PHYSIGA

FLSEVIER Physica B 198 (1994} 299-306

NMR measurement and Brownian movement in the short-time
limit
Janez Stepisnik

Physics Department, University of Ljubljana and J. Stefan Institute, Judranska 19, 61111 Ljubljana, Slovenia

Received 14 July 1993; revised 26 November 1993

Abstract

This study is carried out to find relations between the time-dependent molecular sclf-diffusion and the
attenuation of NMR spin-ccho. Two cases of diffusion are considered: thc Brownian motion in Ornstein’s
short-time limit and the random walk with memory [13]. Thé friction and the corrclation time describe the
mechanism of entrapping interactions between molecules or their bonding to macromolecule chains. The obtained
formula for the self-diffusion attenuation is valid at short times and it develops into the weli-known Torrey’s result

in the long-time limit. Tt fits very efficiently into the NMR data from Refs. [19-20].

1. Introduction

The determination of molecular migration
with nuclear magnetic resonance (NMR) has a
long history [1,2,3,5]. Being nondestructive and
noninvasive, the method is attractive for the
study of molecular random migration in various
systems. It uses labelling of molecules by chang-
ing the phasce of spin precession. A nonuniform
magnetic field creates a nonuniform frequency of
the spin precession and theretore the particle
migration across the ficld inhomogencity causces
an attenuation of the spin-echo signal.

The expression {3] for the spin-echo attenua-
tion duc to the random migration along a time
dependent magnetic field gradient (G, = 38/8x),
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with v being the giromagnectic ratio of the nuclei
and D the sclf-diffusion coefficient, assumes
Einstein’s result from the Brownian movement
theory. It states that a mecan square of displace-
ment [6] is a linear function of time:

{x(0) = x(0)]") =2D1 . (2)

It was first pointed out by Einstein that this
formula holds only in the limit of large 1. Ac-
cordingly. as noted by Uhlenbeck and Ornstein
[7]. several later researchers obtained an cqua-
tion that holds for all time:

(0 -0 =20[0 1 -e ] @)

where ¢ = fim, with f the coefficient of friction
and m the mass of the Brownian particle. We call
it Uhlenbeck’s short-time limit. It shows that
Torrey’s Eq. (1) is an approximation when the
duration of measurement is long compared to
the corrclation time of migrations.
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The interaction between particles or the par-
ticle interactions with their surroundings influ-
ences their migration and, particularly in a short
time interval, there is a strong correlation be-
tween particle positions. We have shown [8] that
the spin-echo attenuation includes the correla-
tion of particle location (x(r)x(0)) or the velocity
single particle autocorrelation {v(t)v(0)). That
invoke implies that the NMR spin-echo method
may be used to study the correlation of the
particle motion.

Recently much interest has been devoted
toward the study of phenomena of anomalous
self-diffusion. In several cases formula (2) is
replaced by a nonlinear diffusion law or some
dependence being a smooth function of time.
This kind of behaviour follows the Brownian
movement in a periodic potential [9] or in a
random environment [10,12] where slowing
down of the diffusion is a consequence of molec-
ular trapping. NMR measurements in polymers
[18,21,20], in a biological tissue [19], in mi-
croemulsions [16] and others show an anomalous
time dependence of the self-diffusion constant in
the long time interval. Some ambiguity is associ-
ated with the results of NMR measurement of
the self-diffusion in polymers [14]. The authors
claim that it is difficult to separate the contribu-
tions which are due to translation of a macro-
molecule as a whole from those due to inter-
molecular segmental movement. We believe that
this ambiguity might appear as a consequence of
ignoring the correlation effects hidden in the
spin-echo attenuation (8).

In the following we consider the Brownian
motion in Uhlenbeck’s short-time limit, Eq. [3]
and show its relation with the mean square of the
particle displacement and with the attenuation of
spin-echo. Thereafter, we evaluate the molecular
displacement with the use of a generalised
Langevin equation with memory formalism
[11,13]. This approach may describe the effect of
molecular entrapping. The result explains the
short time behaviour of molecular migration and
shows the relation between NMR spin-echo
parameters and microscopic quantities like fric-
tion and correlation time of molecular entrap-

ping.

2. Spin-echo attenuation in the short-time limit

In the magnetic field gradient G the phase of a
particular spin depends upon its location and the
migration of particles modulates the spin phase.
In Ref. [8] we have shown that spin-echo damp-
ing includes the correlation between the particle
velocities at different times. Namely, the central
limit theorem allows a Gaussian approximation
of the spin-phase modulation function, whenever
the particle velocity changes in small indepen-
dent steps due to the stochastic nature of the
interaction. By assuming a uniform diffusion rate
of particles, the resulting attenuation of the spin-
echo signal is

S(r) =S, e " (4)

with
B =4 [an, [t Fa) o 0e))F (). (5)

Here
F(t)=1y IG:”(I’)dr’. (6)

The effective magnetic field gradient G, (t")
includes the effect of spin inverting by a @ pulse
[8]. The spin-echo attenuation depends on the
autocorrelation of particle velocity. When the
time interval of the spin-echo, 7, is of same order
as the characteristic time of velocity autocorrela-
tions, 7., the attenuation might contain infor-
mation about intermolecular interactions. The
relation between spin-echo attenuation and the
spectrum of the velocity autocorrelation is shown
in the Ref. [8]. We derived it by inserting the
Fourier transform of the velocity autocorrelation
function

L 2
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into Eq. (5). The result is
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o
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B(r) = S J F(w,7)D(0)F(—w, 7) dw . (8)

- 00

It includes the definition of the Fourier trans-
form of the spin phase

F(w,7)= J' F(t)e' dr. (9)

0

In Eq. (8) the tensor D(w) is the spectrum of the
autocorrelation between the velocity compo-
nents. Its product with the phase factor F(t) acts
only on diagonal components. At zero frequency
these are the components of the self-diffusion
tensor, D(0).

We need a relation between the mean square
of the particle displacement and D(w):

([r(®) = r(0)] )—fdtl dev (v(t)o(ty)) . (10)

0

In the frequency domain [8] it is

sin (mt/Z)
f D) T
2D+t (11)

Uhlenbeck and Ornstein [7] have shown that the
frequency spectrum of the velocity autocorrela-
tion follows from Eq. (3) as

([x(0) = x(0)]*) dw .

D¢’
D(w) :a)z—-FE . (12)

The usual spin-echo pulse sequence, which has
two identical gradient pulses of width § and
being separated for 7, has the spectrum of the
spin phase, Eq. (9), in the form

O =0 ) (13)

By inserting Eq. (12) and Eq. (13) into Eq. (8)
it develops into

B(r) = v’G” » 8 [ sin *(wb/2) im *(wr/2)

w

D
X 15’ 3
w +I°

dw . (14)

Its integration gives the spin-echo attenuation as
a function of 7, 8, D and the constant of friction

e
) =v’Gp]s*(r-3) - %o

—2e"*€1}.
(15)
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We can apply this very general relation in a
broad time interval. When 7.=1/{ <7 all terms
but the first one can be neglected. This term is a
well-known classical result [3]. In the limit of
short intervals between the gradient pulses,
when 1/{ =7, the spin-echo damping (15) (Fig.
1) follows the law

B(r)=1y’G*(Dr’8* (16)

and when 8 <7, Eq. (15) develops into

3(7):1:3623213[7—%(1—e"’é)]. (17)

It is obvious from Eq. (3), that the last formula
is the well-known relation between the self-diffu-
sion attenuation and the mean square of the
particle displacement

B(r) =1y>G?8*([x() — x(0)]°) . (18)

On Fig. 1 we can compare the short-time dis-
placement following expression (3) with the
classical Brownian movement.

The correlation time of small molecules
(1077 s=10"""'5) is much shorter than the interval
between the gradient pulses at NMR spin-echo,
7> 7. Thus we can assume that the velocity
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Fig. 1. Mecan square of the puarticle displucement in the

short-time limit for three kinds of random motien: Einstein—
Fick law, Uhlenbeck and Ornstein’s cxtension of Einstein’s
diffusion and random motion with memory describing the
cntrapped diffusion.

autocorrelation function in Eq. (5) is a delta
function. It results into Torrey’s formula Eq. (1).

3. Brownian movement with memory

The measurements show that the deviation
from the Einstein—Fick law at NMR self-diffu-
sion mecasurements appears mostly in fluids con-
taining macromolccules [21,20] or large particles
4s in a microemulsion [16]. Uhlenbeck and
Ornstein [7] show that friction is the main
parameter that determines the ordinary Brow-
nian movement in a short-time himit. In dealing
with a random migration of moleculcs in a
complex environment there are also other kinds
of interaction that may cause the nonclassical
behaviour of the self-diffusion. The experimental
data and the model calculation show an anomal-
ous time-dependent self-diffusion in the environ-
ment that, in addition to friction, acts on mole-
cules with some sort of trapping mechanism.
This kind of deviation has been found in the
model of Brownian movement in a periodic
potential [9] and in some specific cases of macro-
molecules in the random environment [10-12].

In the following we will use the approach with

the Langevin equation that includes the memory
function [13] in order to consider a Brownian
movement of partially entrapped molecules. The
projection operator techmque leads to a de-
composition of the rates of change of variables
into scveral parts resulting inte the general
Langevin equation of movement for stochastic
movement

O wawy+ [s6-nawas=Fo. (19)

(1) is the memory function obtained for damp-
ing of collective movement determined by .
This extension of the Langevin cquation is pro-
posed to incorporate the case when the Brow-
nian particle is not necessarily of large mass
compared with the molecules constituting the
fluid. The implication of this generahisation is
that the relaxation timc of the random force,
being very small compared with the velocity
rclaxation time, has to be abandoned.

This model describes a random walk of mole-
cules or parts of macromolecules with two basic
constraints of motion:
® 3 friction that slows down their motion;
® a localised movement provided by direct pair

interaction with nearby molecules or by inter-

action of segments of macromolecule with
remaining parts.
It is a random molecular movement that is
neither distinct Brownian movement nor only a
movement of bonded particles but something in
between both models.

The Langevin equation with memory can take

the form

f

+m f K(t — t)u(r) dr = F(r) (20)

q

do()
dr

where the particle velocity v(z) is the dynamic
variable and F(¢) is a stochastic driving force
defined by the coupling of the particle to the
surroundings. With included collective oscillation
w, the memory function K(¢) describes the vis-
coelastic damping propertics of the surrounding.
With short memory, K(r) = £{8(¢), it is the classi-
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cal Langevin equation describing a damped dif-

fusion of free particles. In the case of infinite

memory, K =const., it describes a Brownian

movement of bounded particles [7] i.e. the

random movement of harmonic oscillators.
Equation (20) can be written as

d r
O J {yle + 1) dr = f(7) (1)

o

with the assumption that f{(r) = D8(¢). Since f(¢)
is Gaussian, v(r) is also a Gaussian random
process [7] with a single-particle velocity au-
tocorrelation spectrum

fo

T

(22)
£, is the spectrum of the memory function. The
simplest form of the memory function is the
exponential function

(D=5 (23)

with T being the relaxation time, which de-
termines the degree of particle bonding. Equa-
tion (23) gives the spectrum of the velocity
autocorrelations

. D¢
D) = o +gl(ieT £ )] (24)
_ DT [(wT) +1) (25)

[(@T) + (T + (wT)*

Knowing the spectrum of the velocity autocorre-
lation function we can obtain the mean square of
the displacement as a function of time by sub-
stituting Eq. (25) into Eq. (11). Its integration
gives
([x() ~ x(0)]*) =2D[t + A(1 —e ')

- B(1—e¢ "1y (26)
with

2.2 3
xx3 (1 —x7)
=——5 27
(5 —xhm 2

and

2.2 2
1—x
B= x1{2( 5) T (28)

(x; = ;)
where
Xia =TT T . (29)

This equation has the following propertics.
® In the limit of short correlation times 1/ »
T, Eq. (26) s converted into Eg. (3) and
behaves like Uhlenbeck and Ornstein’s extension
of Einstein’s diffusion in the short-time limit [7].
® When 7¢®1 it exhibits the long-time
asymptotic behaviour

(AT rv‘}sh]

{[x(t)—x(('))]l):2[)[t+ 5 (1

(30)

which diverges into a line with slope of the
normal Einstein—Fick law, see Fig. 1.

Figure 1 shows a strong deviation from these
behaviours at intermediate times when {7 =1
and t=T. The mean square of displacement for
the Brownian diffusion and Uhlenbeck’s limits of
Einstein’s diffusion is shown on Fig. 1. For the
same value of ) they cxhibit very different
behaviour for certain valucs of friction £ and
corrclation time T.

Schweizer formulated [17] a polymeric mode—
mode coupling theory, with the relevant bilinear
variables being the product of the collective
density ficld and the single chain segmental
densitics. He derives the segmental mean square
displacement in the Markov regime, which has
an identical time dependence as Eg. (30):

{[r() — r(O)]z} ~ Dt +A;—(g(k _ eﬂh’:m,(m) .
(31)

Here the M(0) term is associated with the
intramolccular elastic restoring forces induced by
intermolecular  excluded volume interactions,
and the K_term is the entropic spring constant.
It predicts that the center of mass and the
internal modes make a comparable contribution
to diffusion.

For the spin-echo pulse sequence when 8 <7,
we can usc the relation between the spin-echo
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attenuation and the square of particle displace-
ment Eq. (18). Together with Eq. (26) and Eq.
(30) it can be used to evaluate the ¢xperimental
data. But whenever at spin-echo the gradient
pulse width is comparable with the pulse inter-
space. 8 =17, we have to carry out a little bit
more elaborate integration in order to get the
spin-echo attenuation. The substitution of Eq.
(25) and Eq. (13) in Eq. (8) gives

. 272 o2
,G(T):'y*(;“D%[ le f(T, S,X—Tl)

Xy — X Xy

B e ) o

X

roota

with

oo -rip-4)- 2

a

1 L s .
+ 2T T TR _pe T e 0]
a

(33)

In the limit of § <7, it is equal to Eq. (18) and in
the limit of (T <€ 1, it becomes equal to Eq. (15).
Figure 2 shows the spin-echo attenuation (di-
vided by the square of the gradient pulse width
and its magnitude) as a function of the interval
between gradient pulses 7 and the pulse width 4.

PFLESE WIDTH

:
18
H
1F 5
3

pie)a?

Spin-echo attenuation

TIME ¢+3

Fig. 2. Spin-echo attenuation of the random walk with
memory for different widths of gradient pulses 8 and gradient
pulse interspacing r.

We can see that a broader gradient pulse causes
only a shift of curve and does not alter its shape.

4. Fxperimental evidence

We fit expression (26) into the experimental
NMR data of different authors reporting about
the time dependent of self-diffusion. Thesc are
measurements of sclf-diffusion of pelymers {21],
of polydispersed media {20] and water in the
lung tissue [19].

In the first two cases the diffusing particles are
large molecule-polymers, and we assume that the
time of particle correlation may be on the time
scale of the NMR measurement, since the corre-
lation time of migration increases with molecular
mass [3]. The anomalous diffusion described by
Eq. (31) or Eg. (26) may takc part in these
systems.

In Ref. [21] the authors found a spin-ccho
attenuation in the solution of a polymer that
does not match an exponential law. The digres-
sion increases with concentration of the solvent.
They attribute it to the distribution of the self-
diffusion cocfficient due to different diffusion
rates of macromolccules having different size
(polydispersity). Zupancic et al. [18] have found
a similar deviation from an exponential law in
spite of very small polydispersity of their poly-
mers. Thus there might be an alternative expla-
nation of these results. We have found a very
good fit of these data into a curve drawn accord-
ing to Eq. (26). The experimental valucs of 7, &
and § are not available to us and we obtain the
parameters 7, D and { in arbitrary units, sce
Fig. 3. The fit shows that an increasing octanc
concentration reduces the sclf-diffusion constant
D while the corrclation time 7" and the friction ¢
remain almost unchanged. It can be explained
with the fact that at higher concentration octane
decreases only the diffusion rate of the macro-
molecules as a whole, but it does not effect the
trapping mechanism of macromolecules seg-
ments. The short-time behaviour of diffusion
depends on the segmental motion and reflects
the interactions between adjacent molecules in-
side the macromolecular chain.
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Fig. 3. Fit of the squared random displacement of entrapped
diftusion to NMR measurements from Grinberg et ab. [21].

The measurement of water self-diffusion in a
lung tissue [19] is another example of our consid-
cration. Kveder et al. found that the sclf-diffu-
sion coetficient is nearly an order of magnitude
smaller than that of free water and varies with
time, They found the mean-square displacement
that varies as an inverse square root. It agrees
with the fractal kind of diffusion. Good matching
of their data [19] into Eq. (26), see Fig. 4, raises
the question about a possible alternative expla-
nation. The shape of the fitting curve is in favour
of the interpretation with the model of entrap-
ped molecules. 1t may be due to a clustering of

K
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<
5 1 T={120£13).10%s
@ = (211 +£027.10%s
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0 z 4 &

TIME  « [ 10%5s]

Fig. 4. Fit of the squared random displacement of entrapped
diffusion to NMR data from Kveder et al. [19].

waler molecules or to their bonding to other
macromolecules in a lung tissue.

Von Mcerwall [20] has systematically studicd
the effects of polydispersity on spin-echo at-
tenuation and he attributes to it a small deviation
of his data from a linear law. Our expression,
Eq. {260), fits into his data very well too and we
believe that it can not be explained only by
polydispersity. We only mention it in order to
additionally stress our arguments but it is not
shown here.

5. Conclusion

We believe that microscopic cooperative phe-
nomena are responsible for the anomalous re-
sults of the self-diffusion coefficient measured by
NMR in short time intervals. The description of
the entrapping mechanism by the memory func-
tion in the Langevin equation is a rough model
but it gives a shape of the correlation function
that is very similar to that obtained by the
calculation of more specific models [9.10,12]. We
belicve that in 4 macremolecular fluid or in a
system with a kind of molecular clustering the
correlation time can be long enough to be seen
on the time scale of an NMR experiment. The
development of fast spin-eche sequences may
enable the NMR investigation of still faster
particle migrations.
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