Diffusion and flow dynamics in porous media by nmr spin echo

Janez Stepišnik, University of Ljubljana, FMF, Physics Department and J Stefan Institute, Ljubljana, Slovenia

Molecular motion in heterogeneous structures by NMR

MEDIA:

- •materials for distillation, filtration, catalysis....
- chromatographic sieves
- •colloids and bio-colloids (viruses, bacteria)
- •soil, concrete, rocks or clays
- biologic tissues etc
- pore size: 10⁻² – 10⁻¹⁰ m

METHOD:

- Analysis and interpretation of diffusion and flow measurement by the gradient spin echo:
- averaged propagator approach (Torrey method)
- •Gaussian phase approximation (Hahn-Carr-Purcell method)

Spin in magnetic field- magnetic resonance

$$\frac{\partial \boldsymbol{\mu}}{\partial t} = \gamma \, \mathbf{B}(\mathbf{r}, t) \times \boldsymbol{\mu}$$

μ=magnetic moment B=magnetic field

 $E(\tau) \approx e^{i\omega_L t}$

Spin in non-uniform magnetic field

$$\mathbf{B} = \mathbf{B}_o + \mathbf{B}_{inh}(\mathbf{r})$$

applied or internal magnetic fields

 $\mathbf{B}_{inh}(\mathbf{r}) = \mathbf{\underline{G}}.\mathbf{r}$ magnetic field gradient

 $E(\tau) \approx e^{i\int_{0}^{\tau} \omega \left[t, \mathbf{r}(t)\right]} dt$

NMR imaging

Encoding of spin motion by spin echo

Molecular motion and spin echo: approaches

Spin echo as Fourier transform of probability function

J. Karger and W. Heink. The propagator representation of molecular transport in microporous crystallites , J. Magn. Reson. 51, 1-7 (1983)

Probability distribution of flow in porous media

$$E(\mathbf{q},\tau) = \sum_{i} \int P(\mathbf{r},\tau \mid \mathbf{r}_{i},0) e^{i\mathbf{q}(\mathbf{r}_{i}-\mathbf{r})} d\mathbf{r}_{i}$$

q-space Fourier transform of spin echo can provide probability distribution of flow dispersion

K.J. Packer, J.J. Tessier, The characterization of fluid transport in a porous solids by pulsed gradient stimulated echo NMR, Mol. Physics 87, 267-72 (1996)

Restricted diffusion and propagator method

Propagator of restricted diffusion

 $\frac{\partial P}{\partial t} = D\nabla^2 P$

$$P(\mathbf{r}',\tau \mid \mathbf{r},0) = \sum_{\mathbf{k}} u_{\mathbf{k}}(\mathbf{r}) u_{\mathbf{k}}^{*}(\mathbf{r}') e^{-\mathbf{k}^{2}D\tau}$$

$$E(\tau, \mathbf{q}) = \sum_{i} \int P(\mathbf{r}_{i} + \mathbf{R}, \tau | \mathbf{r}_{i}, 0) e^{i\mathbf{q} \cdot \mathbf{R}} d\mathbf{R} = N \int \overline{P(\mathbf{R}, \tau)} e^{i\mathbf{q} \cdot \mathbf{R}} d\mathbf{R}$$

$$\overline{P(\mathbf{r},\tau)} = \frac{1}{N} \sum_{i} P(\mathbf{r}_{i} + \mathbf{R},\tau \mid \mathbf{r}_{i},0)$$

Spin echo diffraction-like effect in porous media and propagator method

Spin echo of restricted diffusion

$$P(\mathbf{r}',\tau \mid \mathbf{r},0) = \sum_{\mathbf{k}} u_{\mathbf{k}}(\mathbf{r}) u_{\mathbf{k}}^{*}(\mathbf{r}') e^{-\mathbf{k}^{2}D\tau}$$

$$E(\tau,\mathbf{q}) \approx \sum_{\mathbf{k}} S_{\mathbf{k}}(\mathbf{q}) S_{\mathbf{k}}^{*}(\mathbf{q}) e^{-\mathbf{k}^{2} \mathbf{D} \tau}$$

In the long time limit:

$$E(\infty, \mathbf{q}) \approx_{\tau \to \text{long}} |S_0(\mathbf{q})|^2 = \left| \int_{Vol} e^{i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} \right|$$

like Fraunhofer diffraction in optics

FIG. 2. Spin-cebo-attenuation function for the direction transverse to the flow. The coherence peak is shifted to higher q, indicating a correlation length of the order of a sphere radius 45.5 µm. The velocities are $(\Box) 0$, $(\bigcirc) 3.3$, $(\blacksquare) 8.7$, $(\diamondsuit) 17.5$, and $(\textcircled{\bullet}) 21.8$ mm/s.

P. T. Callaghan, A. Coy, D. MacGowan, K. J. Packer and F. O. Zelaya, **Diffraction-like effects in NMR diffusion studies of fluids in porous solids**, Nature , 351, 467-9 (1991)

UNIVERSITY OF LJUBLJANA

 $q a = 2\pi n$

Flow and spin echo diffraction-like effect

B. MANZ, J.D. SEYMOUR, AND P. T. CALLAGHAN, PGSE NMR Measurements of Convection in a Capillary, JOURNAL OF MAGNETIC RESONANCE 125, 153–158 (1997)

Spin echo of restricted diffusion with propagator method

$$E(\tau, \mathbf{q}) = N \int \overline{P(\mathbf{R}, \tau)} e^{i\mathbf{q} \cdot \mathbf{R}} d\mathbf{R}$$
$$\overline{P(\mathbf{r}, \tau)} = \frac{1}{N} \sum_{i} P(\mathbf{r}_{i} + \mathbf{R}, \tau \mid \mathbf{r}_{i}, 0)$$

Propagator of restricted diffusion

 ∂P

$$\overline{\partial t} = D \nabla^2 P$$

$$P(\mathbf{r}', \tau | \mathbf{r}, 0) = \sum_{\mathbf{k}} u_{\mathbf{k}}(\mathbf{r}) u_{\mathbf{k}}^*(\mathbf{r}') e^{-\mathbf{k}^2 D \tau}$$

Spin echo by the cumulant expansion

NIVERSITY OF LJUBLJAN

Distribution of phase and attenuation in the pore: short PGSE with the Gaussian phase approximation

Diffusion between plan-parallel planes

Spin echo diffusive diffraction by the cumulant expansion in GPA

$$E(q,\tau) = \sum_{i} e^{iq.\langle Z_{i}(\tau)\rangle - \frac{1}{2}q^{2}.\langle \Delta Z_{i}^{2}(\tau)\rangle} \Rightarrow \int e^{iq.\langle Z(\mathbf{r},\tau)\rangle - \frac{1}{2}q^{2}.\langle \Delta Z^{2}(\mathbf{r},\tau)\rangle} d\mathbf{r}$$

J. Stepišnik, A new view of the spin echo difusive diffraction in porous structures, Europhysics Letters, 60, 353-9 (2002)

Faculty of Mathematics and Physics

....

Diffusive diffraction

UNIVERSITY OF LJUBLJANA Faculty of Mathematics and Physics

Diffraction-like effect in spin echo time dependence

 $q \Delta z = 2\pi$

Fig. 6. Echo attenuation function $E(q, \Delta)$ as a function of q for water diffusing in the interstices between a close-packed 9.870 μ m polystyrene sphere system (see A. Coy and P.T. Callaghan, Ref. 19). The times, Δ , are 10 ms (circles), 20 ms (filled circles), 30 ms (squares), 40 ms (filled squares).

P. T. Callaghan, NMR imaging, NMR diffraction.. MRI, 14, 701 (1996)

Averaged propagator by GPA

GPA propagator vs. averaged propagator

q-space Fourier transformation

$$E(\mathbf{q},\tau) = \int \overline{P(\mathbf{R},\tau)} e^{i\mathbf{q}\cdot\mathbf{R}} d\mathbf{R} = \sum_{i} e^{iq\cdot\langle Z_{i}(\tau)\rangle - \frac{1}{2}q^{2}\cdot\langle\Delta Z_{i}^{2}(\tau)\rangle} - \frac{i}{6}q^{3}\cdot\langle\Delta Z_{i}^{3}(\tau)\rangle + \frac{1}{24}q^{4}\cdot\langle\Delta Z_{i}^{4}(\tau)\rangle + \frac{i}{120}q^{5}$$

$$GPA \text{ method (line)}$$

$$GPA \text$$

Fast convergence of cumulant series

Cumulant expansion with ensemble average

$$E(\mathbf{q},\tau) = N \int \overline{P(\mathbf{R},\tau)} e^{i\mathbf{q}\cdot\mathbf{R}} d\mathbf{R} = N \sum_{n=0}^{\infty} \frac{(iq)^n}{n!} \overline{M_n}(\tau) \quad \text{Taylor series}$$

$$= \sum_{n \in n=1}^{\infty} \frac{(iq)^n}{n!} \overline{K_n}(\tau) \quad \text{Cumulant series without odd terms}$$

$$\overline{M_n}(\tau) = \int \overline{P(\mathbf{R},\tau)} Z^n d\mathbf{R} = \frac{1}{N} \sum_{i} \int P(\mathbf{r},\tau) \mathbf{r}_i (z-z_i)^n d\mathbf{r}$$

$$\overline{K_1} = \overline{M_1} = \overline{\langle Z \rangle} = 0$$

$$\overline{K_2} = \overline{M_2} - \overline{M_1}^2 = \overline{\langle Z^2 \rangle}$$

$$\overline{K_3} = \overline{M_3} - 3\overline{M_2M_1} + \overline{M_1}^3 = \overline{\langle Z^3 \rangle} = 0$$

$$\overline{K_4} = \overline{M_4} - 6\overline{M_1}^4 + 12\overline{M_1}^2 \overline{M_2} - 3\overline{M_2}^2 - 4\overline{M_1M_3} = \overline{\langle Z^4 \rangle} - 3\overline{\langle Z^2 \rangle}^2$$

Ensemble average and low-q spin echo

Cumulant expansion with respect to average over ensemble of spins

UNIVERSITY OF LJUBLJANA

Gaussian phase approximation of spin echo

$$E(\mathbf{q},\tau) = \sum_{i} e^{iq.\langle Z_{i}(\tau) \rangle - \frac{1}{2}q^{2}.\langle \Delta Z_{i}^{2}(\tau) \rangle}$$

•Gaussian phase approximation is a sufficient condition for the spin echo of diffusion in enclosed pore as long as $q|Z(\tau)| < 1$.

Spin echo of flow dispersion in porous media with GPA

Spin echo flow phase shift in porous media

S.R. Heil, M. Holz, J. Mag. Res. 135 (1998) 17-22, M. Holz, S. R. Heil. I. A. Schwab, Mag. Res, Imaging 19 (2001) 457–463

UNIVERSITY OF LJUBLJANA

Faculty of Mathematics and Physics

Evolution of flow dispersion propagator

Time

Evolution of flow dispersion propagator through leaky plan-parallel planes

2-dimensional presentation of diffusion and relaxation

Distribution of diffusion and relaxation

General theory: stochastic process with the cumulant expansion method

Spin echo is Fourier transform of the averaged propagator

$$E(\mathbf{q},\tau) = \sum_{i} \left\langle e^{i\mathbf{q}\left(\mathbf{r}(\tau) - \mathbf{r}_{i}(0)\right)} \right\rangle \Rightarrow \int \overline{P(\mathbf{R},\tau)} e^{i\mathbf{q}\cdot\mathbf{R}} d\mathbf{R}$$

Fourier transform of probability function is its characteristic function

 $\Phi(f,\tau) = \left\langle \begin{array}{c} i \int f(t') v(t') dt' \\ e^{-0} \end{array} \right.$

It becomes its characteristic functional when

$$\Phi(f) = \int P(r) e^{i f r} dr = \left\langle e^{i f r} \right\rangle$$

f(t) = arbitrary function

 \Rightarrow $r(t) = \int v(t')dt'$ r = stochastic variable

Cumulant expansion

Spin echo with cumulant expansion in the Gaussian approximation

Faculty of Mathematics and Physics

Spin echo with the cumulant expansion in Gaussian approximation - general method

Cumulant expansion of characteristic functional

$$E(\tau) = \sum_{i} \left\langle e^{\int_{0}^{\tau} \mathbf{q}(t) \cdot \mathbf{v}_{i}(t) dt} \right\rangle = \sum_{i} e^{\int_{0}^{\tau} \mathbf{q}(t) \cdot \left\langle \mathbf{v}_{i}(t) \right\rangle dt} - \frac{1}{2} \int_{0}^{\tau} \int_{0}^{\tau} \mathbf{q}(t) \cdot \left\langle \mathbf{v}_{i}(t) \cdot \mathbf{v}_{i}(t') \right\rangle_{c} \cdot \mathbf{q}(t') dt' dt \dots$$

Modulated gradient spin echo

Relation of gradient spin echo to correlation function and spectrum of molecular motion

Modulated Gradient Spin Echo (MGSE)

UNIVERSITY OF LJUBLJANA

Velocity correlation function and self-diffusion

Velocity correlation function

simple liquids – free diffusion

Spectrum of velocity correlation

$$D(\tau) = \int_{0}^{\tau} \langle v_{x}(t) v_{x}(0) \rangle dt \underset{\tau \to \infty}{\Longrightarrow} D(0) \equiv D$$

Velocity correlation function of restricted motion

Langevine equation

$$\frac{d\mathbf{v}}{dt} + \alpha \,\mathbf{v} = \mathbf{f}(t)$$

E. Oppenheim and P. Mazur, Brownian motion in system of finite size, Physica, 30, 1833--45, 1964.

J. Stepišnik, A. Mohorič and A. Duh, Diffusion and flow in a porous structure by the gradient-spin-echo spectral analysis, Physica B, 307, 158-168 (2001) $D_{\text{rest}}(\omega) = D_{\infty} + \sum_{k} B_{k} - \frac{1}{1}$ **UNIVERSITY OF LJUBLJANA**

Faculty of Mathematics and Physics

Velocity correlation spectrum of water in a porous media by MGSE

0.006

0.004 0.002 0.002

400

600

frequency

 $\frac{1000}{35}$

UNIVERSITY OF LJUBLJANA

Faculty of Mathematics and Physics

200

J. Stepišnik, P.T. Callaghan, The long time-tail of molecular velocity correlation function in a confined fluid: observation by modulated gradient spin echo, Physica B. 292. 296-301 (2000)

Velocity correlation spectrum of water in emulsion droplets by MGSE

D.Topgaard, C. Malmborg, and O. Soderman, J. Mag. Res. 156, 195–201 (2002)

Velocity correlation spectrum of flows in a porous media measured by MGSE

P. T. Callaghan and S. L. Codd, Phys. Fluids, Vol. 13, (2001)

Attenuation time dependence of flows in porous media and dispersion spectrum

Taylor`s dispersion-diffusion equation:

$$D_{j}(\omega) = \frac{1}{2} \sum_{k \neq 0} c_{k} \tau_{k} \omega^{2} \left[\frac{1}{1 + \tau_{k}^{2} (-kv_{j} + \omega)^{2}} + \frac{1}{1 + \tau_{k}^{2} (kv_{j} + \omega)^{2}} \right]$$

$$\beta(\tau) = \alpha \tau \int_{0}^{\infty} \rho(v) \delta(kv - \omega_{\rm m}) \, dv \approx \alpha \tau \rho \left(\frac{\omega_{\rm m}}{k}\right)$$

Dispersion spectrum provides information about distribution of streams

Summary

$$E(\tau) \Rightarrow \sum_{i} e^{\int_{0}^{\tau} \mathbf{q}(t) \langle \mathbf{v}_{i}(t) \rangle dt} - \int_{0}^{\tau} \int_{0}^{t} \mathbf{q}(t) \langle \mathbf{v}_{i}(t) \mathbf{v}_{i}(t') \rangle_{c} \cdot \mathbf{q}(t') dt' dt + \dots \Rightarrow \sum_{i} \int P(\mathbf{r}_{i}, \tau | \mathbf{r}_{i}, \tau | \mathbf{r}_{i}) = \sum_{i} \int P(\mathbf{r}_{i}, \tau | \mathbf{r}_{i}) = \sum_{i} \int P(\mathbf{r}_{i$$

Gaussian phase approximation:

- ·links spin echo to the details of molecular motion
- can be used with any gradient sequence or gradient waveform
- can be used to describe measurement of diffusion and flow in restricted geometry when q ξ <1.

e^{iq.r}dr

MRI in the geomagnetic field (50 μ T)

MRI of diffusion and convection in geomagnetic field (50 µT)

4 cm

propanol water ethanol $G=1.8 \ 10^{-3}$ T/m $\Delta=150 \ ms$

diffusion

 $\Delta = 200 \text{ ms}$

∆=0

 $\Delta = 175 \text{ ms}$

∆=250 ms

convection of water in the cylinder

G=1.8 10⁻³ T/m ∆=200 ms

G=0

Expected

J. Stepišnik, M. Kos, G. Planinšič, V.Eržen, J. of Mag. Res. A 107, 167-172 (1994)

A. Mohorič and J. Stepišnik, Phys. Rev. E, 62, 6615-27 (2000)

UNIVERSITY OF LJUBLJANA Faculty of Mathematics and Physics

Spatially-distributed diffusion by spin echo and MRI

UNIVERSITY OF LJUBLJANA