
Martingales, Tic-Tac-Toe, and Algorithmic

Aspects of the Local Lemma

Petr Škoda, FMF, Ljubljana

January 24, 2008

1 Martingales

Let us start by a motivation. A drunkard goes along a wide road. Due to
his unsure steps, with each step he moves with probabilty p by ten inches to
the left, with probability p by ten inches to the right, and with probability
1− 2p he goes straight. The question is: With what probability will he after
n steps fall over the edge of the road?

We describe the situation as a probabilistic problem. Let Xi be the result
of i-th step, namely 1 and −1 both with probability p and 0 with probability
1− 2p. Now, the distance of the drunkard from the middle of the road after
n steps corresponds to the sum of the steps X =

∑n
i=1 Xi. By linearity of

expectation, we have E[X] =
∑n

i=0 E[Xi] = 0 because E[Xi] = 0 for all i.
After few steps he will be probably still somewhere near the middle of the
road but he will certainly travel away on a long road. How to describe these
notions?

We will get a basic insight into the problem using the second moment.

Definition 1. The variance Var[X] of a real random variable X is

Var[X] = E[(X − E[X])2] = E[X2] − (E[X])2.

(The first equality is a definition, and the second one follows by an easy
computation.) The standard deviation of X is σ =

√

Var[X].

Theorem 2 (Chebyshev’s Inequality). Let X be a random variable with a
finite variance. Then for any t > 0

P [|X − E[X]| ≥ t] ≤ Var[X]

t2
.

1

Proof.
Var[X] = E[(X − E[X])2] ≥ t2P [|X − E[X]| ≥ t].

The Chebyshev’s inequality is a very simple tool but it gives us first useful
bounds. Return to the motivation problem. Since Xi are independent, the
variance of X is

Var[X] =

n
∑

i=0

Var[Xi] =

n
∑

i=0

E[X2
i] = 2pn ≤ n.

The Chebyshev’s inequality gives us

P [|X| ≥ t] ≤ 2pn

t2
≤ n

t2
.

For t =
√

20n, there is probability at least 95% that the drunkard will stay
at the road of the width t.

Denote Yi, 0 ≤ i ≤ n, the distance of the drunkard from the middle of the
road after i steps, Yi =

∑i
k=0 Xk. Observe that no matter what the earlier

history of the walk has been, the expected position after t steps equals the
actual position after t−1 steps. This is the defining property of a martingale.

Definition 3. A martingale is a list of random variables Y0, . . . , Yn such
that, for all i, the expectation of Yi, given the values of Y0, . . . , Yi−1, equals
Yi−1.

Martingales can make it easy to show that a random variable is highly
concetrated around its expected value. We shall see that this follows from
its inability to move more than one unit in each step. The statement is
called Azuma’s Inequality. This inequality states that if successive random
variables in a martingale always differ by at most 1, then the probability
that Yn − Y0 exceeds λ

√
n is bounded by e−λ2/2. We first prove two lemmas.

These statements hold for continuous random variables, but we consider only
discrete variables.

Lemma 4. Let X be a random variable such that E[X] = 0 and |X| ≤ 1.
If f is a convex function on [−1, 1], then E[f(X)] ≤ 1

2
[f(−1) + f(1)]. In

particular, E[etX] ≤ 1
2
[et + e−t] for all t > 0.

2

Proof. When X takes only the values ±1, each with probability 1
2
, we have

E[f(X)] = 1
2
[f(−1)+f(1)]. For other distributions, pushing probability “out

to the edges” increase E[f(X)]. For discrete variables, we can use induction
on the number of values with non-zero probability. Convexity implies that
f(a) ≤ 1−a

2
f(−1) + 1+a

2
f(1). If P [X = a] = α, then we can decrease the

probability at a to 0, increase P [X = −1] by α 1−a
2

and increase P [X = 1]
by α 1+a

2
to obtain a new variable X ′ with the same expectation. By the

convexity inequality and induction hypothesis,

E[f(X)] ≤ E[f(X ′)] ≤ 1

2
[f(−1) + f(1)]

.

Definition 5. For events A and B, the conditional probability of A given B
is obtained by treating the event B as the full probability space, which means
normalizing by P [B]. Thus we define P [A|B] = P [AB]

P [B]
.

When Y, X are random variables, we write Y |X for “Y given X”. This
defines a random variable for each value of X; we treat X as a constant i
and normalize the resulting distribution for Y by P [X = i].

For Azuma’s Inequality, we use expectation of conditional variables. For
each i, we compute the expected value of Y when restricted to the sam-
ple points where X = i. The expectation E[E[Y |X]] is the expectation of
E[Y |X = i] over the choices for i, which occur with probability P [X = i].
The result is an expectation over entire sample space. It removes the effect
of conditioning, and we obtain E[E[Y |X]] = E[Y].

Lemma 6. E[E[Y |X]] = E[Y].

Proof. Let pi,j = P (X = i and Y = j). Since

E[Y |X = i] =

∑

j jpi,j

P [X = i]
,

the following holds:

E[E[Y |X]] =
∑

i

E[Y |X = i]P [X = i] =
∑

i

∑

j

jpi,j = E[Y].

3

We will use the following simple Markov’s Inequality in the proof of the
Azuma’s Inequality.

Theorem 7 (Markov’s Inequality). For a real positive parameter t and a
non-negative random variable X, the following holds:

P [X ≥ t] ≤ E[X]

t

Proof.

E[X] =
∑

i

iP [X = i] ≥
∑

i≥t

tP [X = i] = tP [X ≥ t]

Theorem 8 (Azuma’s Inequality). If X0, . . . , Xn is a martingale with |Xi −
Xi−1| ≤ 1, then P [Xn − X0 ≥ λ

√
n] ≤ e−λ2/2.

Proof. By translation, we may assume that X0 = 0. For t > 0, we have Xn ≥
λ
√

n if and only if etXn ≥ etλ
√

n, and hence P [Xn ≥ λ
√

n] = P [etXn ≥ etλ
√

n].
Applied to etXn , Markov’s Inequality yields P [etXn ≥ etλ

√
n] ≤ E[etXn]/etλ

√
n.

This bound holds for each t > 0, and later we will choose t to minimize the
bound.

First we prove by induction on n that E[etXn] ≤ [1
2
(et + e−t)]n. We

introduce Xn−1 to condition on it. Lemma 6 yields

E[etXn] = E[etXn−1et(Xn−Xn−1)] = E[E[etXn−1et(Xn−Xn−1)|Xn−1]].

When we condition on Xn−1, the value of Xn−1 is constant for the inner
expectation. Hence we can remove etXn−1 from the inner expectation to
obtain E[etXn] = E[etXn−1E[etY |Xn−1]], where Y = Xn − Xn−1. Because
{Xn} is a martingale, E[Y] = 0, and by hypothesis |Y | ≤ 1. Hence Lemma 4
applies, yielding E[etY |Xn−1] ≤ 1

2
(et + e−t). This itself is now a constant,

yielding E[etXn] ≤ 1
2
(et + e−t)E[etXn−1]. The induction hypothesis completes

the proof.
We weaken the bound to a more useful form by observing that 1

2
(et +

e−t) ≤ et2/2. This holds because the left side is
∑

t2k/(2k)! and the right
side is

∑

t2k/(2kk!). Hence our original probability is bounded by ent2/2−λt
√

n

for each t > 0. We obtain the best bound minimizing over t. The exponent is
quadratic; we minimize it by choosing t to solve tn−λ

√
n = 0, or t = λ/

√
n.

The resulting bound is e−λ2/2.

4

The Azuma’s Inequality gives us a better bound on the concentration of
drunkard’s steps. The bound is only from above but we get the other bound
by symmetry. Denote by α the probability bound α = 2e−λ2/2. By an easy
computation, we get λ =

√

−2 ln(α/2). For α = 95%, λ <
√

8. Hence after
n steps, the drunkard will not get farther from the middle of the road than√

8n with probability at least 95%.

2 Tic-Tac-Toe and the Method of Conditional

Expectations

The children’s game Tic-Tac-Toe will be familiar to many readers (actually,
a variant of this game was played in Egypt 1400 BC, and a related game,
called renju, in China 2500 BC). Two players Nought (O) and Cross (X)
alternately place their symbols in the squares of a 3x3 grid. A player can
only place his symbol in an unoccupied grid square so the game lasts for at
most nine moves. The first player to place his symbol on all the squares in
a line (row, column, or diagonal) wins. If all the squares are occupied and
no player has covered a line, then the game is a draw. We can reformulate
this game in terms of 2-coloring hypergraphs. The Tic-Tac-Toe hypergraph
has 9 vertices and 8 edges. Two players Blue and Red alternately color an
uncolored vertex. The first player to monochromatically color an edge wins.
If the players complete a proper 2-coloring of the hypergraph, then the game
is a draw.

We can, of course, play this game on any hypergraph H . For some hy-
pergraphs, the first player wins while for others the second player can force
a draw. The second player can never win because the game is so symmetric
that the first player can steal any winning strategy for the second player. In
general, it is PSpace-complete to determine if the second player can force a
draw for an input hypergraph H . However, as we shall see, it can be shown
that for certain hypergraphs, the second player can force a draw.

We will recall a simple theorem that a hypergraph is 2-colorable if it has
only few edges.

Theorem 9. If H is a hypergraph with fewer than 2k−1 hyperedges, each of
size at least k, then H is 2-colorable.

We repeat the proof because the idea will be reused later.

5

Proof. Color the vertices at random, assigning to each vertex the color red
with probability 1

2
and blue otherwise, and making each such choice indepen-

dently of the choices of all other vertices. In other words, choose a uniformly
random 2-coloring of vertices. For each hyperedge e, define the random vari-
able Xe to be 1 if e is monochromatic and 0 otherwise. (Xe is called an
indicator variable). Let X =

∑

e∈H Xe, and note that X is the number of
monochromatic edges. Any one hyperedge e is monochromatic with proba-
bility at most 2−(k−1), and so E[Xe] ≤ 2−(k−1). Therefore, by the Linearity
of Expectation, E[X] =

∑

e∈H E[Xe] ≤ |E(H)| × 2−(k−1) < 1. Therefore, the
probability that X = 0, i.e. that there is no monochromatic hyperedge, is
positive.

Notice that this theorem is based on the fact that, if the expected number
of monochromatic hyperedges in a uniformly random 2-coloring is lower than
one, then there exists a coloring where is no monochromatic hyperedge. In
this class of hypergraphs, we present an algorithm, due to Erdős and Selfridge
for finding proper 2-colorings of such hypergraphs.

We then condsider a game similar to Tic-Tac-Toe in which two players
Red and Blue alternately color vertices of a hypergraph until all the vertices
are colored. If any edge is monochromatically colored then the first player
to have monochromatically colored an edge wins. Otherwise, the game is a
draw.

We shall see that for the hypergraphs under consideration optimal play by
both players ensures that the game ends in a draw, and provide an effeciently
computable strategy that players can use to ensure this outcome.

Note that the final position in a drawn game is a proper 2-coloring, so
the second result implies the first.

2.1 The Algorithm

Let X = X(C) be the number of monochromatic edges under a coloring C.
If C is a random coloring then X is a random variable. For a partial coloring
P , we let EP (X) be the expected value of X for a uniformly chosen random
completition of P . I.e. EP (X) = E[X(C)] where C is the coloring obtained
by coloring each vertex uncolored by P , independently, red with probability
1
2

and blue with probability 1
2
.

For a hypergraph H on vertex set {v1, . . . , vn}, we will iteratively con-
struct partial colorings P0, P1, . . . , Pn where for each i:

6

(a) the set of vertices colored under Pi is {v1, . . . , vi} (thus P0 colors no
vertices),

(b) Pi and Pi−1 agree on {v1, . . . , vi−1}, and

(c) EPi
(X) < 1.

Clearly, EPn
(X) = X(Pn). Since, by (c), X(Pn) < 1, it must be zero.

Thus Pn is the desired proper 2-coloring.
Having constructed Pi−1, there are two possible choices for Pi, we can

extend Pi−1 by coloring vi either red or blue. We denote the first possibility
by P r

i and the second by P b
i . We shall show:

Observation 10. We can compute EP (X) in polynomial time for any partial
coloring P .

And, we will show also:

Observation 11. min(EP r

i
(X), EP b

i

(X)) ≤ EPi−1
(X).

With these results in hand, it is easy to iteratively construct P1, . . . , Pn.
Given Pi−1 we simply compute EP r

i
(X) and EP b

i

(X) and choose for Pi one of
these possibilities which minimizes EPi

(X).
The proof of Observation 10 is straightforward. To compute EP (X) we

simply compute the conditional probability for each edge e that e will be
monochromatic and sum these values. If e contains vertices of both colors
this probability is zero. If e contains no colored vertices, this probability is
21−|e|. Finally, if e contains colored vertices of only one color and u uncolored
vertices then this probability is 2−u.

The proof of Observation 11. Actually a stronger fact is true: EPi−1
(X)

lies between EP r

i
(X) and EP b

i

(X). We can even compute this directly. Let
Bn

2 denote set of all colorings of n vertices and introduce a relation A ≺ B
between two partial colorings which says that B is an extension of A.

EPi−1
(X) =

1

2n−i+1

∑

C∈Bn

2
,Pi−1≺C

X(C)

=
1

2n−i · 2

∑

C∈Bn

2
,P r

i
≺C

X(C) +
∑

C∈Bn

2
,P b

i
≺C

X(C)

=
1

2

(

EP r

i
(X) + EP b

i

(X)
)

.

7

Lemma 12. If the expected number of monochromatic edges in a uniformly
random 2-coloring of H is less than 1, then the second player can force a
draw in Generalized Tic-Tac-Toe on H.

Remark 13. The natural converse to this statement is false. I.e., there is
no lower bound on the expected number of monochromatic edges in a random
coloring which guarantees that the first player wins. To see this, consider the
hypergraph Hn which consists of n disjoint edges each with two vertices. The
expected number of monochromatic edges in a random coloring of Hn is n

2
.

However, the second player can draw by always playing in the edge which the
first player just played in.

Remark 14. The bound in Lemma 12 is tight, as the following example
shows. Let Fn be the hypergraph with 2n + 1 vertices a1, a2, . . . , an, b1, b2, . . .,
bn, c whose edge set contains exactly the 2n subsets of vertices consisting of
c and n other vertices all with different indices. The expected number of
monochromatic edges in a uniformly random 2-coloring of H is exactly one.
On the other hand, the first player can win Generalized Tic-Tac-Toe on Fn

by first picking c and then always picking a vertex with the same index as
that just picked by the second player.

2.2 Proof of Lemma 12

To ease the exposition in this section, we assume that the players in a game
of Generalized Tic-Tac-Toe continue to alternate turns until the whole graph
is colored, even if one obtains a monochromatic edge.

Lemma 12 asserts that a certain condition ensures that the second player
can prevent the first player from obtaining a monochromatic edge first. We
find it more convenient to prove that this condition allows the second player
to prevent the first player from obtaining a monochromatic edge at all. That
is, we prove the following strengthening of Lemma 12.

Lemma 15. Suppose Blue and Red play Generalized Tic-Tac-Toe (to com-
pletion) on a hypergraph H for which the expected number of monochromatic
edges in a uniformly random 2-coloring is less than one. Then, if Blue plays
second, he has an efficiently computable strategy to prevent Red from coloring
all of any edge.

Now, the expected number of all red edges in a uniformly random 2-
coloring of a hypergraph is clearly exactly half the expected number of

8

monochromatic edges. Furthermore, any initial move can at most double the
expected number of all red edges. Combining these two facts, with lemma
below yields Lemma 15.

Lemma 16. Suppose Blue and Red play Generalized Tic-Tac-Toe (to com-
pletion) on a hypergraph H for which the expected number of all red edges in
a uniformly random 2-coloring is less than one. Then, if Blue plays first, he
has an efficiently computable strategy to prevent Red from coloring all of any
edge.

Proof. We use R = R(C) to denote the number of all red edges in a coloring
C. For any partial coloring P , we use EP (R) to denote the expected number
of all red edges in uniformly chosen random completion of P . Blue simply
colors the vertex v which minimizes the value of EP (R) for the resultant
partial coloring P .

Clearly, Blue can efficiently compute the value of EP (R) for any candidate
partial coloring P , using the algorithm similar that for computing EP (X).
We claim that no matter what vertex w Red chooses to color on his next
turn, letting P1 be the partial coloring before Blue’s turn and P2 the partial
coloring after Red’s turn, we have: EP2

(R) ≤ EP1
(R). Iteratively applying

this claim proves Lemma 16, as the initial condition implies that for the
original coloring P0, EP0

(R) < 1 and hence this will also be true for the final
coloring.

It remains only to prove the claim. To do so, we consider the set E1 of
edges which contain v and contain no blue vertex, and the set E2 of edges
which contain w and contain no blue vertex. For every edge e in E1 ∪E2, we
let u(e) be the number of uncolored vertices in e under P1.

We note that coloring v blue decreases the conditional expected value
of R by

∑

e∈E1
2−u(e). On the other hand, if Blue had colored w blue, he

would have decreased the conditional expected value of R by
∑

e∈E2
2−u(e).

It follows that
∑

e∈E1

2−u(e) ≥
∑

e∈E2

2−u(e).

Now, EP2
(R) is clearly EP1

(R) − ∑

e∈E1
2−u(e) +

∑

e∈E2\E1
2−u(e). The

desired claim follows by the above inequality.

9

3 Algorithmic Aspects of the Local Lemma

In this section, we discuss finding proper 2-colorings of hypergraphs where
each edge intersects a bounded number of other edges. We present the fol-
lowing theorem of Beck:

Theorem 17 (Beck). There is a deterministic polytime algorithm which will
find a proper 2-coloring of any hypergraph H in which each edge has size at
least k and intersects at most d ≤ 2k/16−2 other edges.

Recall the following application of the Local Lemma.

Theorem 18. If H is a hypergraph such that each hyperedge has size at least
k and intersects at most 2k−3 other hyperedges, then H is 2-colorable.

Hence, we know that the 2-coloring exists but the approach taken here to
actually construct the 2-coloring effeciently requires the smaller bound on d.

We will first present a randomized algorithm, and then show how to use
the techniques of the previous chapter to derandomize it.

Since there is no bound on the number of edges in our hypergraph, the
expected number of monochromatic edges in a uniformly random 2-coloring
can be albitrarily large. So picking such a random coloring will not work,
and a direct application of the Erdős-Selfridge approach is also doomed to
failure. Instead, we will take a different approach.

As in the previous section, we will color the vertices one-at-a-time, but
here our choice of colors is different. We will not specify how to make the color
choices until later in our discussion as how we do so depends on whether we
are using a randomized algorithm or a deterministic one. However, the reader
should be aware that these choices are not made to avoid monochromatic
edges. Rather, we avoid monochromatic edges by permitting ourselves to
leave some vertices uncolored. Specifically, when we consider a vertex v,
if it lies in an edge half of whose vertices have been colored, all with the
same color, then we will not color v. This ensures that after this first pahse,
no completely colored edge is monochromatic. Indeed, if an edge does not
contain vertices of both colors, then at least half of its vertices are uncolored.

In our second phase, we will color the vertices which were passed over
in the first phase so that every edge contains a vertex of both colors. Since
the only edges with which we need to concern ourselves have at least k/2
uncolored vertices, and since d×21−k/2 < 1

4
, a simple application of the Local

10

Lemma, ensures that there exists a completition of the partial 2-coloring to
a proper 2-coloring.

We have thus reduced our problem to a similar smaller problem which,
at first sight, does not seem any easier to solve. It turns out however, that
if we make a judicious choice of the color assignments in our first pass, then
the smaller problem will have a very simple structure and so we will be able
to quickly find a completion of our coloring in a straightforward manner.

One way to make judicious choices is to simple assign a uniformly ran-
dom color to each vertex that we color. This ensures that the probability
of the first k/2 vertices of an edge all being given the same color is at most
2−k/2. Using this fact, we can show that with sufficiently high probability,
the subhypergraph we need to color in the second phase has very small com-
ponents. So we can carry out the second phase by using, on each component,
an exhaustive search through all possible colorings.

This yields a fairly simple randomized algorithm. To derandomize the
algorithm, we must find a deterministic way of carrying out the first phase
so that the components of the resulting subhypergraph are all small. We can
do so by applying the Erdős-Selfridge technique; when coloring a vertex, we
choose the color which minimizes the conditional expected number of large
components.

In this introductory discussion, we have oversimplified the procedure
somewhat. For example, we usually repeat the first phase twice to reduce
even further the size of the components which we color using brute force.
Also, when derandomizing the algorithm, we do not compute the conditional
expected number of large components in the subhypergraph considered in
the second phase. Instead, we bound this number by focusing on a larger
variable which is simpler to deal with. These and other details will be given
more fully in the next section.

3.1 The Algorithm

We start by presenting the randomized form of our algorithm in the case
where k is fixed. We are given a hypergraph H on n vertices and m hy-
peredges satisfying the conditions of Theorem 17. Since we are doing an
asymptotic analysis of the running time, we can assume that m is large.

In the first phase, we arbitrarily order the vertices v1, . . . , vn. We go
through the vertices in this order, assigning a uniformly random color to
each vertex. After coloring vi, if an edge e containing vi has half its vertices

11

colored, all with the same color, then we say that e is bad, and for each vj ∈ e
with j > i, at step j we will pass over vj without assigning it a color.

We let U denote the set of vertices which are not colored during the first
phase, and we let M denote the set of edges which don’t yet have vertices of
both colors. For each e ∈ M we define e′ to be the set of uncolored vertices
in e. An important consequence of our procedure is that every e′ has size at
least 1

2
k.

In our second phase, we color U . No edge outside M can become mono-
chromatic, no matter how we color U , so we can ignore all such edges in this
phase. Thus, we focus our attention on the hypergraph H ′ with vertex set
U , and edge set {e′|e ∈ M}. As we observed, each edge of H ′ has size at
least 1

2
k, and no edge intersects more than 2k/16−2 other edges. Therefore the

Local Lemma implies that there exists a proper 2-coloring of H ′. Clearly,
using such a 2-coloring to complete the partial coloring formed in the first
phase will yield a proper 2-coloring of H .

The main part of our analysis is to show that the components of H ′ will
all be small. In particular, letting m be the number of edges in H , we will
prove the following.

Lemma 19. With probability at least 1
2
, every component of H ′ has at most

5(d + 1) log m vertices.

So we can run Phase I, and if H ′ has any component with more that
5(d + 1) log m vertices, then we start over. The expected number of times
we must do this is at most 2. Having obtained such an H ′, we can find a
proper 2-coloring of H ′ in polynomial time using exhaustive search. For, to
find such a 2-coloring of H ′, we need only find a proper 2-coloring of each
of its components. Since k = O(1) we have d = O(1) and so there are only
2O(log m) = poly(m) candidate 2-colorings for each of these components.

The main step is to prove Lemma 19, which we do now. We will bound the
expected number of large components of H ′ by showing that every such com-
ponent must have many disjoint bad edges. Because disjoint edges become
bad independently, the probability that a specific large collection of disjoint
edges all turn bad is very small. This will help show that the probability of
H ′ having a big component is small.

We use L(H) to denote the line graph of H . L(a,b)(H) is the graph with
vertex set V (L(H))(=E(H)) in which two vertices are adjacent if they are
at distance exactly a or b in L(H). We call T ⊆ E(H) a (1, 2)-tree if the

12

subgraph induced by T in L(1,2)(H) is connected. We call T ⊆ E(H) a (2, 3)-
tree if the subgraph induced by T in L(2,3) is connected and T is a stable set
in L(H) (i.e. no two edges of T intersect in H). We call an (a, b)-tree bad if
it contains only bad edges from H .

Lemma 20. Every component C of H ′ with l vertices contains a bad (2, 3)-
tree with at least l/(k(d + 1)) edges.

This lemma follows immediately from two simple facts:

Fact 21. Every component C of H ′ with l vertices contains a bad (1, 2)-tree
with at least l/k edges.

Proof. Note that every vertex of C lies in a bad edge, by definition of H ′.
Since each edge contains at most k vertices, the number of bad edges in C is
at least l/k.

Let T be a maximal subset of the bad hyperedges of C which forms
a (1, 2)-tree. We show that T contains all the bad hyperedges of C. Suppose
the contrary and consider some bad hyperedge e 6∈ T . If e intersects T ,
then e can be added to T to form a larger (1, 2)-tree, thereby contradicting
the maximality of T . Otherwise, since C is connected, there must be a path
from T to e; let P be the shortest such path. Let e0, e1, e2 be the first three
hyperedges of P , where e0 is in T . Consider any v in e1 ∪ e2 and any bad
edge f containing v. Now, f does not belong to T , by the minimality of P ,
but f is of distance at most 2 from T . Thus f can be added to T to form
a larger bad (1, 2)-tree, thereby contradicting the maximality of T .

Fact 22. For any (1, 2)-tree with t hyperedges, there is a subset of at least
t/(d + 1) of these edges which forms a (2, 3)-tree.

Proof. Consider any (1, 2)-tree T and a maximal subset T ′ of the hyperedges
of T which forms a (2, 3)-tree. Consider any hyperedge e ∈ T − T ′; we will
show that e must intersect some edge in T ′. This implies our fact since every
hyperedge intersects at most d hyperedges in T − T ′.

So suppose that e does not intersect any hyperedges in T ′. Since T
is a (1, 2)-tree, there must be a path in L(1,2)(H) from T ′ to e; let P be
a shortest such path, and let e0 ∈ T ′ be the first hyperedge in P . If this
path has no internal hyperedge, then e is at distance 2 in L(H) from e0 and
so e can be added to T ′ to form a bigger (2, 3)-tree, thereby contradicting
the maximality of T ′.

13

Otherwise P has at least 1 internal edge, so let e0, e1, e2 be the first 3
edges on P , where again e0 ∈ T ′. If e1 does not intersect any edge in T ′,
then we can add e1 to T ′ to form a larger (2, 3)-tree. Otherwise, since e2 is at
distance at most 2 from e1, it is at distance at most 3 from an edge in T ′. By
minimality of the path, e2 does not intersect any edge in T ′, so we can add
e2 to T ′ to form a larger (2, 3)-tree, thereby contradicting the maximality of
T ′.

These two facts imply Lemma 20. Along with Claim 23, below, and
Markov’s Inequality, this yields Lemma 19.

Claim 23. The expected number of bad (2, 3)-trees with at least 5
k

log m edges
is less than 1

2
.

Proof. We first show that for each r ≥ 1, H contains fewer than m × (4d3)r

different (2, 3)-trees with r hyperedges. To choose such a (2, 3)-tree, we will
first choose an unlabeled tree T on r vertices. It is well-known that there are
at most 4r choices for T . We then choose an edge of H to map onto each
vertex of T , starting with an arbitrary vertex v1 of T , and then proceeding
through the rest of the vertices of T in a breadth-first order. There are m
choices of an edge in H to map onto v1. For every subsequent vertex vi of
T , we have already specified an edge e′ which maps onto a neighbor of vi.
Thus, the edge mapping onto vi must be to one of the at most d3 neighbors
in L(2,3)(H) of e′. Therefore, there are a total of 4r×m×(d3)r−1 < m×(4d3)r

such (2, 3)-trees, as required.
Now consider any such a tree. It is easily seen that the probability of a

particular edge becoming bad is at most 21− 1

2
k. Furthermore, since no two

edges of the tree intersect, the probability that all of them become bad is at
most (21− 1

2
k)r. Therefore, the expected number of bad (2, 3)-trees of size r is

at most m(4d3 ×21− 1

2
k)r. Since d ≤ 2k/16−2, this expected number is at most

m(23k/16−4 × 21− 1

2
k)r < m× 2−5kr/16, which is less than 1

2
for r ≥ 5

k
log m. Of

course, if there is a bad (2, 3)-tree of size at least 5
k

log m, then there is one
of size exactly ⌈ 5

k
log m⌉, and so this completes our proof.

References

[1] N. Alon, J. H. Spencer, The probabilistic method , Courant Institute,
2000.

14

[2] J. Matoušek, J. Vondrák, The probabilistic method , Institute for Theo-
retical Computer Science, 2002.

[3] D. B. West, Introduction to Graph Theory , Prentice Hall, Upper Saddle
River, 1996.

15

