete quantitative 
attributes Ai. The mapping should guarantee that the qualitative preferences of the decision 
maker are preserved into the quantitative space. To illustrate this mapping we consider two 
qualitative attributes QA1 and QA2 and the output class given in Table 1. They get qualitative 
values from the set: {good, better, the best}. In this set, the preferences of the decision maker 
are: goodbetterbestthe , where the sign  denotes �“is more preferred than�”. Then, one 
possible mapping is into the set of ordered values {1, 2, 3}, such that the decision maker 
preferences are mapped to 123 . This way, the higher number corresponds to a larger 
preference of the decision maker. An example of this mapping is given in Table 2, which 
corresponds to the values in Table 1. 

Table 1: Qualitatively described problem 
No. QA1 QA2 Class 
1 good better  good 
2 good good good 
3 the best better better 
4 the best good good 
5 better better better 
6 better the best the best 
7 the best the best the best 
 

Table 2: Quantitatively described problem 
No. A1 A2 Class 
1 1 2 1
2 1 1 1 
3 3 2 2 
4 3 1 1 
5 2 2 2 
6 2 3 3 
7 3 3 3 

In the second stage, QQ models the quantitative values of the decision preferences using 
the linear function: 

i
ii Ag 0  (1)

where Ai are attributes and i  are weights obtained by least square regression.  
The final stage ensures that the qualitative and quantitative mappings are consistent with 

each other, that is, whenever the former yields the qualitative class c, the latter should yield a 
numerical value in the range 5.0c . Therefore, for each class c, g is normalized into the 
corresponding interval 5.0c . The set of ranking functions is given with 

ccc ngkf  (2)
where cn  and ck  are parameters for the normalization of g into the interval 5.0c . Each of 
the linear functions in (2) represents a quantitative model of one class of the originally 
qualitatively described decision preferences. The linear functions (2) are used to determine 
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the order of options in each class. For more details on the QQ method, the reader should refer 
to [3, 4]. 

Introduction to Copulas 
The QQ method suffers from two main drawbacks: by using qualitative attributes mapped 

into quantitative ones like those given in Table 2, we are limited to discrete values, and QQ 
provides only linear functions for ordering of attributes.  Linear functions usually do not 
manage to capture non-linearity in the preferences of the decision maker. To model non-
linear preferences and to be able to use both discrete and continuous attributes, we propose to 
use the concept of copulas. In this paper, we explain this concept on discrete quantitative 
values, although it is applicable to continuous values as well.  

Quantitative attributes in Table 2 may get any discrete value from the space  = {1, 2, 3}. 
Consequently we may consider the attributes as discrete random variables and therefore 
suitable for the application of copulas. 

The dependence between random variables is completely defined by their joint distribution 
function. The joint distribution function H(x,y) for two random variables (r.v.) X and Y, 
specified on the same probability space, defines the probability of a random event in terms of 
both X and Y. It is given by: 

 ]0,0[),( yYxXPyxH   
where P is probability function. In 1946, Sklar proved that the joint distribution function of 
two r.v. is equal to the copula of their uniform distributions on the unit interval [0,1] [10]. 

Theorem 1 (Sklar�’s theorem [10]): Let H be a two-dimensional distribution function with 
marginal distribution functions u=F(x) and v=G(y). Then copula C exists such that for all 

yx, :  
H(x,y)=C(F(x),G(y)) (3)

If F(x) and G(y) are continuous, then C is unique; otherwise C is uniquely determined on 
)()( GRangeFRange . Conversely, if  C is a copula and F and G are distribution functions, 

then the function H defined by (3) is a joint distribution function. 
Copulas are functions that manage to formulate the multivariate distribution in such a way 

so that various general types of dependences including non-linear one may be captured. 
Copulas have the following properties: 

1. For every ]1,0[,vu , 
),0(0)0,( vCuC  

and 
uuC )1,(  and vvC ),1(  

2. For every ]1,0[,,, 2121 vvuu  such that 21 uu  and 21 vv , 
0),(),(),(),( 11211222 vuCvuCvuCvuC  

The first property of copulas says that the joint probability of all variables is zero if the 
marginal probability of any variable is zero. Also, if the marginal probability of one variable 
is one, then the joint probability of all variables is the same as the probability of the second 
variable. 

The second property says that the value of copula function is always non-negative. This 
comes from the fact that the second property can be interpreted as: 
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0]0,0[]0,0[
]0,0[]0,0[

],[

12111221

22112221

221211

vxuxPvxuxP
vxuxPvxuxP

vxvuxuP
 

which is non-negative, as sketched in Figure 2. 

 
Figure 2 Sketch of the joint probability function ],[ 221211 vxvuxuP  

The properties of copulas ensure that they can be used as functions that link a 
multidimensional distribution to its one-dimensional marginal distributions. Therefore they 
are considered as a tool for modeling the dependence structure in the data.  

Archimedean copulas 
One important class of copulas represents the Archimedean copulas whose origin is in the 

probabilistic metric spaces [12]. To construct an Archimedean copula we use the following 
relation [8]: 

C(u,v)= [-1]( (u)+ (v)) (4)
where ],0[]1,0[: 2  is called a generator function. If )0( then the inverse function 
of  is called pseudo-inverse denoted as [-1]. Otherwise, the inverse function of  is -1 
defined in the interval )0(0 t . In order  to be generator function, it must be 
continuous, strictly decreasing from  ],0[]1,0[  with 0)1( .  

The usage of the Archimedian copulas is mainly motivated by their nice properties: 
  symmetry, i.e ]1,0[,),,(),( 211221 uuuuCuuC ,  
  associativity, i.e ]1,0[,,)),,(,()),,(( 321321321 uuuuuCuCuuuCC  
  if  is the generator, then k  is also generator for 0k . 

In this paper, we focus on Clayton copula which belongs to the family of Archimedian 
copulas. Through the Clayton copula, we will show how the concept of copulas may be 
applied to the qualitative decision making. The generator function of Clayton copula is 

1)( tt  
(5)

which leads to following form of copula: 
1

]0),1[max(),( vuvuC  
(6)

Next step is to estimate the parameter  of the Clayton copula. 
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Estimation of the parameter  using maximum likelihood 

Starting from the fact that probability density function and cumulative distribution 
function are connected with the derivative (integral) relation, from the distribution function of 
Clayton copula we get the density function: 

)1(11
)1(

2

)()1)(1(),(),( vvuu
vu
vuCvuc  

(7)

After rearranging the last equation, we get: 
21

)1( )1())(1(),( vuuvvuc  
(8)

In order to find the parameter  in (6), we use the maximum likelihood estimation [13]. 
By definition, the likelihood function of a random sample of size n from density (mass) 
function );(xf is the joint probability density (mass) function denoted by: 

);,...,,(),...,,;()( 2121 nn xxxfxxxLL  (9)
Equation (9) provides the likelihood that the r.v. take on a particular value nxxx ,...,, 21 , 

while  is the unknown parameter. In order to find an estimate �ˆ  that maximizes the 
likelihood function, we take the derivative of )(L and set it equal to zero: 

0)(L  
(10)

The maxima of the likelihood function and the maxima of the logarithm of the likelihood 
function are the same. We use this fact in cases when it is easier to find the maxima of a 
logarithm likelihood function, such as when exponents are involved in the density function, 
as it is in our case. The logarithm of the density function (8) is: 

)1log(21)log()1()1log(),(log vuuvvuc  (11)

Knowing that the maximum likelihood is the same as the minimum negative log 
likelihood, we use the minimum finder routine created by Brent [14, 15] to determine . 

Higher-dimensional copula 
Although most of the research focused on copulas is limited to bivariate case, there are 

several proposals of how to build multi-dimensional copulas [16, 17], from which we take the 
fully nested Archimedian constructions (FNAC) [18]. An example of FNAC is presented in 
Figure 3. The basic element in the FNAC structure represents the bivariate copula. As shown 
in Figure 3, the two nodes u1 and u2 are coupled firstly forming a Clayton copula C1(u1,u2) 
with parameter 1. In the next step C1 is coupled with u3 into C2(u3,C1) with parameter 2, 
then C2 is coupled with u4 into C3(u3,C2) with parameter 3 and, finally, C4 with parameter 4 
is obtained by coupling C3 and u5 [17]: 

)))),(,(,(,(),,,,( 12132435454321 uuCuCuCuCuuuuuC  (12)

In order to ensure that (12) represents a valid copula expression, the generator functions i 
have to fulfil certain conditions. Following the procedures [19] for determining the conditions 
under which the FNAC built with Clayton copulas represents a copula itself, we obtain the 
following condition that must be fulfilled: 

n...1  (13)
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Figure 3: Fully nested Archimedian copula 

Regression using copulas 
Having determined the dependences that exist among all attributes, including the output 

one, we may proceed in finding the value of the output, given the values of the input 
attributes. This kind of dependence is solved with regression. For two r.v. X and Y, the 
regression curve that defines their mutual dependence is given with 

y=E(Y|X=x) (14)
In (14) y represents the mean value of Y, as the most typical value of Y, for each value of 

X=x. An alternative to the mean values of Y are the quantiles q  of Y leading to quantile 
regression [20]. The q quantile for a r.v. is value x such that the probability  

qxXyYP ]|[  (15)
Performing regression using copulas and converting the density to regression task is 

described in [11, 21, 22]. In this paper we will use the regression approach for bivariate 
copulas as in [11, 23]. Given the r.v. X and Y with joint distribution function H(x,y) and 
marginal distributions F(x) and G(y) respectively, we have: 

q
u

vuCxFUyGVPxXyYP ),()](|)([]|[  (16)

To perform the regression task, first we find the partial derivative of the Clayton copula: 
)1(

1
)1(

1

)1()()1(1),( uvuuvu
u

vuCq  
(17)

solving for ]1,0[q  where q  is the quantile, leads to v: 
1

11 ])(1[ quuv  
(18)

Using that u=F(x) and v=G(y) we can find different quantile regression curves for the 
variable Y on X: 

1
11111 ])))((())((1[ xFqxFGy  

(19)

In the example that follows, we will choose q=1/2 in order to perform median regression, 
thus finding the most probable value of the output.  
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ILUSTRATIVE EXAMPLE 

We illustrate the methods on the example given in Table 3. The first column in Table 3 is 
the number of option. The next four columns are four attributes (A1,...,A4). The fifth column is 
an output class. Next, we show the calculations for ranking of attributes obtained by using 
QQ, Clayton copula and Clayton copula normalized methods.  

Each attribute in Table 3 may get values from the interval [1, 5], and each option may 
belong to one of the set of classes {1, 2, 3, 4, 5}. For the QQ calculations, we use (1), and we 
obtain 

547.20855.02591.03152.01279.0 4321 AAAAg  
Applying (2), we get the final output for QQ: 

5,4589.27715.0
4,3274.25396.0
3,9395.13527.0
2,6196.05343.0
1,4432.05917.0

cforg
cforg
cforg
cforg
cforg

fc  

To obtain the Clayton copula, we first find the probability mass function of the values of 
attributes. Then we obtain their univariate margins ui=F(Ai), where Fi is cumulative 
distribution function of attribute Ai, as described in the Sklar�’s theorem. The cumulative 
distributions are used to calculate the parameters of the bivariate Clayton copulas defined in 
(6). The cumulative distribution functions of all attributes and the output class are aggregated 
into the FNAC structure, as the one in Figure 3. The obtained parameters of the bivariate 
copulas using the maximum likelihood approach (11) are 0548.01 , 0442.02 , 

0257.03 , 0246.04 . These values fulfill the condition of equation (13) for FNAC to 
represent a copula. The final obtained Clayton copula with parameter 4 is used for defining 
the median regression line, or more precisely, the line that provides the ranking of the options 
in classes. Substituting the value of 4  in (19), leads to: 

62724.400246.00246.110246.011 ])))((5.0())((1[ xFxFGy  
 
where 1F  and 1G  are inverse cumulative distribution functions. From Table 3, we may 
notice that QQ breaches the monotonicity property on five occasions, i.e., for option pairs 
(10, 14), (10, 15), (14, 15), (22, 24), (23, 24). One example of these is given in Table 4, 
where the option 14 has the same values for the three attributes as the option 15. Regarding 
the attribute A3, option 15 has a higher value and, consequently, we would expect that QQ 
evaluated it better than the option 14. However, this is not the case with the QQ calculations. 
On the other hand, the Clayton copula provides correct ranking between the two options. 

Using the median regression for determining the order of options, we get values in the 
interval [1.95, 2.64]. In order to determine the ranking of option that is consistent with the 
class into which the option belongs, we use (2) as described in the QQ method. By applying 
(2) on the results obtained with the Clayton copula, we get values that we named as a Clayton 
normalized copula (see the last column in Table 3). After normalization, the highest value in 
one class will be the same as the smallest value of the next higher class. In other words, the 
transition of values from one class to the next one will be smooth, in contrast with QQ, where 
there is usually a gap between two consecutive classes. This results from the fact that copulas 
aggregate the marginal distribution function of attributes. The shape of the marginal 



 

9 

distribution function is shift invariant. This means that when a distribution function is shifted 
for some constant, the values of the minimum and the maximum of the distribution function, 
which are used for calculation of the parameters cn  and ck  in (2), will not change. 

Another advantage and the reason for using the Clayton normalized copula is that it 
ensures consistency with the qualitative model. As stated in the problem definition, we wish 
to keep the quantitative evaluation consistent with the qualitative one: for each qualitative 
class c, the corresponding numerical evaluation should be in the range 5.0c . The 
normalization ensures this property. For example, if we compare options 16 and 22, we see 
that option 16 has a higher value of A3 than the option 22; however the decision maker ranks 
option 22 into a higher class than the option 16. Although Clayton calculation provides a 
correct ranking within the classes, it does not capture the obvious non-linearity imposed by 
the decision maker in the global ranking of options. This is corrected by applying the third 
stage of QQ, hence obtaining the Clayton normalized copula. In addition to consistency, we 
also obtain a better readability of the ranked results, because only a single number (result of 
Clayton normalised calculations) is sufficient to determine both the class and the rank of each 
option. 

 

Table 3: Example of table function with four attributes and one output class, and calculations 
obtained with QQ, Clayton and Clayton normalized methods 

No. A1 A2 A3 A4 Class QQ Clayton Clayton  
normalized 

1 2 3 4 2 1 0.88 2.51 1.39 
2 2 5 3 3 1 1.30 2.53 1.49 
3 5 1 4 3 1 0.70 2.23 0.50 
4 5 2 2 5 1 1.05 2.54 1.50 
5 2 3 3 1 2 2.16 2.19 2.29 
6 3 5 5 1 2 2.29 2.24 2.50 
7 1 1 3 2 2 1.71 1.99 1.50 
8 1 3 2 5 2 2.05 2.21 2.40 
9 4 5 2 1 3 3.36 2.21 2.89 

10 1 3 1 3 3 3.03 1.99 2.50 
11 3 5 4 3 3 3.07 2.58 3.50 
12 5 2 1 4 3 3.07 2.219 2.896 
13 3 3 1 4 3 3.09 2.220 2.897 
14 1 3 3 4 3 2.82 2.222 2.899
15 1 3 5 4 3 2.64 2.24 2.92 
16 4 2 4 1 4 3.71 2.21 3.53 
17 2 3 4 1 4 3.74 2.20 3.50 
18 1 5 3 2 4 4.11 2.21 3.52 
19 4 5 3 3 4 4.27 2.58 4.50 
20 4 3 1 5 4 4.12 2.24 3.60 
21 4 4 1 5 4 4.29 2.25 3.63 
22 4 2 1 1 5 5.04 1.95 4.50 
23 2 4 1 3 5 5.20 2.20 4.87 
24 5 5 5 5 5 4.80 2.64 5.50 
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Table 4: Example when monotonicity is breached with QQ method 

No. A1 A2 A3 A4 Class QQ Clayton Clayton  
normalized 

14 1 3 3 4 3 2.82 2.222 2.899 
15 1 3 5 4 3 2.64 2.24 2.92 
 

DISCUSSION AND CONCLUSIONS 

Results show that copulas may be used for modeling non-linear qualitative table functions. 
In this paper we used Clayton copula to capture the non-linear dependences in the input 
attributes, which is not the usual case when we apply the QQ method. One asset of copulas 
comes from the fact that they use the distribution functions of the attributes instead of the 
attribute values themselves. That makes them useful for attributes with different scale units 
(for example kilometers, seconds, intervals, probabilities), combined attributes (such as 
discrete, continuous, etc.), as long as the preferences of the values in each of the attributes are 
defined, or for scale-free attributes. 

In order to apply copulas on multi attribute decision problems, there is a need to construct 
a hierarchical structure of copulas. In our paper we used FNAC that uses bivariate Clayton 
copula as a basic building block. The main limitation of FNAC comes from the fact that 
when the number of attributes increases, the probability that the final hierarchical structure 
also represents a copula decreases. It is difficult to estimate the number of table functions that 
may be solved when the number of attributes increases due to the fact that there is a 
combinatorial explosion in higher dimensions. 

In order to extend the number of non-linear preferences that may be modeled with copulas, 
we should analyze how different copula types perform. Additionally, we may expand the 
estimation of  by investigating different hierarchical structure of copulas thus 
circumventing the FNAC conditions. That is left for further research.  
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