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lated gradient spin-echo (MGSE) NMR. A particular theme of this chapter 
will be the relationship of the chosen measurement technique to the type 
of motion analysis sought. An important aspect of the discussion will be 
the characterization of motion in molecular ensembles and, in particular, 
the effects of deviation from simple Brownian motion or  simple flow. We 
review the measurement strategies that may be adopted along with their 
associated signal techniques. These strategies will include time-domain, 
spatial frequency-domain, and temporal frequency-domain analyses, spa- 
tial localization of motion, two-dimensional correlation and exchange 
analyses, and diffraction and scattering analogies. Given the recent impor- 
tance of stray field and Earth's field NMR methods, we will also consider 
the condition where the magnitude of the applied magnetic field gradient 
is comparable to the polarizing field. 

11. Generalized Motion 

Nearly all NMR experiments are performed using large numbers of 
spins whose signals form a coherent superposition. It is the averaging 
contained in this superposition that lies at the heart of any theoretical 
treatment. 

To begin, we assume that we can describe the general motion of a 
molecule i in terms of some time-dependent displacement ri(t). One of 
the most useful ways of handling the ensemble-averaging over the i-spins 
is to introduce a density function giving the probability that a particle will 
have displacement between r' and r' + dr' at a time t. Usually, this 
probability function will depend not only on the time interval t, but also on 
the starting position. In particular we will be concerned with the self- 
correlation function (van Hove, 1954; Egelstaff, 1967), P(rl ,  t I r, O), which 
gives the chance that a molecule initially at r will have moved to r' after a 
time t. It turns out that this is a particularly useful description for NMR 
since, as we shall see, this function can be determined directly using the 
two-pulse PGSE experiment. Interestingly, the only other experimental 
method able to gain direct access to this conditional probability density is 
incoherent inelastic neutron scattering (Bacon, 197.51, a point that is 
discussed in more detail by Callaghan (1991). 

Suppose we denote the total probability density of finding a particle at 
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complex motions occur. These examples might include Brownian motion 
within a special set of confining boundaries, systems in which some local 
motion is superposed upon a longer range migration or systems in which 
the fluctuating or randomized flow occurs, 

B. VELOCITY CORRELATION, SPECTRAL DENSITY, AND THE 
SELF-DIFFUSION TENSOR 

A complete knowledge of the propagator P(rf, t I r, 0) for the ensemble 
of nuclear spins will, in principle, allow one to calculate the echo ampli- 
tude for any gradient modulation function. However, the propagator 
approach is particularly amenable to solution in the special gradient 
modulation case of the narrow pulse PGSE experiment. For more general 
modulation methods, an alternative approach, based on autocorrelation 
function, is helpful. The autocorrelation function of A is defined as 
G(t) = (A(t)A(O)), where the brackets represent the molecular ensemble 
average (Uhlenbeck and Ford, 1963; Berne and Pecora, 1976). 

For translational motion, the velocity correlation function is particularly 
useful and, as we will show, can be utilized to provide a relationship 
between the echo amplitude and the molecular dynamics in the case of 
general modulation wave forms. Its Fourier spectrum is simply the self- 
diffusion tensor (Lenk, 1977; StepiSnik, 1981) DaB(u), where cr and /3 
may take each of the Cartesian directions, x, y, z ,  that is, 

Using the even property of G(t), we write the diagonal elements of this 
tensor as 

For simple Brownian motion the velocity autocorrelation function decays 
rapidly to zero over the correlation time T,, corresponding to the average 
collision time. Consequently, the diffusion spectrum is relatively constant 
with frequencies above zero, attenuating in the vicinity of w = 7;'. Clearly, 
the lower-frequency plateau of the spectrum has amplitude D,,(O) = 

(u:)~,. It should be noted that the collisional frequency for small 
molecules, T;', is exceedingly high compared with the frequency regime 
accessible to MGSE NMR, i.e., less than or on the order of lo5 Hz. 
However, for motion in complex fluids there may exist a number of 
characteristic time scales, which correspond to frequencies in the accessi- 
ble regime. These might include tube disengagement times in entangled 



polymers or wall collision times in simple liquids contained within porous 
solids. Such times relate more to the organizational structure of liquids 
than to local particle motion. 

We will show that this diffusion spectrum may be directly probed in 
MGSE NMR by appropriate choice of gradient modulation wave form. For 
example, in the case of complex motion referred to previously, the spec- 
trum may not be flat below 7,-', but instead contain structure that is 
directly related to these characteristic "organizational" frequencies. For 
example, where superposed slow and fast stochastic motion occurs, such 
structure may be apparent and the velocity correlation function will 
contain the essential information. By contrast, the behavior of systems for 
which the local motion is Brownian, but whose boundaries impose con- 
straints over a much longer time scale than the correlation time for local 
stochastic motion, is very different. For these systems the velocity correla- 
tion function is zero beyond T, and the diffusion spectrum contains no 
features at low frequencies that can be related to the boundary collision. 
For such systems the propagator approach to describing stochastic motions 
provides the best means of describing the outcome of the MGSE NMR 
experiment. 

111. Modulated Gradient Spin-Echo NMR 

In this section we derive an expression for the NMR signal amplitude 
for a molecular ensemble experiencing generalized magnetic fields that 
vary in time and space. This enables us to provide a sound theoretical 
starting point for different measurement techniques without the need for 
hidden assumptions. While the details of the theoretical analysis in this 
section are not essential to an understanding of the measurement and 
analysis methods to be described, we include a brief description of the 
reasoning employed so that the reader can appreciate the basis of this 
starting point. By deriving all our subsequent expressions for particular 
methods from a single equation, the inherent unity of the various tech- 
niques is emphasized. Readers wishing to skip this derivation should move 
directly to Eq. (41). 

Consider the situation where the local magnetic field at position r is the 
sum of a uniform field B, and a nonuniform field B,(r, t ) ,  that is, 

B = B, + B,(r, t )  (10) 
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of notional density matrices for each spin or subensemble i is particularly 
helpful in dealing with an ensemble in which the spins have different 
motion subsequent to preparation. Strictly speaking, this requires that we 
can describe the density matrix in terms of single spin operators and, 
hence, that dipolar interactions are neglected. 

Given the complexity of the Hamiltonian described in Eq. (15) it would 
appear that the time evolution operator will be exceedingly complex. 
However, by judicious use of the factor theorem (Evans, 1968) it is possible 
to express this operator as a product of simple rotation operators in spin 
space. The use of various spin transformations in rotating or tilted frames 
results in a more lucid treatment, as well as nicely accounting for the 
various stages of the experiment, for example, the preparation, mixing, and 
detecting periods. The formal relationship between the evolution operator 
and the Hamiltonian [Eq. (15)] is given by 

where the operator 7 implies time ordering of the applied interaction. In 
the case of a spin echo, 2 takes the form of a natural time-ordered 
succession of evolution operators given by am, for the application of a 
nonuniform field, followed by '2'' for the .rr rf pulse, and then am, for the 
second evolution under the nonuniform magnetic field. The total evolution 
is therefore 

= '%2(t)%%l(t) ( 19) 
This operator split neglects relaxation effects and assumes that the .rr rf 

pulse is short enough that all other terms in the Hamiltonian may be 
neglected during its application. In the following discussion we will con- 
sider the details of this basic sequence, but we must bear in mind that it 
may be just the "joint in the chain" of a more sophisticated sequence. The 
effect of the nonuniform magnetic field is given by 

This operator can be simplified by transformation into a frame with z-axis 
along the total magnetic field at the site of the particular spin. By the use 
of the factoring theorem (Wilcox, 19671, the operator given in Eq. (20) 
breaks into the product of two parts, 
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where 

S ( t )  is the operator that represents transformation into the new frame and 
corresponds to a continuous succession of infinitesimal rotations by 141 dt 
about the local vector directed along 4. This local vector is perpendicular 
to the plane formed by the z axis and the direction of the total magnetic 
field, B[ri(t), r]. In the case of slow field variation, that is, the so-called 
adiabatic case, 

I@[r,(t), t]l -K oeff[r,(t), t] (23) 
one can neglect the angular velocity 14[ri(t), tll in Eq. (21) with respect to 
the effective precession frequency of the spins in the ith subensemble, and 
the only term remaining in the exponent arises from 

aeff[ri(t),tI 

The adiabatic case invariably applies under experimental conditions. Fur- 
thermore, in nearly all experiments the nonuniform magnetic field is 
returned to zero at the instant in time when the rf pulse is applied and at 
the instant when the spin echo is formed. Consequently, the net rotation at 
the end of the evolution Zml and Zm2 is simply 9 ( t )  = 1. (The only 
practical case where this return of applied fields to zero may not apply 
concerns the use of read gradients in imaging. In that particular case, 
the main field is much stronger than the inhomogeneous field, so that 
components parallel to B, only need be considered and no off-axis 
rotations apply.) 

We are therefore able to reduce Eq. (21) into the much simpler 
expression 

with only z components of the spin operator. This operator now represents 
a simple rotation around the z axis. 

It is worth noting that the rr rf operator includes, in addition to rf field, 
the static magnetic field. By the same theorem we can split Z,, into two 
operators as 

Z,, = exp(io,tuf) . e x p ( i r 4 )  ( 26) 
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This equation represents a transformation into the rotating frame in which 
the counterrotating oscillating terms are neglected. The rr rf operator has 
the effect of turning all z and y components of the spin operators lying on 
the right through 180". It therefore results in a change of the sign of the Bi 
and C; terms in the initial density matrix as well as acting to change the 
sign of the effective frequency in g,,,,. All remaining spin operators 
contain only z-components and may be merged into a single operator for 
which time runs from the beginning to the end of the sequence. 

Applying this approach to Eq. (191, the density matrix Eq. (171, during 
the detection period, has the form 

by denoting 

ai = arctan Ai/Bi  (29) 

psi(t) is the spin part of the density matrix where the spin phase appears as 

with the tilted precession frequency defined as 

where we have assumed that the rr rf pulse acts at time T. 

With a detailed understanding of this basic sequence, we are able to 
consider more sophisticated spin-echo sequences involving the multiple 
application of the gradients and rr rf pulses, sequences where the spin 
dephasing is created by the inhomogeneous rf field instead of a magnetic 
field gradient, as well as other combinations of gradient and rf pulses. In 
the case of multiple application of the basic PGSE sequence, the operator 
for each applied rr rf pulse changes the sign of all 4; operators on its 
right-hand side. Thus the sign of the precession frequency switches to the 
opposite sign after each .rr rf pulse. The rr pulse train also changes the 
sign of xi or YYi depending upon the phase of these pulses and their 
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dependent magnetization M(t) is given by 

The coil sensitivity is characterized by means of the reciprocity theorem by 
the ratio B,/i,, where B, is the virtual field induced by a coil carrying 
virtual current i, at the location of a magnetic dipole. Clearly, the induced 
voltage depends upon the geometry of the coil as well as on the distribu- 
tion of spins within the coil. For a coil with axis along x ,  the induced 
electromotive force is given by. 

with S(rJ being the x component of the coil sensitivity. The angle brackets 
( --. ) denote an average over the spin variables as well as over the 
variables associated with the migration of the particles. The microscopic 
nature of the magnetization- and spin-bearing molecules requires a quan- 
tum mechanical evaluation of Eq. (38). The induced voltage can be 
calculated, by knowing the state of the system through its density matrix 
~ ( t ) ,  by 

In order to evaluate Eq. (39) we need some detailed knowledge of the 
density matrix p(t). This operator will contain information about the prior 
evolution in the applied magnetic field gradients as well as contain infor- 
mation about the relaxation processes and the NMR free precession 
spectrum. In order to handle this complexity it is very helpful to separate 
the prior evolution domain from the detection domain. 

Consider the free procession signal acquired as a function of time t '  
after the spin-echo formation at time t. We shall presume that the sole 
term acting in the Hamiltonian after the echo center is due to the Larmor 
precession at frequency ooi in the uniform field, where the use of the 
subscript i allows for the range of chemical shifts in the NMR spectrum. 
This precession contributes an evolution operator e ~ p ( i o , , t ' 4 ~ )  to the 
density matrix so that we can rewrite Eq. (39) as 

d 
&(t  + t ') = - h y  - z TrL pL(t) 

dt , 

X {Tr, exp( - i o O i t 1 ~ , )  p,,(t)e~p(iw~,t'4~)~~S(r~)) (40) 
Note that we have taken into account the form of the density matrix given 
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FIG. 1. Gradient of rf sequence for pulsed gradient spin-echo NMR using narrow gradient 
pulses of amplitude g, duration 6, and separation A.  

gradient case. We can describe the signal in terms of the normalized echo 
amplitude at the echo center, that is, 

A special case arises when the two gradient pulses of duration 6 separated 
by time A are very narrow. In this limit there exists a simple relationship 
between the nuclear spin positions and the spin phase, namely, 

Using the language of propagators, we can evaluate the ( --. )L average in 
Eq. (43) to obtain 

( A )  = / d r i ( ~ ) ~ , ( r i ( ~ ) , ~  I r i ( 0 ) O ) e x p ( i i ( ) )  (45) 
1 

Implicit in this relation is that the starting position of spin subensemble i 
is well defined. In this case the sum over i can be translated into a sum 
over the starting position. We will find it convenient to rewrite the 
positions of a general particle at time 0 and A as r and r'. Thus the 
normalized echo amplitude can be rewritten 

Note that the more general case of a nonuniform gradient may be handled 
by defining a local q vector, q,. Clearly, E(A) will depend on the experi- 
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The resulting normalized spin-echo amplitude is 

E ( t )  = E ( e x ~ ( i [ e i o ( t )  + eis(t)]))L 
i 

(51) 

where 

and 

Using the distribution function for the Gaussian process developed in the 
Appendix, the average over the precession frequency fluctuation in Eq. 
(51) can be calculated from 

Note we have once again performed the ( - - -  )L average via the integral 
involving the propagator and used the notation 8' - 8  = B,,(t) for the 
phase displacement of a general spin. As shown in the Appendix, the 
function describing the probability of the phase change from 8  to 8' in 
time t  in very general form is 

where A,( t )  is a frequency correlation function depending on the specific 
form of the gradient modulation G,( t )  and the stochastic process. Note 
that in the case of the narrow gradient pulse approximation, the propaga- 
tor P(rl ,  A I r,O) is common to the ensemble and any local variation in 
gradient is contained in the variable q i  as shown in Eq. (45). In the present 
instance of generalized gradient modulation, no such common distribution 
is possible and the phase propagator retains a local character. Hence the 
retention of the subscript i in Eq. (55). 

As shown in the Appendix, if there exists no constraints to the possible 
values of phase, the distribution function fi may be written 
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and taking the Fourier transform of the phase factor, 

we obtain the spin-echo attenuation as 

In Eq. (63),  g 1 ( w )  is the tensor representing the spectrum of autocorre- 
lation between the velocity components as indicated in Section 1I.B. The 
product in Eq. (65)  with the phase factor F; extracts only the diagonal 
components of the tensor and the spin-echo attenuation. It is, in fact, the 
product between the spectrum of the velocity autocorrelation function and 
the square of the phase spectrum. Consequently, a modulated gradient 
NMR measurement of self-diffusion also yields information about the 
velocity autocorrelation. For isotropic diffusion, Eq. (65)  becomes 

Suppose we consider the special case in which the molecular correlation 
rate 7;' is much greater than the highest-frequency component of the 
phase spectrum, F,(w, A) .  In that case we may write 

and, by the Parseval identity, 

where the frequency plateau D,(O) is identical to the local self-diffusion 
coefficient. Given that the diffusion coefficient and the gradient are 
uniform, the subscript i may be dropped and Eq. (68)  is identical to 
Torrey's formula (Torrey, 1956). 

We now consider two special cases in which the diffusion spectra are 
nontrivial and Eq. (66) may be used to evaluate the result of a modulated 
spin-echo experiment. The first case concerns slow molecular collision 
rates. As pointed out by Einstein (1956), the result 
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frequency 

FIG. 3. The phase spectrum for PGSE sequence and the diffusion spectrum (dotted) for 
the Uhlenbeck time-dependent selfdiffusion. 

Suppose that we evaluate the case of a usual PGSE sequence comprising 
finite pulses of width 6 and gradient amplitude G. The phase spectrum 
follows from Eqs. (59) and (64) as 

( 1  - eimA)(l - p s )  
F ( w , A )  = yG 

w2 (72) 
with 

Figure 3 shows both spectra. Hence it follows that 

which can be evaluated to give 



Note that the spin-echo attenuation depends in a characteristic way on the 
NMR parameters A and 6, as well as on the self-diffusion constant D and 
the frictional damping [. Equation (75) is quite general and applies to all 
time intervals. 

Some special cases are of interest. When T, = 1/[ -K A, all terms but 
the first can be neglected. This is a well-known classic result (Torrey, 
1956). In the limit of short intervals between the gradient pulses, when 
1/[ - A, the spin-echo damping [Eq. (791 follows the relationship 

When the pulses are very short, 6 << A, Eq. (75) becomes 

An inherent feature of Eq. (77) is its simple relationship [via Eq. (70)] to 
the mean-squared particle displacement, i.e., 

This relationship holds quite generally for the narrow pulse PGSE se- 
quence provided that the phase distribution is Gaussian. This may be seen 
by considering the relationship between the particle displacement and the 
velocity correlation: 

By transforming to the frequency domain (StepiSnik, 1993) it may be 
shown that the displacement in one spatial dimension is linked to spectrum 
of velocity correlation through 

Since it is also true that y6G sin[( wA/2)/( w/2)] is the spectrum of the 
PGSE sequence [Eq. (73)l with short pulses separated by A, Eq. (78) 
follows directly. Note, however, that Eq. (78) gives the first term in the 
cumulant expansion and will only yield the correct echo attenuation if the 
phase distribution is Gaussian. 

The next case concerns the trapping of molecules undergoing Brownian 
motion in the presence of some restoring force. While friction is the main 
parameter that determines Brownian motion in the short time limit (Wang 
and Omstein, 1945; StepiSnik, 19941, when dealing with random migration 
of molecules in a complex environment, other long range interactions may 
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result in anomalous self-diffusion. This kind of deviation has been found in 
the modeling of Brownian movement in a periodic potential and in some 
specific cases of macromolecules in the random environment. The problem 
can be treated by using the Langevin equation along with a memory 
function, H t ) ,  

where the particle velocity u(t) is the dynamic variable and f(t)  is a 
stochastic driving force defined by the coupling of the particle to the 
surroundings. The simplest form of memory function is the exponential 
function 

where T is the relaxation time and is related to the degree of particle 
binding. With the assumption f(t)  = D6(t), Eq. (82) gives the spectrum of 
velocity autocorrelations as 

Evaluation of Eq. (66) with the spectrum Eq. (83) is shown in detail in 
StepiSnik (1993, 1994). For the narrow pulse and the finite pulse PGSE 
experiment, two relatively simple closed form expressions are obtained. 
Figure 2 shows the fit of evaluated mean-squared displacement to the 
experimental data (Grinberg et al., 1987). 

G. TAILORING THE MODULATED GRADIENT 

The analysis presented here has demonstrated that generalized modu- 
lated gradients can be considered as a tool for probing the spectrum of 
velocity correlations (Callaghan and StepiSnik, 1995a). It is also clear that 
the two-pulse PGSE experiment is not always the ideal vehicle for 
frequency-domain experiments since the spectrum of the two-pulse PGSE 
gradient is dominated by the zero-frequency lobe with frequency width of 
order l/A. It is therefore unsuitable for extracting high-frequency infor- 
mation concerning D(w). It would be useful to have a gradient modulation 
sequence with a frequency spectrum that contains a single peak whose 
frequency can be adjusted in position in order to trace out the frequency 
dependence of D( o). 

In Fig. 4 we show three alternative gradient modulation wave forms and 
their associated spectra. It is clear that the second and third of these wave 
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FIG. 4. Frequency-domain modulated gradient NMR rf and gradient pulse sequences, 
showing the (actual) gradient modulation wave form G(t), the time integral of the effective 
gradient wave form F(t), and the spectrum of F ( f ) .  I F ( ~ ) I '  directly samples the diffusion 
spectrum. The wave forms and spectra are for (a) double lobe/dc rectangular modulation, (b) 
single lobe/ac rectangular modulation, and (c) single lobe/ac sawtooth-shaped phase modu- 
lation. Note that pulse sequences (b) and (c) sample the diffusion spectrum at a single 
frequency. 
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forms, involving a repetitive Carr-Purcell-Meiboom-Gill (CPMG) train of 
rf pulses, produce the nearly ideal frequency sampling function. In the 
second of these the gradient is applied as interspersed pulses, while in the 
third example a steady gradient is used. This last example is easy to 
implement, but suffers from the disadvantage that the rf pulses will 
only excite the spins in a slice whose width is determined by the 
background gradient. 

In the first example, the time integral of the effective gradient wave 
form has a direct current (dc) component that leads to a strong zero- 
frequency lobe in the associated spectrum, a dramatic change that results 
from positioning the gradient pulses slightly differently in the CPMG train. 
The zero-frequency lobe, which is also characteristic of a simple oscillating 
gradient experiment, hinders the sampling of the spectral density at 
variable frequencies. 

The dominant sampling lobe of the idealized sequence is at w  = 2m/T 
and has width of order 2 r / N T .  With N  2 4  a reasonably narrow peak can 
be achieved. In principle it is possible to use such a sequence to probe 
spectral densities in the frequency range 10 Hz-100 kHz. This becomes 
possible because rather than using two gradient pulses, for which the 
attenuation effect disappears as the gradient pulse duration S is short- 
ened, the repetitive pulse train employs an increasing number of gradient 
pulses in any time interval t, as the frequency is increased and T  is 
reduced. Thus the frequency domain analysis extends the effective time 
scale of the PGSE experiments downward to the submillisecond regime. 

The exact behavior of the CPMG train of .rr rf pulses interspaced by 
T / 2  in the presence of a constant magnetic field gradient is easily 
described. If the first .rr pulse follows the excitation at time T / 4 ,  the phase 
F(t) time dependence is a sawtooth-shaped function oscillating about zero. 
From Eq. (64) we find its spectrum to be 

Note that the number of .rr rf pulses must be a multiple of 2, 2N.  This 
spectrum has only one frequency peak at w  = 2 n / T  with a width depend- 
ing on N.  Figure 4  shows that even N  = 4  gives a reasonably narrow peak, 
which can be approximated by 

IF(w, NT)I' = N T ( ~ T I G J ) ~ S ( ~  - 2.rr/T) (85)  
The expected echo attenuation factors for the wave forms shown in Fig. 

4b and c are, respectively, proportional to 
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currents associated with the rapid switching of gradient pulses. However, it 
should be noted that shifting the peak to high frequencies by shortening T 
can severely decrease the spin-echo attenuation. To maintain information 
in the signal, it is necessary to keep the product TlGl constant, thus 
implying the availability of very large gradients. Special techniques for the 
generation of such gradients are discussed later in this chapter. 

IV. Self-Diffusion in Restricted Geometries 

For investigating the restricted motion of molecules in confined geome- 
tries, the time-domain methods are particularly helpful, and the ideal form 
of gradient modulation is the narrow pulse PGSE experiment. In this 
section we will consider the signal analysis that is possible given both the 
A- and q-dependence of the echo attenuation. First, we consider the 
A-dependence alone, illustrating the analysis with an example from poly- 
mer physics. Next we treat the problem of restricted diffusion in porous 
materials where both A and q analysis will play a role. Using the propaga- 
tor formalism, it is possible to use this approach to extract information not 
only about the motions of molecules, but also about the geometry of the 
boundaries and hence about the pore morphology of the surrounding 
medium. We will deal with cases for which an explicit formalism is 
available, namely, the diffusion of the fluid inside a system of confinement 
of molecules within an enclosing pore and interconnected pores, where 
molecules suffer local restrictions but are still able to migrate over large 
distances because of wall permeability or connectedness. 

Consider the evaluation of Eq. (47) in the low q limit, that is, 

where Z is the projection of R along q and q is Iql. For Brownian motion 
the second term disappears and 

Consequently, the slope of the low q echo attenuation data allows 
( Z 2 ( A ) ) ~  to be measured directly. This represents the simplest of all 
possible signal analysis in the case of the narrow gradient pulse PGSE 
experiment. In the study of hindered and restricted diffusion, such an 
analysis provides a useful guide to interdependence of length and time 
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boundary condition 
D i i - V P + M P = O  (91) 

where ii is the outward surface normal. For perfectly reflecting walls, 
M  = 0,  while for perfectly absorbing walls, M is infinite and the boundary 
condition reduces to P  = 0.  

The special cases of plane parallel pores, cylindrical pores, and spherical 
pores have been solved exactly and we quote only the echo attenuation 
results here. The pore geometries and applied gradient directions are 
shown in Fig. 7. Readers seeking more information about these solutions 

FIG. 7. Echo attenuation E(q,  A) for spins trapped between (a) parallel plane barriers 
separated by 2a in which the gradient is applied normal to the planes, (b) cylindrical pores of 
radius a in which the gradient is applied across a diameter, and (c )  spherical pores of radius 
a. In each case the walls are perfectly reflecting (Ma/D = 0) and three successive values of A 
are 0.5a2/D, 1.0a2/D, and 2.0a2/D. Note that the first diffraction minimum occurs near 
qa = 0.5, 0.61, and 0.73, respectively. (d) The set of theoretical curves for A = 2 .0a2 /~ ,  in 
which the wall relaxation is increased as Ma/D = 0, 0.5, 1.0, and 2.0. Note that the 
diffraction minimum shifts to higher values of q as the relaxation increases. 
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X 
[ ( ~ T v )  J i ( 2 ~ q a )  + ( M ~ / D )  ~ n ( 2 m q a ) l ~  

(94 )  
[ ( 2 * 9 4 2  - P 2 k I Z  

where the Jn are standard (cylindrical) Bessel functions while the eigenval- 
ues Pnk are determined by the equation 

3. Spherical Pore 

For the spherical case the gradient of magnitude q is applied along the 
polar axis of the spherical polar coordinate frame. The boundary is at a 
radial distance r  = a  from the sphere center: 

where the jn are spherical Bessel functions. The eigenvalues are deter- 
mined by 

Examples of the echo attenuation dependence on q  and A are shown in 
Fig. 7. The characteristic minima and maxima exhibited by the curves arise 
quite naturally from a diffraction formalism. 

We will find it convenient to consider for the moment the special case of 
perfectly reflecting walls. In the long time-scale limit A x- a Z / D ,  the 
average propagator for fully restricted diffusion has a simple relationship 
to the pore geometry. This requirement on A,  also known as the "pore 
equilibration" condition, implies that the time is sufficiently long that most 
molecules have collided with the walls. Under this condition the condi- 
tional probabilities are independent of starting position so that P(rl, t I r, 0) 
reduces to p(r'), the pore molecular density function. 
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The second assumption concerns the use of the narrow gradient pulse 
approximation. Using a simple but elegant argument, Mitra and Halperin 
(1995) have shown that even when significant molecular motion occurs 
during the gradient pulse, it is still possible to employ a propagator 
formalism. The difference is that the propagator now refers to the dis- 
placement from the mean position of the molecules during the first pulse 
to the mean position of the molecules during the second pulse. It is easy to 
see that the impact of this is that molecules trapped within pores and 
starting very close to a wall at the application of the first gradient pulse 
will, because of wall collisions, appear to originate a little further away 
from the walls. A corresponding remark may be made about molecules 
terminating near a wall. Hence the full pore dimensions are not apparent 
in the finite pulse experiment and the diffraction pattern shows the effect 
of this reduction (Coy and Callaghan, 1994b). 

An ingenious approach to the treatment of finite gradient pulse width 
effects has been provided by Wang et al. (1995). They demonstrate that it 
is possible to approximate the temporal behavior of any gradient pulse by a 
sum of impulses, each being in the narrow gradient pulse limit. By this 
means one can derive an analytical solution to the echo attenuation. 

Finally, we need to consider the effect of wall relaxation. Not surpris- 
ingly, this effect is similar to the "narrowing" action of finite pulse 
smearing and results in a shift to higher q of the diffraction minima, as 
shown in Fig. 7d. This can be realized by acknowledging the fact that 
molecules in the vicinity of the walls are more likely to suffer loss of 
magnetization. It is apparent that the shift effect is weak under realistic 
experimental conditions. However, the relaxation problem is not generally 
serious provided that the overall signal attenuation due to relaxation is not 
severe. Provided that the observation time is greater than or on the order 
of a 2 / ~ ,  as would be required for diffraction effects to be observed, any 
relaxation effect sufficient to strongly shift the minimum would also 
drastically attenuate the signal amplitude at q = 0. For example, the 
apparent width reduction for the sphere is less than 10 percent provided 
that the zero gradient signal is not attenuated below 0.01% of its 
unrelaxed value. Equivalent (10% shift) relaxation amplitudes for the 
cylindrical and planar pores are 1 and lo%, respectively. 

We now address the case of diffusion in structures consisting of an array 
of confining pores with interconnecting channels that permit migration 
from pore to pore. The structure will be described by a superposition of N 





ANALYSIS OF MOTION USING MAGNETIC FIELDS 359 

ing in pore i will diffuse to pore j in the time A. This probability will be 
determined by the rate of pore permeation. 

It can then be shown that echo attenuation comprises the product of a 
mean local pore factor and a factor F(q, A) that is sensitive to details of 
the motion between pores, that is, 

In this equation  IS,(^)(^ plays the role of the form factor in diffraction 
theory, while F(q, A) is the "reciprocal lattice7' diffraction pattern. The 
factor F(q, A) is the Fourier transform (9) of the average propagator 
parallel to the gradient direction, and may be evaluated by considering an 
infinitesimal time duration T over which molecules will have infinitesimal 
but finite probability w of hopping to the nearest neighbor pore shell 
(Callaghan et al., 19911, but vanishingly small probability, on the order of 
w2, of hopping to the next neighbor shell. The finite time result then 
follows by considering M successive, independent, identically distributed 
random hops. Clearly C(Z, MT) will be a convolution of M such probabil- 
ity density functions, leading to 

*[C(Z, T)  @ C(Z,  T)  @ - - - I  M times) = [F(c(z, T))] (104) 
and, therefore, 

F ( q ,  M7) = [ ~ ( q , d l ~  ( 105 ) 
For example, for a regular one-dimensional lattice it is simple to show that 

E(q ,  A) = 1 ~ , ( q ) 1 ~ [ 1  - 2w ~ i n ~ ( r q b ) ] ~  ( 106) 

The parameter w may be related to the permeability diffusion coefficient 
Dp via the low q limit of Eq. (106) noting that E(q, A) is the ensemble 
average, ((exp(i2rqZ))), and So(q) + 1 as q + 0. By equating the 
mean-squared displacement with Dp/2A, one obtains 

Taking the limit M -+ m, t + 0, such that Mt = A remains fked, the final 
result is 

E(qA) = ~ ~ , ( q ) l ~  erp 

Equation (108) predicts coherence peaks (reciprocal lattice positions) in 
the echo attenuation when qb is integer. 

A more realistic porous medium structure is one that occupies three 
dimensions and in which the pore lattice is without orientational order and 
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It should be noted that the pore hopping treatment described here, 
while illuminating, has a number of underlying assumptions, for example, 
pore equilibration and equal hopping probabilities, that may not apply in 
all cases. An alternative theoretical approach that involves different as- 
sumptions has been developed by Mitra et al. (1992). Their model uses the 
device of a time-dependent diffusion coefficient to obtain a phenomeno- 
logical propagator in a connected pore space of arbitrary shape. The 
methodology is particular helpful in dealing with very open structures for 
which the pore equilibration assumption breaks down. 

V. PGSE and Multidimensional NMR 

In the classic two-dimensional NMR experiment, the pulse train consists 
of the sequence "preparation-evolution-mixing-detection." We can apply 
this picture to the pulse trains of the PGSE NMR experiment and similarly 
identify opportunities for multidimensional NMR. 

The signal represented by Eq. (41) corresponds to the signal induced at 
time t + t '  following a spin echo formed at time t. Here t '  is the detection 
period where t is an evolution period. Clearly the signal amplitude is 
sensitive to a number of terms including the initial thermal equilibrium 
magnetization (A,), the attenuation of phase shift factor (exp(iOi(r))) 
associated with motion in the presence of applied magnetic field gradients, 
the state of the spin system after preparation ( M i ) ,  and the sensitivity of 
the rf coil during detection. In a single acquisition of the signal following 
the echo, the relative contributions of these factors determining signal 
amplitude cannot be unraveled. However, where it is possible to modulate 
each of these factors independently, such an unraveling process becomes 
possible. This is the basis of the multidimensional analysis inherent in two- 
or three-dimensional spectroscopy. 

As a simple example, consider two identifiable spectral domains inher- 
ent in Eq. (41). In particular there is a spectrum associated with t '  such 
that the Fourier transform of the signal with respect to t '  yields a single 
spectral "line" (or in mathematical language, a Dirac delta function in 
wspace) centered at frequency w,. In other words, the modulation inher- 
ent in the oscillation exp(iw,tf) permits an "unraveling" of this feature of 
the data by using Fourier inversion. Clearly there is, in addition, a spectral 
domain associated with the ensemble-averaged phase factor (exp(iO,(t))). 
This term is modulated, for example, by varying the evolution time t prior 
to signal acquisition or by stepping the amplitude of the magnitude field 
gradients responsible for the phase shift. Provided that this domain of 
modulation is analyzed to yield motional parameters (for example, the 
molecular diffusion coefficients or velocities!, then a second "spectral" 
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complete decay of eddy currents from the gradient pulses. This is achieved 
by storing magnetization along the z axis for later recall once a suitable 
eddy current decay period has elapsed. Subsequent to Fourier transforma- 
tion with respect to t '  (i.e., t, domain), each frequency component in the 
NMR spectrum is then analyzed (i.e., with respect to the t, domain) to 
yield the motional parameter. In the case of diffusion separation the 
experiment is labeled DOSY (for diffusion-ordered spectroscopy) and 
MOSY (for electrophoretic mobility). 

Where molecules translate with velocity u in the presence of a PGSE 
gradient pulse pair, that velocity information results in a simple phase 
modulation in which the exponent is proportional both to the gradient 
amplitude g and the velocity component u along the gradient axis, that is, 
(exp(iO,(t))) = exp(-i2rqut). This modulation permits signal analysis by 
Fourier inversion in which transformation with respect to q yields the 
velocity spectrum directly. 

For diffusion analysis, the situation is a little more complicated. Instead 
of oscillatory modulation, the diffusion leads to attenuation of the form 
given by Stejskal and Tanner (1965). In principle, Laplace inversion should 
yield the spectrum of diffusion coefficients. However, the lack of orthogo- 
nality between components with different decay parameter A, in the 
kernel exp(-~,t)  results in a nonunique set of solutions. This type of 
signal analysis is discussed in great detail by Provencher (1982). We simply 
note here that a number of approaches are available, most notably the 
NNLS and LDP algorithms of Lawson and Hanson (1974) and the 
CONTIN package of Provencher (1982). An example of two-dimensional 
spectra involving diffusion analysis is shown in Fig. 11. This type of spectral 
separation proves extremely valuable in identifying different molecular 
components in complex mixtures. 

In the characterization of multidimensional spectroscopy by Ernst et al. 
(1987), the different classes may be termed separation, correlation and 
exchange respectively. The DOSY and MOSY experiments represent a 
type of separation spectroscopy in which the independent chemical shift 
and mobility information can be independently displayed. In the next 
section we describe an example involving exchange spectroscopy. 

In Eq. (41) the evolution segment of the pulse sequence clearly results 
in the modulation term (exp(iO,(t))), which is sensitive to the domain of 
the applied gradient g(t). Inherent in this equation is the understanding 
that the state of Mi is sensitive to a preparation phase of the pulse 
sequence. 



TlPB 
Brij-30 
SDS 

HOD 

sDs 1 

FIG. 11. Two-dimensional DOSY spectrum of a sample containing 1,3,5-triisopropylben- 
zene (TIPB) and mixed micelles in D,O. SDS = sodium dodecylsulfate; HOD = partially 
deuterated water. [Reproduced by permission from Morris and Johnson, 1993.1 

Suppose that the preparation contains a segment of pulse sequence 
similar to that used for the evolution due to motion under the gradient g, 
but that this segment is applied at some earlier time. We could then speak 
of two independent gradients g, (ti dimension) and g, (t, dimension). A 
simple example showing the use of narrow pulsed gradients is shown in 
Fig. 12. The particular sequence is called VEXSY for velocity exchange 
spectroscopy (Callaghan and Manz, 1994). It enables one to analyze 
velocity fields by taking advantage of characteristic changes over a fixed 
time interval 7,. 

Because the sequence utilizes only the preparation and evolution 
periods for motion encoding, the detection phase remains for the en- 
coding of chemical shift information. Hence it is possible to perform this 
spectroscopy with chemical shift selectivity. Note that the sequence shown, 
while useful for analysis purposes, is a little naive for many practical 
applications since it makes no allowance for the effects of inhomogeneous 
local fields, which can lead to incomplete echo refocusing when the fluid 
motion causes spins to move to different field regions during the delay 
time 7,. The best way to protect the spins from the varying background 
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FIG. 12. Radiofrequency and gradient pulse sequence for velocity exchange spectroscopy 
(VEXSY) in which successive PGSE pulse pairs (G, and Gz), separated by a delay time r,, 
are applied. For an unambiguous correlation, G, and G2 are required to be collinear. Note 
the two orthogonal Fourier domains represented (schematically) by I ,  and t , .  Fourier 
transformation with respect to the acquisition time leads to a third spectral dimension. 

field is to use a closely spaced rf pulse train to continually refocus the 
transverse magnetization. 

The pulse sequence shown in Fig. 12 leads to a very simple form of 
analysis using the language of q space. Following the first 90' pulse, the 
transverse magnetization is phase encoded using two pairs of gradient 
pulses represented by encoding "wave vector" q,, and at a later time 
delayed by T,, the magnetization is encoded again by a second pair with 
wave vector 9,. Generally we will want to use the same gradient direction 
for these pulse pairs; othenvise an ambiguity arises. For example, the 
encoding from the two pairs of pulses could lead to the same result for a 
constant oblique velocity and a velocity that changed in direction. Conse- 
quently we need only consider motion in the fixed direction parallel to the 
gradients. The exponents arising from the separate preparation and evolu- 
tion modulations are simply exp(i2rq1Z,) and exp(i2rq,Z2), where 2, 
and Z, are the distances moved by a spin over the well-defined time . interval A, which are themselves separated by a further time delay 7,-the 
equivalent of the "mixing" time in our experiment. 

The PGSE gradient pulse pairs are stepped so as to phase-encode the 
spins for molecular translational motion. Because both pairs of q-pulses 
are applied in the same direction, a spin isochromat corresponding to a set 
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( w - Z A - ~ ) ' ' ~  s i n  w ) ) ) ]  (115) 

An example of such a spectrum is shown in Fig. 13. It was obtained using a 
Couette cell comprising a 10-mm-0.d. (8.9-mm-i.d.1 NMR tube with a . concentric 5-mm NMR tube connected to an external shaft driven by a 
variable speed motor. The space between the cylinders was filled with 
water containing a small amount (0.5%) of high molar mass polyethylene 
oxide, which had the effect of increasing the viscosity and thus ensuring 
laminar flow. 

Note that the VEXSY experiment allows a third (t,) spectral dimension 
and may therefore be performed with chemical shift selectivity. 

It is easy to image a wide variety of multidimensional spectroscopies 
arising from the signal scheme represented by Eq, (41). We will consider 
one more such scheme, in this case a three-dimensional separation in 
which one dimension is the spectrum of translational motion while the 
other two represent the domain of nuclear spin positions. The position 
domain is associated with conventional NMR imaging in which position 
encoding occurs via a reciprocal space (k-space) in which both phase 
modulation and frequency modulation may be employed. It is beyond the 
scope of this chapter to review this subject; many other references provide 
descriptions in greater detail (Xia and Callaghan, 1991; Moran, 1982; 
Bryant et al., 1984; Redpath et al. 1984; Altobelli et al., 1986; Callaghan et 
al., 1988; Caprihan and Fukushima, 1990; and Callaghan and Xia, 1991). 

Figure 14 shows a pulse sequence in which the PGSE method is 
amalgamated with NMR imaging so that the signal acquired is effectively 
modulated both in k and q space. 

Clearly slice selection and phase encoding form part of the preparation 
segment of the sequence, evolution occurs under the influence of the 
PGSE pulse pair, and detection occurs in the presence of the read 
gradient. Given excitation of a single slice, the number of dimensions is 
reduced to two in k space and one in q space. We may combine all these 
influences to write 



FIG. 13. Succession of two-dimensional VEXSY images for cylindrical Couette flow where 
T,,, corresponds to (a) 0.15, (b) 0.50, (c) 1.00, and (d) 2.00 rotation cycles for the central 
rotating cylinder. The theoretical image is shown on the left with the corresponding experi- 
mental data on the right. The full width of the image corresponds to 33 cm s-'. [Reproduced 
by permission from Callaghan and Manz, 1993.1 
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FIG. 14. Radiofrequency and gradient pulse sequence for velocity and diffusion imaging in 
which the molecular motion is measured in the domain of two spatial dimensions ( x ,  y )  of a 
slice selected normal to the z axis. Note that the PGSE pulse pair (g) provides the third 
dimension-that of motion-while the phase encode (G,) and read gradients (G,) provide 
the first and second spatial dimensions. 

where implicitly F(z, A) is the average propagator at each pixel r of the 
image. Double inverse Fourier transformation of S(k, q) with respect to 
both k and q returns p ( r ) F ( ~ ,  A). By normalizing this function with the 
image density p(r) acquired under zero PGSE gradient, one reconstructs 
p(Z, A) for each pixel of the image. 

Generally, it is conventional to apply the q gradient in a single direction 
in any given experiment, stepping its value from zero to some maximum 
number n of order 10-20 steps. In that sense the method is similar in 
practice to multislice imaging. For each step (or "q slice") a complex 
image is reconstructed. This set of images may be processed in the 
remaining third dimension by zero-filling from n to N (so as to improve 
digital resolution), following which the modulated image signal in each 
pixel is Fourier transformed along the q direction to return P(Z, A) for 
that pixel. 

When one has obtained the local propagator for each p&el, the details 
of the local motion can be easily calculated. For example, the width of 
P(Z, A) is determined by the root mean square Brownian motion (2 DA)'I2, 
while the displacement of F(z, A) along the z-axis is determined by the 



flow displacement uA,  where u is the local molecular velocity. Using this 
approach, simple algorithms may be implemented so that maps of D ( r )  
and u(r) may be constructed. While flow imaging has been widely used in 
medicine for many years, this type of multidimensional velocity and diffus- 
ing imaging has been used to study fluid transport in plants and is proving 
of increasing importance in materials science investigations, in particular 
for studying the molecular basis of complex rheological properties in 
non-Newtonian fluids. 

A simple example of velocity imaging is shown in Fig. 15. The figure 

radial position (mm) 

radial position (mm) 
FIG. 15. Velocity profiles across a diametral slice obtained in the rotating Couette cell for 

(a) water and (b) a solution of 5% polyethylene oxide in water, at rotation speed ranging from 
0.60 to 10 rad s-'. Note that the left- and right-hand sides of the annulus yield similar 
profiles but with oppositely signed velocities. [Reproduced by permission from Rofe 
et al., 1994.1 
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shows a velocity map obtained from a Couette shear cell in which the 
signal arises from protons in pure water and a polyethylene oxide solution 
placed in the annular region between an inner rotating cylinder and an 
outer stationary wall. Other studies involving capillary and Couette geome- 
try include investigations of other random coil polymer solutions, solutions 
of rigid rod polymers, and solutions of surfactants. Combined with other 
spectral parameters related to relaxation time of molecular order, this 
method has the potential to provide a vital link between molecular and 
mechanical properties of soft, complex materials. 

VI. Self-Diffusion with a Strong Inhomogeneous Magnetic Field 

One of the fundamental limits faced by the pulsed gradient spin-echo 
method concerns of the lower limit to spatial resolution. This limit de- 
pends both on the maximum available magnetic field gradient and the 
degree to which the gradient pulse amplitudes can be accurately matched. 

Having achieved this coil strength, the experimenter is then faced with 
the need to match the gradient pulse areas in each pulse pair by a degree 
sufficient to avoid random phase fluctuations that would lead to echo 
amplitude degradation during the process of signal averaging. To measure 
a 100-nm displacement in a 5-mm sample requires obtaining a matching 
better than 2 x lo-'. 

One solution to these difficulties, suggested and demonstrated by 
Kimmich and co-workers (Kimmich et al., 1991; Kimmich and Fisher, 
1994), is to utilize the very large steady gradients available in the fringe 
field of a superconducting magnet and to simulate the effect of pulsing by 
means of the stimulated echo sequence. Because the steady gradient 
produces phase evolution only for magnetization placed in the transverse 
plane, it effectively encodes only during the intervals of phase evolution 
between the first pair of 90" pulses and subsequent to the third 90" pulse 
when the magnetization is recalled from storage along the z axis. This 
method has enabled spin-echo diffusion measurements with gradient 
strengths in excess of 50 T m-' . 

With very slow molecular migrations (1 10-l4 m2 s-') when one needs 
to apply extremely strong magnetic field gradients, it is possible that the 
weak inhomogeneous field condition will break down. Another situation in 
which the inhomogeneous field can be strong concerns the measurement 
of diffusion using Earth's field NMR (StepiSnik et al., 1994). Here the 
necessary spin dephasing is brought about by a nonuniform magnetic field 
that is comparable to or larger than the weak, homogeneous Earth's field. 
In both these examples the inhomogeneous component of the field is of 
the same order of magnitude as the homogeneous one and a different 







FIG. 16. The spin-echo signal as a function of the magnetic field gradient for isotropic 
self-diffusion in a Maxwell pair coil system. Note the deviation from ideality as the polarizing 
field, B,, decreases. 

even for an isotropic self-diffusion. Figure 16 shows the result of the 
exact numerical calculation using Eq. (126) for a sample consisting of a 
cylinder of length a and radius a. It illustrates the deviations in echo 
attenuation expected when Ga 2 B,. 

With the condition B,(ri, t )  -K B,, the solution of Eq. (68) for isotropic 
diffusion given 

where once again 1, and 1, denote the transverse sample dimensions. 

C. SIMPLE COIIS AS A MODEL OF THE FRINGE FIELD OF A MAGNET 

The use of the fringe field of superconducting magnets for the measure- 
ment of very slow diffusion processes is now well established [Kimmich and 
Fisher, 1994). In considering the violation of the small inhomogeneous 
field approximation, we note that the fringe field may not be as well 
defined as that produced by quadrupolar coils or Maxwell pair coils. In 
order to provide a simple model, we will consider the magnetic field 
distribution created by a simple coil of radius r,. 
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FIG. 17. The planar distribution of the spin-echo attenuation log[E] (in arbitrary units) 
for isotropic diffusion in the near field of a coil at the fixed value of - Y ~ G ~ ~ ( A ) D , .  

The spatial distribution of the spin-echo damping has been obtained by 
numerical evaluation of 161' [Eq. (11811, for the magnetic field around the 
coil axis (Fig. 17). It has a maximum at z = 0 . 5  with a broad homo- 
geneous front. 

The approximate calculation of Eq. (68) for a sample of radius r and 
thickness z located at z, on the coil axis gives the spin-echo intensity 

E(A) = E,exp(-y2DG2(zo)f(A)) 

( 128) 
if r << r, and z << z,. With N windings and current I, the gradient 



has a maximum at z, = r0/2. This position provides the most suitable site 
for the placement of a small sample or for a slice selected from a larger 
specimen in order to avoid a nonuniform distribution of attenuation. In 
general, the appropriate location for a sample in the fringe field of a 
magnet is at the point where g = /grad 1' has a maximum. Away from 
this point one must exercise caution with regard to the sample dimension 
in order to avoid large attenuation inhomogeneity. The width of a slice z 
should be less than g/(dg/dz) with dg/dz being the derivative perpendic- 
ular to a slice. 

D. SPATIALLY DISTRIBUTED PULSED GRADIENT SPIN-ECHO NMR 
USING SINGLE-WIRE PROXIMITY 

The primary disadvantage of the fringe field method is its inherent low 
signal sensitivity. Because the rf pulses are applied in the presence of the 
gradient, they act as soft, slice-selective pulses, exciting a layer of spins 
only micrometers in thickness. Consequently, the method relies on long 
periods of signal averaging. Furthermore, the experimental constraints are 
demanding, with a need to use high voltage rf pulses, to avoid apparatus 
vibration and to fix the sample in the magnetic reference frame rather 
than in the frame of the rf coil. 

Most methods for producing large pulsed magnetic field gradients rely 
on the use of a specialized wire array that surrounds the rf coil and 
produces a linear magnetic field gradient over the sample. The problems 
associated with this configuration may be simply stated as follows. When 
large numbers of turns are used in order to generate large gradients, the 
resulting inductance tends to limit the rate at which the current may be 
switched, while significant stray magnetic fields result in persistent eddy 
currents in the surrounding magnet structure. While the stray field prob- 
lems may be limited to a degree by active shielding, the practical limita- 
tions of the conventional coil lead to an upper gradient limit on the order 
of 20 T m-'. 

An alternative method of generating very large amplitude gradient 
pulses, indeed larger than can be achieved in the stray field method, was 
suggested by use (Callaghan and Stepihik, 1995b). This method has high 
intrinsic signal sensitivity and dynamic range and permits rapid switching. 
The technique utilizes micro-imaging to spatially resolve the sample, thus 
gaining access to the divergence in gradient strength that occurs in the 
vicinity of a current-canying wire. Rather than surrounding the sample 
with an external gradient coil, the current-canying wire is inserted into the 
sample itself. For a long straight wire carrying current I and oriented 
transverse to the polarizing field B,, as shown in Fig. 18a, this gradient in 
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FIG. 18. (a) Distribution of gradient vectors superposed on equigradient contours. The 
contours are circles concentric with the wire shown schematically in black. (b)-(d) NMR 
images (field of view 3 mm) of the solution of polyethylene oxide in water obtained using the 
PGSE sequence with A = 20 ms. In (b) ( I  = 0 A), the white superposed circles show the 
inner glass capillary wall and the wire position. Note the crescent of the water diffusion 
boundary which expands from (b) to (c) ( I  = 1.2 A, 6 = 2 ms), while from (c) to (d) 
(I = 7.7 A, 6 = 10.0 ms) the polymer boundary develops and expands. [Reproduced by 
permission from Callaghan and StepiSnik, 1995a.1 

the x-y plane is given by 

where a is poI/2n-B, and i and j are unit vectors in the normal plane, 
where j refers to the direction of the polarizing field B,. 

Figure 18a also shows the radiating pattern of local gradient vectors 
along with the equigradient contours. These contours are centered on the 
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FIG. 19. Images of the lamellar phase of aerosol OT/water in which the lamellae are 
presumed to be concentric cylinders aligned parallel to the glass surface, thus enabling free 
azimuthal diffusion and hindered radial diffusion. (a) I = 0 A and (b) I = 5.6 A. In both 
cases 8 = 1 ms and A = 3.6 ms. [From Callaghan and StepiSnik, 1995a.l 

Figure 19 shows the shape of the boundary image in the case of a fluid 
where the diffusion is clearly anisotropic. This system is the lamellar phase 
of the lyotropic liquid crystal, aerosol OT (bis(2-ethylhexyl) sodium sulfo- 
succinate; 50/50 w/w with water) in which water diffusion parallel to the 
lamellar bilayers is known to be more than an order of magnitude faster 
than diffusion in the normal direction. Around the walls of the glass 
capillary the bilayers assume a preferential orientation parallel to the 
interface. In consequence, the system organizes itself with concentric 
bilayers in which azimuthal diffusion is free, while radial diffusion is 
strongly hindered. The resulting attenuation boundary is the "butterfly 
wing" shape apparent in the image. 

The potential applications of spatially distributed pulsed gradient spin- 
echo NMR using single-wire proximity are numerous. It has particular 
utility in the frequency-domain applications referred to earlier. At high 
frequency, high gradients are required since any shortening of pulse 
duration values requires a corresponding increase in gradient amplitude if 
the same sensitivity to molecular displacement is to be preserved, This 
increase is provided by the quadratic rise in gradient amplitude in the 
vicinity of the wire. Furthermore, the very small inductances of the 
gradient "coil7' make rapid pulse switching entirely feasible, thus providing 
access to the submillisecond regime. 
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and Eq. (135) becomes 

When the changes in the particle velocity are due to random collisions 
with Gaussian character, v i ( t )  = vi,(t) ,  we can use the known procedure to 
evaluate the average. Equation (137) becomes 

where gi is the self-diffusion tensor for the ith particle. Clearly the 
damping effect of diffusion is greater for the components with the highest 
values of q .  For the cases involving a nonuniform distribution of flow 
velocity or where the diffusion varies across the sample, we must rely on 
the general result represented by Eqs. (137) and (138). For the special case 
where the sample and the velocity field are uniform over the whole region 
of the receiver, Eq. (137) becomes 

and for uniform diffusion, Eq. (138) becomes 

Figure 20 shows how flow changes the signal when a thin slice of excited 
spins is moving through the detecting coil. The frequency of the weak 
modulation is determined by the product of the first moment of S ( q )  and 
the flow velocity. 

The initial spin distribution shaped as a Gaussian function is used when 
considering the diffusion case as given by Eq. (140). As shown in Fig. 21, 
the spin outflow is responsible for the initial fast decay of the signal and 
results in spectral line broadening. The slow decay belongs to spins left in 
the coil and gives the narrow spectral line at the magnetization measure- 
ment in 3 ~ e  (Barb6 et al., 1974). The width of the broad line is propor- 
tional to the product of the self-diffusion constant and the second moment 
of S(q) .  



Time (vt=0.02) 

FIG. 20. NMR signal as a function of time when a thin slice of excited spins is moving 
through the detecting field of the coil. 
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FIG. 21. NMR signal as a function of time when the spin outflow from the coil is caused 
by a fast particle self-diffusion. 

VIII. Conclusions 

The number of NMR groups specializing in PGSE NMR methods has, 
until recently, been relatively small. This situation is partly because of a 
perception that the method is solely applicable to the measurement of 
self-diffusion coefficients, but also because of the difficulty in developing a 
reliable apparatus. Since the advent of gradient pulse switching capabilities 
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in standard NMR spectrometers, the situation has changed considerably. 
The magnetic field gradient equipment and rf pulse selectivity necessary 
for PGSE NMR and motional imaging applications is similar in most 
respects to that required for gradient-accelerated two-dimensional NMR 
spectroscopy, for three-dimensional NMR, for microimaging, for solvent 
signal suppression methods, and for chemical-selective excitation methods. 
New methods for generating large magnetic field gradients have extended 
downward the distance over which the motion of spins may be detected. 

We have shown here that the generalized MGSE NMR approach allows 
one to design probes of the spin motion appropriate to the problem under 
investigation. We have also shown that it is necessary to give consideration 
to the range of dimensionality that is accessible. These dimensionalities 
include spatial and spatial frequency domains as well as time and temporal 
frequency domains. These perspectives are particularly powerful because 
they draw upon well-established methodologies such as diffraction analysis, 
spectral density analysis, and the various correlation and exchange schemes 
of multidimensional NMR. 

The methods outlined here help demonstrate some of the measurement 
possibilities that result from such a generalized gradient modulation view- 
point. They also provide a menu from which suitable experiments can be 
selected and implemented. 

Appendix 

In stochastic theory there are two ideal cases that are very basic: 
Gaussian and Poisson. Gaussian modulation corresponds to many weak 
perturbations involving similar small disturbances and allows application of 
the central limit theorem. On the other hand, in Possion modulation the 
oscillator may occasionally suffer strong perturbation, but is mostly free. 
Some physical processes are intermediate and it is difficult to treat them 
rigorously. Brownian motion is supposed to comprise a large number of 
random jumps. It results in a great number of small perturbations of the 
spin-echo signal 

where the stochastic variation of phase is related to the precession fre- 
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A(t )  - 2A27,t and the function f obeys the diffusion equation 

In the foregoing relationships, by replacing 8 with the particle coordinate 
and w with its velocity, we obtain the standard equations of Brownian 
motion. In the long time limit, A( t )  - 2Dt with D = /,"(u(O)u(t)) dt and 
Eq. (150) becomes the well-known Fick-Einstein diffusion equation. 
Obviously, the Gaussian process and its long time limit are inherent 
in this equation. 
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