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PREFACE 

The idea of using spins for measuring molecular migration dates back to the beginning of nuclear 
magnetic resonance (NMR). The potential of using NMR for studying either random microscopic 
flow (self-diffusion)” -3) or macroscopic flo~(~-~~) was quickly realized. The major advantage of using 
NMR for these measurements is that the sample is unaffected by the measuring process since there is 
no direct contact with the fluid. Thus, from the very early days of NMR, flow measurements have been 
made on very different systems (11) which even included some physiological applications.02~13) Several 
methods for measuring the spatial migration of spins have been proposed and most of them have been 
applied successfully.04-1g) 

New techniques which allow us to determine the image of the spatial distribution of spins and their 
properties inside the macroscopic sample were first introduced in 1952.(20i NMR imaging was 
developed later’* ’ - 25) and used also for the visualization of the flow velocity distribution in a fluid. It 
allows us to measure the flow of fluids in a human body,‘26-2s) and provides diagnostic medicine(29) 
with important information about the functional assessment and physiological status of body organs. 

NMR is quite sensitive to flow and to other kinds of spin migration and these affect almost all NMR 
images of parts of the human body. The number of NMR flow methods available for use is almost 
equal to the number of different imaging methods. The aim of this review is to consider systematically 
the parameters which reflect the effects of spin migration on NMR signals and to provide a classifica- 
tion of the different flow methods. 

In spite of the fact that spin dynamics for flow and self-diffusion are usually described by modified 
phenomenological Bloch equations, the density matrix formalism is employed in this review. The 
advantage of this approach is that the expressions for the response of the spins to external magnetic 
and radiofrequency (rf) fields are more compact and allow the effect of spatial motion to be visualized 
more clearly. 
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1. SPIN RESPONSE 

The free energy change of a coil containing a sample of magnetic moment M at constant tem- 
perature produced by a change in magnetic field 6B, is 

6F = -MhB,, (1) 

where B1 is the magnetic field at the location of the magnetic moment. The free energy can be also 
expressed in terms of an electric current i, which produces a field B,, and a magnetic flux C$ induced 
by the magnetic moment of the sample 

6F = -~Si,. 6-a 

Thus, U the voltage induced in the coil’30’ is 

To distinguish between the magnetic fields in the receiver and transmitter coils, that of the receiver 
coil will be denoted as Bil, while the magnetic field of the transmitter coil is given as Bit. In a sample 
with many microscopic magnetic moments (the spins), the induced emf is given by 

where y is the magnetogyric ratio and rj is the radius vector of the location of the jth spin; I, is the 
component of the spin operator along the coil axis. Expression (4) shows that if a coil carrying a unit 
current produces a field B1, at the point of a spin then the rotating magnetic dipole of the same spin 
induces in that coil an emfproportional to the sum of the products between the spins and their related 
magnetic fields. The average can be evaluated using the density matrix operator p(t) to give 

where ~1~ = yBi,. 
By using the time evolution operator U(t) the density matrix can be formally written as 

p(r) = ZJ(r)P(O)ZJ-‘(r), (6) 

where p(O) is the initial density matrix at the moment when spin excitation starts. In the high tem- 
perature approximation the equilibrium density matrix is 

P(O) = PL l -haO Cgjzzj ( > 3 (7) 
j 

where the matrix operator of the lattice is pi_ and where SIj describes the degree of spin longitudinal 
magnetization. The longitudinal magnetization of spins may be non-uniform either due to an 
inhomogeneous static magnetic field or due to some perturbation prior to the experiment, and thus 
lj depends upon the location of spins. An example is flow measurements made by the time-of-flight 
method, where 93, depends upon the time which the spins spend in the magnet. 

The time evolution operator in the expression (6) is defined with the hamiltonian by the formal 
relation 

U(t) = Texp( -i [IJu(r)dr). (8) 

The time ordering operator T prevents direct evaluation of eqn. (8) by simple integration of the 
commulant and it is necessary to employ some approximate techniques. 

The general objective of the flow measuring techniques is to label the spins in some manner. In 
magnetic resonance this is achieved by applying a non-uniform magnetic field. If the static magnetic 
field B, is inhomogeneous along the sample, then the precessional angular frequency w. of the spins 
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wo = #o (9) 

depends upon the spin location as well as the spin magnetization, Thus the spatial displacement is 
shown as a frequency displacement. A similar effect can be achieved by a non-uniform field of the 
transmitter or receiver coil. If the rf field of the transmitter coil Bi, is non-uniform, the degree of spin 
excitation depends upon the spin location and if the field Bi, is non-uniform the receiver coil detects 
signals which also depend upon spin location. 

In practice a non-uniform magnetic field is achieved by employing a non-uniform magnetic field in 
addition to the static uniform field B,. According to Maxwell’s equations, a non-uniform magnetic 
field has always more than one component different from zero. Therefore, if an additional field is weak 
enough the total magnetic field can be written as 

B = B,+Yr, (10) 

where Y is a tensor.(28) The parts of the hamiltonian which include the interactions with the magnetic 
field components perpendicular to the magnetic field B. do not commute with the main part which 
includes B,. Thus in the case that the additional field is changing at a slower rate than the inverse 
larmor frequency, the perpendicular components of the magnetic field from the expression (10) can be 
discarded and the magnetic field approximated as 

B=B,+Gr, (11) 

where G is the gradient of the component parallel to the main field. The gradient can be either static 
or time dependent which means that its magnitude and direction can both be changing. 

The rf transmitter coil generates a magnetic field 

B;, = Bi,(r,t)sinw,t (12) 

which excites the spins. In a selective excitation experiment where only the magnetization in a thin 
slice of the sample precesses in a transverse plane the magnetic field gradient is applied during the rf 
irradiation period. Thus only spins in a certain plane are at exact resonance and interact strongly with 
the rf pulse. The shape of the rf pulses is not rectangular but is modulated with the desired spectral 
distribution. Thus the magnitude of the rf excitation pulse is a function of time and position in general. 

Here it is assumed that the hamiltonian describing the system, and the spin dynamics in particular, 
consists of four parts 

The Zeeman part 

.x”(t) = .xz+2r&)+3forf(t)+~~. (13) 

the gradient part 

xG(t) = -hG(t) C (rj-ro)Izj, 

(14) 

(15) 

FIG. 1. The basic spin echo rf pulse sequence. 
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the radiofrequency part 

m,,(t) = -h 1 Wl,(rj, t)Sin(O@+6)Z,j, (16) 

and the hamiltonian XL, which includes all the remaining static interactions such as the spin-spin 
interaction, as well as time dependent interactions both between spins and with the lattice. 

In the ordinary NMR free precession experiment only the excitation rf pulse is applied. Here we 
shall consider a more general approach where the spin excitation is achieved using a type of spin-echo 
rf pulse sequence consisting of a n/2 pulse and a sequence of rc pulses of various phases (Fig. 1). In 
contrast to the initial excitation pulse whose magnitude depends upon the spin location, the field B1, 
of the n rf pulses is assumed to be completely uniform. In order to simplify further consideration the 
n pulses are assumed to be short enough to neglect their spatial selectivity when applied simultaneously 
with the magnetic gradient. 

Here we shall adopt a treatment of the spins which uses a time evolution operator written as a 
product(31) 

U(r) = UL UZ Urfn UG u&f,, (17) 

where UL includes only the hamiltonian % L, U, is the part due to the Zeeman interactions, Urfn is 
from the interactions with the n pulses, UG is related to the gradient interactions and f.Ja represents 
the spin time evolution due to excitation by the initial rf pulse. Each separation of the time evolution 
operator means that the transformation is in a new interaction representation. Thus, by removing the 
Zeeman part by the operator 

U,(t) = exp( -iX”,t), (18) 

the remaining hamiltonian is transformed into the frame rotating around the z-axis with the free 
precession frequency we. By separating off the n part with the operator 

Urf, = Texp( -i [ $rr,.(f)dr’) (19) 

with 

X&((t) = u;‘u,‘.X&(t)UL u, (20) 

the system is transformed into a tilted frame. By separating the time evolution operator of the gradient 
field with 

with 

UG =eXp(-i ~+r(t.)d+ (21) 

*G(t) = &T,‘u, ‘*G (t)uL urf, 

= -W&T(~) 1 (rj(t)-roVzj9 

(22) 

one performs the transformation into a non-uniformly rotating frame which rotates with the 
frequency determined by the effective magnetic field gradient. The effective gradient is the magnetic 
gradient transformed by U,.r~ into a tilted frame (22). After all these transformations the remaining 
rf excitation operator 

Utie = Texp( -i ji %ri,(r’)df’) (23) 

includes the transformed hamiltonian 

2&(t) = UGIU;lUL’~O,(t)U,U,Uo. (24) 

Substitution of the expressions (18)-(23) into eqn. (5) gives the voltage as 
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U= ?$c (TrULU,U~~UoU~~IziUrIelUG1Ur?nlU;1UL’Z~jWlr(rj(t)))L~i. (25) 
,I 

Here the bracket ( )r represents the average over all other degrees of freedom except that of the spin. 
The purpose of the initial excitation rf pulse is to transform longitudinal into transverse magnetization 
either in the whole volume of the sample or in a certain selected part. In order to achieve a selective 
excitation, the rf pulse is applied simultaneously with the magnetic field gradient. The effect of such 
combined excitation on the spin system has been treated using different approaches.@‘) In the 
Appendix both exact and approximative calculations are given but in the following it will be expressed 
in general form as 

U&Zzj U$’ = Aj(t)Z,+Bj(t)Zyj+Cj(t)Z,j. 

The further evaluation with the gradient term gives 

UoUrfeZzjU,lelUol = M(rj)[ZXjcos(rpj(t)+aj)+ZYjsin(cpj(t)+aj)]+CjZzj 

with 

M(rj) = dm 

and 

(26) 

(27) 

(28) 

mj = tan -,Ai(t) 
Bj(r) 

(2% 

and where 

qjtt) = Y 
s 

’ Gdf)C~j(f)-roldf. (30) 
0 

Transformation into the tilted frame by Ud,, changes the sign of the operator I,. It also changes the 
sign either of I, or I, depending upon the phase of the x pulses and on the number of pulses before 
the time of measurement. In general we denote the sign of ZXj as P,(t) and of ZYj as P,(t) at the time t. 
By substitution of eqn. (27) into eqn. (25) we get 

UZzjU-’ = M(rj)[P,Z,jcoso,tcos[cpj(t)+aj]-P,Z,jsinwotsin[rpj(t)+crj] 

+P,ZYjsinwotCOs[~j(t)+ccj] +PYZYjCOSwotSin[~j(t)+ccj]] +P,P,CjZlj. (31) 

Taking the derivative with time in the expression (25), the emf induced in the receiver coil becomes 

h W 
u=7 O Z’, C gjTr ZxjZ,(r) (M(rj(O))~n(rj(t))cosCVj(t) +aj+PxPywotl)L. (32) 

k i 

In taking the time derivative all other modulations, except the free precession with an averaged 
frequency w. have been neglected. It is assumed that the system is in a strong Zeeman magnetic field 
and that all other spin interactions are small perturbations. 

Equation (32) represents the basic expression for the spin response in the case of measuring or 
imaging flow, and the effects of spin migration are determined by the parameters in this expression. 
The parameter lj is proportional to the longitudinal magnetization, and depends upon the velocity 
at which the inflowing spins have insufficient time to reach the equilibrium value 9,. In the saturation 
recovery sequence GY depends upon the repetition time tR between successive excitations, so that 

8=d,(l-exp(-:)), 

where Tl is the longitudinal relaxation time. In the inversion recovery sequence or under the condi- 
tion of adiabatic fast passage, where the magnetization has been reversed prior to the excitation, it 
behaves as 

%?=g,(,-2exp(-:)). (34) 
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Gent 

P+ 
FIG. 2. The shaping of the effective magnetic field gradient, Gen, by R pulses. 

The parameter TrZ,(t)ZXj(0) describes the spin-spin interactions. It modulates the free precession 
signal with additional frequencies depending upon the internal magnetic fields created by neighbour- 
ing spins. In high resolution spectroscopy it produces a number of lines belonging to chemically 
non-equivalent spins. Here the spin-spin interactions will be described only by the relaxation time 
T2 as 

TrZxjZxj(t) = TrZ:exp - + 
( > 

. 
2 

The parameter M(rj) in eqn. (32) becomes independent of the spin location when there is no magnetic 
field gradient and when Bit is uniform along the sample 

/ rr \ 
M = sink J0 B,,(t)dt). 

Under the same condition the phase LX is zero. 
In the ordinary free induction decay experiment in the absence of any x rf pulses, P, and P, are 

equal to unity, but in spin-echo experiments which use a sequence of 71 pulses their values may be + 1 
or - 1, leading to a change in the sign of the signal and the sign of the phase. But the rr rf pulses have 
a more significant effect on the magnetic field gradient. After each IC pulse the sign of the gradient is 
reversed (Fig. 2), so that the effective gradient can be written as 

%(r) = P,(r)P,(Wr). (37) 

2. SPIN MIGRATION 

The radius vector of the migrating spin rj changes with time. An averaged spin location can be 
expressed simply as 

(rj(t)) = rjo +vjt, (38) 

where vj is the averaged velocity vector of jth spin during acquisition time of the FID in the NMR 
experiment. In the spin response given by eqn. (32) the migration affects the receiving ability of the 
coil through the parameter wl,(rj(t)) and also changes the phase 

Vi(r) = Y 
s 

’ G&‘) @j(f) -rddf. 
0 
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The detailed treatment of the effect caused by variations in wlr is given in Section 3.2 where an FID 
in a non-uniform rf field is considered. Here only effects caused by motion of the spins through the 
magnetic field gradient will be considered. Neglecting the rf non-uniformity then the average only of 

Ccos tPj(t)+aj))L (39) 

needs to be evaluated. This can be done using the commulant expansion theorem.(32) If only the first 
two terms of the expansion are taken into account (3?) the expression (39) is transformed into 

(cos(Vj(t)+aj))L =exp(-5(t))CoS(((Pj(t))L+Clj), WI 

where 

c(r)=; ‘dtr 
s s 

’ dt,Ger(t,) (rj(t,)rj(t2)>LcG,r(tz), (41) 
0 0 

with 

and 

(42) 

with 

<(Pj(r))L = (rjo-roF(t)+vjf(t)9 

s 

f 

WI = Y Gidf)df, 
0 

(43) 

WI 

and 

s 

f 
f(t) = Y t’G,&‘)dr’. (45) 

0 

The expression (40) represents an attenuated oscillation, with the attenuation determined by the 
parameter r(t), which depends upon the spin coordinates at different times and is related to the 
randomization of spins caused by migration since it arises from turbulent Bow or microscopic self- 
diffusion. Applying a gradient along the x-axis, t(t) becomes 

c(t) = ; ‘dti 
s 5 

’ dt2GxeR(fl)GxetT(f2) (Xj(tl)Xj(t2))LC, (46) 
0 0 

where location correlation can be expressed by the velocity autocorrelation function 

(xj(tl)xj(t2))LC =' 
s 
m D,,(o) w2 

exp(Wh -t2Ndo 
I 

n -m 

where D,,(w) is the spectrum of the x-component of the velocity correlation: 

D,,(w) = 
s 

oa (~,~(O)o,~(t))~ eio* dt. (48) 

D,,(O), the value at w = 0, is identical to the self-diffusion coefficient, D. If the spectrum of the 
magnetic field gradient is defined as 

f 
G(o,t) = 

s 
G,&)exp(iwUdf, (49) 

0 

then by substitution of eqns (47)-(49) into eqn. (46) the attenuation parameter becomes 

t(t) =; (50) 

This is the convolution between the spectrum of the velocity autocorrelations and the spectrum of the 
effective gradient (Fig. 3). 
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e 

W l/to 

FIG. 3. The convolution between the spectrum of velocity autocorrelations, D(o), and the spectrum of the effective 
field gradient. 

Whenever the correlation time of the molecular dynamical processes, 70, is short compared to the 
time scale of the NMR measurement only the low frequency part of D,,(w) plays a role in eqn. (49). 
In this case t(t) can be approximated to 

(51) 

which is equivalent to the well-known result derived by Torrey (3) for spin-echo damping, if the 
Parceval identity is taken into account, 

5(r) = $ZL(O) 1; / j; GxdfW+u. (52) 

This means that eqn. (52) is just an approximation of the more general expression (50) which is also 
valid for long correlation times, especially when the dynamics of turbulent flow are considered. Thus, 
the measurement of self-diffusion by NMR might also yield information about the velocity auto- 
correlations, i.e. its spectrum. 

By replacing eqns (35) and (40) in eqn. (32) the emf of the receiver coil is 

h2W2 
U=y 

k 

‘P, c ~jM(rjo) Tr Zzjexp 
j 

x~~(rj~+Vj~)cos[F(t)(rj~-ro)-f(t)Vj+crj+P,P,wot], (53) 

which can be written in the continuum limit as 

h202 
U=y ’ P, Tr Z: 

s 
d3rW(r)M(r)p(r) exp - 

1, 
& - tlr, t) 

2 > 

x~~(r+v(r)t)cosCF(t)(r-r,)+f(t)v(r)+cc(r)+P,~,w,t]. (54) 

Here the spin density is defined as 

p(r) = C6(r-rjo), (55) 

and Tr Z: means the trace over one spin. 
In eqns (53) and (54) Bi, of the K pulses is assumed to be uniform in the excited part of the sample. 

This means that the active region of the transmitter coil should be larger than the width of the selected 
slice, and spin migration should be slow enough to avoid an appreciable outflow of spins from the coil 
in the time of acquisition of the FID. These restrictions are related only to the 7c refocusing pulses; the 
magnitude of the initial rf pulse may be non-uniform along the sample. A detailed analysis of the case 
of spin refocusing by non-uniform K pulses gives a spin response which is much more complicated 
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than eqn. (54). Such a case is treated later by considering a spin-echo experiment on a flowing liquid. 
However, with the restriction discussed above, eqn. (53) is a general description of the spin response 
of the fluid. There are various parameters dependent upon the flow velocity which can play the 
dominant role in any particular chosen experimental procedure. 

In the NMR imaging experiment the emf signal given by eqn. (54) is converted into a free induction 
signal by two phase sensitive demodulators. This gives two signals U,J, and Ud2 which can be written 
in complex form as 

UD=~dl+Ud2=~jhT( r,v,t)M(r)exp{i[F(t)(r-r,)+f(t)v(r)+cc(r)]}d3r, (56) 

with 

h2W2 
K = GTrIzj 

‘c 

and 

dr, v, t) = B(rbh(r + v(r)t)p(r) exp ( - T$ - t(r, t) . 
2 > 

This expression, which is applicable to various imaging schemes after Fourier transformation, gives 
us information about the distribution of spin density, the distribution of relaxation times Tl and T, 
and also information about random flow l(t) or the velocity distribution of the flow. The velocity 
distribution can be obtained either from incomplete magnetization recovery or transfer of magnetiza- 
tion from a, the effects due to the rf field non-uniformity seen in air and M(r), or are found from the 
phase changes exp (ifv). These particular cases will be considered in detail later in this review. 

3. MEASUREMENT OF FLOW VELOCITY 

3.1. Magnetization Transfer 

The parameter B in eqn. (54) is a measure of the amount of spin longitudinal magnetization. It is 
also called the spin temperature. In the static magnetic field in the absence of an rf field, a approaches 
its equilibrium value as 

where lo is determined by the static magnetic field B,. In eqn. (54) the parameter B(r) is the 
magnetization at the moment of spin excitation, i.e. at the time when the first rf pulse is applied. Its 
spatial distribution may depend upon the history of the sample. For example, if prior to the 
observation, the spins in the flowing fluid had been saturated by an rf pulse then after a time which is 
shorter than T,, fresh spins, unaffected by the saturating pulse, enter the active region, then D is 
proportional to the velocity distribution (Fig. 4), B(r) RS u(r).(9917p34) 

In the time-of-flight method (9) the transfer of magnetization between two coils is used for the 
determination of the flow velocity. The first coil labels the spins and the second coil detects their time 
of flight (Fig. 5). In these two examples, the spins have sufficient time to become fully polarized before 
entering the coils. Some earlier techniques for flow measurement(‘) used the effect of incomplete spin 

FIG. 4. Inflow of the fresh spins in the coil. 
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FIG. 5. The arrangement of the coils in the measurement of flow by the time-of-flight method. 

Magnet 

L e V 

rt 

FIG. 6. The position of the coil in the magnet in flow measurement by the method of incomplete magnetization. 

magnetization. If the spin path from the entrance of the magnet to the rf coil is L (Fig. 6), then 

a=B,(l-exp(-$)). (60) 

Using more sophisticated rf pulse sequences the same effects can be observed in a different situation. 
Since this has been reviewed by Jones and Child,‘34’ more attention will be paid to other parameters 
of the flow which affect the NMR signal. 

3.2. Flow in an Inhomogeneous rf Field 

The rf field non-uniformity along the sample, which affects the parameter wl,(rj(t)) for the receiver 
coil and M(rj) for the transmitter coil, plays a role in almost any flow experiment,‘45) because any 
finite length of the coil provides a kind of rf field inhomogenity. Here we shall consider the effects of 
the flow where only the spatial dependence of the rf field is involved, assuming that the spins are 
completely polarized before entering the coil and that there is no magnetic field gradient. Thus eqn. 
(32) can be reduced to 

h W 
U=7 1, O 10 C Tr~,j~,(t) (wl,(rj(t))M(rj(o))), COSWoG (61) 

j 

where 

[S 

f 
M(rj(0)) = sin wl,(rj(f)>f)dt’ (62) 

0 1 
and 

Wt = Y&@j(tX th (63) 

B,, is the magnitude of the transverse magnetic flux density in the transmitter coil. The spatial 
dependence of air (rj(t)) and M(rj (0)) can be expanded as 

%@j) = & 

s 

m w,(q) explLiqrj1 d3qv (64) 
m 

and 

M(rj) = _zln MhkwCiqrJ d3q. (65) 
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FIG. 7. Inhomogeneity of the rf field produced by a solenoidal coil. 

By substitution of eqns (64) and (65) into eqn. (61) and assuming that the spin-spin interactions 
described by the relaxation time T,, are uniform along the sample, one obtains 

h2W2 
U=~C?& 

4ni, s d3q d’q’o,,(q)M(q’) 1 (exp[iqrj(t)+iqrj(0)])L Tr Zz exp (66) j [ 1 - f cos w,t. 
2 

The average of the exponential function in eqn. (66) can be expressed to the second order of approxi- 
mation by the commulant expansion(32) 

(expCiqr(Q + 4@9lh = expCi~<Wh +q’Wh -hWWhd~. (67) 

By assuming eqn. (38) and that 

W)r(O))Lc = 2!& (68) 

and that the spin density is uniform then 

A%? 
U= -$Bo TrZ~cos(q,t) 

s 
wlr(q)M(-q)exp 

[ 
- $ - qQqt+iqvt 1 d3q. (69) 

C 2 

This is valid only for plug flow where the velocity is independent of spin location. In eqn. (69) an 
additional damping appears which is due to tiolecular self-diffusion, D, and the phase shift caused by 
the flow velocity, v.(~~) 

In the case where the rf field distribution of the transmitter/receiver coil system is uniform within 
the length of the coil and zero outside it (Fig. 7) and with the direction of flow along the coil, then the 
free induction signal is 

U = h2wC -_SA?‘, TrZZcos(o,t)exp - + ol,M(l-ut). 
[ 1 (70) 

k 2 

The spin outflow from the active region of the coil brings about an additional reduction of the signal 
and which is described by the factor (I- ot) in eqn. (70). 

I 1 coil 

FIG. 8. The arrangement of transmitter and receiver coils in flow measurement by the method using a linear 
gradient of the transmitter rffield. 
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FIG. 9. The oscillations in the FID produced by a flowing sample in a magnetic field gradient. 

The next example is a transmitter coil which produces an rf field with an almost constant field 
gradient along the sample 

B1, = G,(r -ro). (71) 

This is produced by a reversed Helmholtz coil (Fig. 8). The receiver coil is usually a solenoid with a 
uniform rf field within the length of the coil. Equation (62) gives 

M(q) = inCh(q+q,)exp(- iq&-a(q -40)ewkhxo)l, (72) 

where 

and from eqn. (66), 

qo=y T 
s 

G,,(t) dt, (73) 
0 

U = 2~SBoTr1~cosooiexp[ - ($ + qoDqo)~]sinqo~sinqo(u~-r,). (74) 

Thus, the emf in the receiver coil is modulated by the frequency q,u and attenuated by q,Dq, in 
addition to the attenuation by the normal 7” decay. Here S is the sample cross-section. 

3.3. Flow in a Magnetic Field Gradient 

In the simplest case the sample is excited by a n/2 rf pulse followed later by a gradient of the 
magnetic field along the receiver coil axis, G,. The emf is recorded during the time that the gradient is 
turned on (Fig. 9). Neglecting self-diffusion and assuming complete magnetization and uniform spin- 

FIG. 10. Flow measurement by the gradient reversal method. 



density, the eqn. (56) gives 
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Uo = K’ 
s 

wl,(x,y,z+ut)exp 
[ 

- f + i(yG,z(t-z)+)yG,u,(x,y)(t*-T*)) 
2 1 dxdydz. (75) 

The signal for a bulk sample with a non-uniform distribution of the flow velocities can be obtained 
by integration of eqn. (75) which gives a more complicated algebraical expression. The term 
exp(iyG,ut*/2) gives rise to an increasing frequency as observed by Lent et ~1.‘~~) 

The spin dephasing caused by the magnetic field gradient G, can be removed without applying a 
n rf pulse by reversing the gradient after a certain period (Fig. 10). If the magnitude and the duration 
of the positive and negative gradient pulses fulfil the condition 

s 

TZ 
F,(L) = Y G,(t) dt I 0 (76) 

co 

then the signal dephasing is caused only by flow 

7 fiv, = VZY 
s 

G,(t)tdt= -yG,,(~,-r,)(T,-T,)o2, (77) 
10 

and the FID signal is 

Uo = K’ 
s 

d3rW1,(x,y,z+u2t)exp 
[ 

- f - iyG,,(T-T,)(T,-T,)u,(x,Y,z) 
2 1 . (78) 

The treatment of the experiments which have more rf pulses applied together with the magnetic field 
gradient, and where B, is not uniform, is algebraically more complicated in the case of fluid 
flo~.(‘~*‘~,~~) However, our consideration will be limited to the situation where the rf field magnitude 
is uniform inside the solenoid of the length 1. As before it is assumed that the rf field is completely 
uniform in the region 0 < z < 1 and zero outside of this region. In the spin-echo experiment where 
the excitation rf pulse is followed after a time T by a rf pulse of length close to that of a ?rrf pulse, 
finite spatial extent of both pulses must be taken into account. If the magnetic field gradient is weak 
compared to the magnitude of the rf pulses then the time evolution operator for both rf pulses [eqns 
(19) and (23)] can be expressed in the same way as 

with 

' 4jft) = Y 

s 

B,,(rj(fhf)df. 6-w 

0 

Thus dj(t) depends on the spin location at time zero, rj(0), for the exciting pulse and at time T for the 
7~ pulse, rj(z). Thus the effect of an rf field on thejth spin depends upon the location of the spin at time 

Vt V-C 

FIG. 11. The signals produced in the transmitter coil by the rf pulses, MI and M,, and the signal in the receiving 
coil, qr, seen from the frame moving with the spins. 
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of pulse application. The initial pulse excites the spins presently in the solenoid, while the rc pulse 
inverts only those spins which have not left the solenoid before time r. Substituting eqn. (79) in eqn. 
(25) then eqn. (32) becomes 

U= C$C aj ~r~~jZ~j(t)(~l(rj(o))M,(rj(~))Wlr(rj(t))COSC~j(t)+a,j+a,j-~,cl). t81) 
j 

If one assumes a uniform spin density and neglects self-diffusion then eqn. (81) is transformed in the 
continuum limit into 

d3rw,,(r+vt)M,(r)M2(r+vt)cos[F(t)(r-r,)+f(t)v(r)+a(r)-~ot]. 

632) 

In the case when both transmitter and receiver coils are both solenoids the functions alrr Ml and M2 
have a similar form but are shifted in space with respect to each other (Fig. 11). The shift depends 
upon the direction of the flow, and therefore some precaution must be exercised when integrating eqn. 
(82). If the coil is symmetrical around the z-axis with uniform Br, inside it and assuming that static 
G,, as well as pulsed G,, magnetic field gradients are applied along the z-axis then eqn. (82) leads to 

h2W2 
‘a0 TrZ,Z,(t);wl,M,M~ 

s 

l/2 - “,L 

CT=7 cos{~G,$~ - 0 (z -zo) +~,(w,z) 
k -f/2 

~[G,,(t~-~t~)+G~~~A]-~~t}dxdydz (83) 

for flow along axis. If the flow is reversed then the integration in eqn. (83) goes from -1/2+ut to l/2. 
A in eqn. (83) is the interspacing between two gradient pulses and 6 is their width. For plug flow where 
the flow velocity is uniform eqn. (83) is 

U wexp -& ( 1 
1 cos{&z&--t) +u,yCG,,t(z-t)+G,,6Al}, (84) 

1.00 
= 
L 

;;; 

0.80 

0.60 

0.40 

\ ‘2/ 
; GJ(2z - t) 

yGLt = 80 

yGVr*= 0.0 

20/L = 0.5 

FIG. 12. The spin-echo signal from a stationary liquid. 
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4. J?LOW IMAGING 

4.1. Imaging by Magnetization Transfer 

The first NMR imaging of the spatial profile of velocity in laminar flow in circular and rectangular 
pipes was obtained by Garroway. (l’) The saturating 71/2 rf pulse is followed by a n/2 rf excitation pulse 
after a time chosen to be greater than T;” but much less than the longitudinal relaxation time Tl. When 
the static magnetic field is applied in the z direction perpendicular to the direction of the fluid flow, 
then the fresh spins, unaffected by the first pulse enter the active region and the observed signal is 
proportional to 

U = z s dz s dypCy, z)u,(y, z)cos(w,t + yG,zt). (88) 

The same idea has been used in many imaging techniques(27*38-42~47*48) where more sophisticated 
sequences allow the imaging of a two-dimensional spatial velocity distribution. In the saturation 
recovery sequence the initial rf pulse saturates only the spins in a thin selected slice. During the 
subsequent waiting period, the spins partially recover by Tl relaxation, but more importantly, they 
advance through the slice by a distance I = VT. Application of the selective detection rf pulse results in 
a signal that is stronger than it would be in the absence of flow. In the simplified case where the slice 
width I is assumed to be defined exactly the value of a at the time of the excitation rf pulse is given by 

Thus, the signal is induced by the fresh spins entering the selected slice as well as by the remaining 
spins which have partially recovered from the saturation. Thus, when imaging the body, vessels 
carrying rapidly flowing blood appear brighter than those containing slowly moving or stationary 
blood. 

In the spin-echo sequences, the extent to which spins in the imaging slice are replaced by unlabelled 
spins, both between successive cycles and during the pulse interval must be considered in order to 
calculate the effect of flow on signal intensity. 

Another version of the same technique involves the selective excitation of a number of parallel slices 
in successive time intervals and then monitoring of the magnetization transfer between them. Thus, 
the images obtained by this technique are a mixture of the velocity and density spatial distributions 
(if neglect Tl and T,), and discrimination between them is not always straightforward. 

4.2. Flow Phase Encoding 

The Fourier transformation of eqn. (56) with respect to f is 

F(r,v) = A(r, v, T2(r)) exp[i(fv(r) + cc(r))] = R + ix. (91) 

Using an appropriate phase-cycled sequence(43-45) means that c[(r) can be neglected and the velocity 
vector spatial distribution can be formally calculated from 

(92) 

The gradient sequence determines which component of the phase factor fv will be accumulated in the 
time of the FID and, thus, it also determines which component of the velocity will be shown on the 
NMR image. This phase image is a pure image of the spatial distribution of the velocity without any 
additional mixing of other parameters like spin density or relaxation rates with the spatial 
distribution. The method can be interlaced(44) into a conventional NMR imaging method and the 
planar or even three dimensional distribution of the flow velocity can be. visualized. The application 
of the flow phase encoding will be demonstrated in the next section by combining it with the spin warp 
imaging sequence. 
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Gzl Gx 

c 

t 

FIG. 14. The spin warp imaging sequence modified for the measurement of the flow phase encoding; measurement 
of the z-component of velocity. 

4.3. Flow Phase Encoding by the Spin Warp Technique 

The spin warp imaging sequence (26) is similar in principle to that proposed by Kumar et aLCz4) 
called Fourier Zeugmatography. It uses spectrally shaped rf pulses in the presence of the field gradient 
to excite spins in a thin slice of the three dimensional sample and a sequence of gradient pulses in two 
perpendicular directions parallel to the selected slice in order to discriminate the planar distribution 
in the slice (Fig. 14). When used for flow phase encoding it is slightly modified. The modification 

concerns the gradient which brings about a phase shift related to the required component of the 
velocity vector. The sequence used for imaging the velocity component perpendicular to the selected 
plane is shown in Fig. 14. The only difference lies in the initial gradient pulse for which the positive 
part is prolonged and the negative part is amplified. If other gradients in the perpendicular directions 
are sufficiently weak then the dephasing fv is dominated by the component of the velocity perpen- 
dicular to the slice. Whenever velocity components parallel to the plane of the slice are imaged, a 
similar gradient but in the direction parallel to the slice should be applied, somewhere inside the 
original spin warp sequence (Fig. 15) and before the detection period has started. 

Imaging of the velocity component perpendicular to the slice (z-direction) will now be considered 
in detail. The initial gradient consists of a positive part Gzl, from t = 0 to t = 7, and of a negative part, 
- Gz2, from t = 7 to t = t,, such that 

and that 

t’l 
F, = Y 

s 
G,(t) dt = 0 (93) 

0 

fz=y I0 s tG,(t)dt = -yGl17to (94) 
0 

FIG. 15. The spin warp sequence imaging sequence modified for measuring of an arbitrary component of velocity, vt. 
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according to (77). It is approximated that 

Ii=_&=0 (95) 

since f, is dominant. The spin phase twist is introduced by adding a y-field gradient, after the selective 
excitation and before the readout. In each successive sequence, G, has the same slope but its amplitude 
changes by equal steps from zero to its maximal value so that 

with 

FJ’ = V, (96) 

s 

f 

gy = Y G,(f) df. (97) 
0 

The gradient G, (Fig. 14) is applied in the readout period. Thus, the observed signal is the function of 
two parameters, t and n, and is given as 

UD = KSp,ff(x,Y,z)M,(z-z,)eXpCi(yG,(X-x,)(t-t,)+g,nOt-Y,) 

+f,u,(X,y,z)+C(1(z--ZO))ldxdydz. (98) 

The factor M,(z-z,) and the phase shift ccr(z-zO) are determined by the rf field and gradient G,,. 
Their approximative calculation is given in the Appendix. In fact M, which determines the slice size 
is non-zero only in the thin region around z = ze. 

The Fourier transformation of eqn. (98) with respect to time t 

1 

s 

70 
Pr(w,. n) = - u,(t, n) eXp[iw,t] dt (99) 

ro 0 

gives the complex function which depends upon n and the coordinate x, and also upon the position 
of selected slice z = z. 

Pi(x,z,,n) = K 
s 

~~i~(x,~,z)Mi(z-z~)Mz expCf&&-y,) 

+a,+cr,+f,v,(x,y,z)]dxdydz. (100) 

In eqn. (100) 

M,(a) = dm and , (101) 

where the functions A and D depend on re, the time interval used for data collection. If r. is longer 
than the relaxation time T, then we get the absorption signal 

A(a) = 
Wo 

1+ (rGG,)* 
and the dispersion signal as 

D(a) = G%Gl~o 
1 + (yaT,G,)* 

But if 7. is shorter than the relaxation time T,, these functions are 

(102) 

(103) 

A(a) = 
sin yaGxTO 

yaG,zo 
(104) 

and 

D(a) = 
1 -cos yaG,r, 

yaG,To . 
(105) 
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In the last case M, and ~1~ have the simple forms 

M,(a) = 
YaGxzO 

2 

and 

WGO 
cz2(a) = - 2. 

After Fourier transformation with respect to the parameter n 
_ N 

~2(x,z,wy) = 4 2 g-,(x,z,n)exp[-inw,] 

205 

(106) 

(107) 

(108) 

one gets a result which is the function of three spatial coordinates 

with 

and 

clg(a) = (N + l)g,a/2. (111) 

N is the number of steps for G,. The functions M,(z-z,), M,(wJyG,-x+x,) and M,(w,,/g,-y+y,) 
can be approximated as delta functions and then the result of integration of eqn. (109) is 

F(r) = peff ( g + “O’S + Yo,Zo mI )exp[$u.(f$ + x0,2 + Yo9z0)] (112) 
x 

whose magnitude is the planar spin density distribution in the planar slice, while the phase is 
proportional to the planar distribution of the z-component of the velocity 

1 
u * = --tan-’ !!R!c!a @z,~oto [ 1 R eF(r) (113) 

Figure 16 shows the expected image of the spin density and flow velocity in the human body. 

Y(XY) v(x,yl 

FIG. 16. The expected NMR image of the spin density distribution and the flow velocity distribution obtained by 
the flow phase encoding technique. 
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APPENDIX 

In the selective excitation experiment only part of the spin magnetization interacts strongly with 
the rf pulse. This can be achieved by applying a linear magnetic field gradient over the sample, for 
example, along the z-axis, simultaneously with the excitation rf pulse. Thus only the spins in the thin 
slice in the x-y plane are at exact resonance and capable of being rotated by an rf pulse. Spins on 
either side of this plane will be progressively less affected the further they are from this isocromatic 
plane. Using the density matrix approach, an exact solution can be found only in the case when the 
amplitude of the rf field and the amplitude of the magnetic field gradient are constant during their 
simultaneous application. In this case, the transformation into the frame which rotates with w,, 
around the z-axis can be achieved by separating the time evolution operator into 

v(l) = ~Ztt)Urf+G(t) (AlI 

where Uz has its usual meaning but 

Vrf+G(t) = exP ix (A$zj+w,,lxj)t 
[ i I 

, 

with 

Aj = yG,(zj -zO). 

642) 

643) 

The Hamiltonian in the commulant of eqn. (A2) is time independent and there is no time ordering as 
in eqn. (19). Thus, Urf+G transforms the longitudinal magnetization to give 

<Ix> 

FIG. 17. The spatial distribution of the transverse magnetization induced by x/2 pulse: ____ exact calculation 
and calculation by the zeroth order term of the Magnus expansion. 
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---- exact 

FIG. 18. The spatial distribution of the transverse magnetization induced by n pulse: ____ exact calculation 
and calculation by the zeroth order term of the Magnus expansion. 

The x and y components of the magnetization for a a/2 rf pulse (Fig. 17) and for a n rf pulse (Fig. 18) 
are evaluated from eqn. (A4). 

However, in general the selective rf pulse is not rectangular but is modulated with a desired spectral 
distribution. In such cases the evaluation of eqn. (A4) is not so straightforward because the presence 
of the time ordering necessitates the use of approximative methods. In the general case, when both 
Bit and G, depend upon time, we can make the transformation into a non-uniformly rotating frame 
as before 

u(t) = UZ (t) UC (t) u,(t), (A3 

where all terms have the usual meaning as in eqns (18), (21) and (23). The time evolution operator 
requires time ordering and here we shall expand it into a Magnus series,t3r) and by taking into account 
only the zeroth approximation of the expansion 

U$)(t) = exp(iF,(t)) = exp iI aj(t)Z,+bj(t)l, 
j 1 

with 

s r 

aj(t) = w1t(t)COs4’j(t)dt 
0 

s 
T b,(t) = - ml,(t) sin V,(t) dt, 

0 

(‘46) 

(A7) 

(A8) 

and 

Vj(t) = Y s ‘G,(f) (z(f)-zo)df. 
0 

(A9) 
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Using this we can calculate 
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upz, up l = c Aj(t)Zxj+Bj(t)Zyj + Cj(t)Zzj 

with 

A,(t) = &sin ,/‘i$G$ (All) 

and 

B,(t) = - &sinJ&$ 

Cj@) = cos Jm. 

At the end of the rf pulse at t = ‘t the magnetization is rotating as 

(AlO) 

6412) 

(A13) 

u 
Grfzrf 

U’O’Z (,p-‘&’ = C CAj@) COS Vi(t) -Bj(z) sin cPj(z)IZxj 
j 

+ [Bj(Z)cOS qj(S) + Aj(z) sin ~p#)]Z,j+ Cj(~)l,? (A14) 

For a rectangular rf pulse and a static gradient the equations (A7), (A8) and (Al l)-(A13) become 

aj = colt sin Ajt 

bj = ol,(l -cosAjt) 
(AW 

and 

Aj = -sin[~sin~]sin~ 
Bj = -sin[~sin+]cos+ 
Cj = cos(FsinT) 

(‘416) 

Thus the magnetization given by eqn. (A14) after the excitation behaves as 

UG u$‘z, u$- ’ u, ’ = >( Z,cos$ - I,sing) + Z~jcos~~sin~)]. (A17) 

Figures 17 and 18 both show the transverse component of the magnetization after selective excitation 
calculated exactly and by the zeroth order approximation of the Magnus expansion. There is only a 
small difference in the results of the two calculations for the n/2 rf pulse, but this difference increases 
significantly when the pulse length is longer than a K rf pulse. 
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