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Abstract

The aim of this paper is a construction of quartic parametric polynomial interpolants of a circular arc, where two boundary points

of a circular arc are interpolated. For every unit circular arc of an inner angle not greater than 2π we find the best interpolant,

where the optimality is measured by the simplified radial error.
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1. Introduction

Circular arcs are basic ingredients of several graphical and control systems, so their approximation by parametric polynomials

is important in Computer Aided Geometric Design (CAGD), Computer Aided Design (CAD) and Computer Aided Manufactur-

ing (CAM). Usually we construct parametric polynomial approximant of a circular arc by interpolation of some corresponding

geometric quantities. This usually include interpolation of boundary points, corresponding tangent directions, signed curva-

tures,... The results are so called geometric parametric polynomial interpolants (Gn interpolants), which can be combined to

form geometrically smooth spline curves. One of the standard measures in this case is the radial distance dr, measuring the

distance of the point on the parametric polynomial to the corresponding point on the circular arc in the radial direction. Under

some assumptions the metric dr is equivalent to the Hausdorff metric ([1] and [6]). Hence to find the best interpolant of the

unit circular arc c with respect to the Hausdorff metric, we have to find a polynomial p = (x, y)T which minimizes the value

dr(c,p) = maxt
∣∣‖p(t)‖ − 1

∣∣ = maxt
∣∣√x2(t) + y2(t)− 1

∣∣. In the very first paper in which the optimality was proved [8], Mørken

observed that the distance dr is rather cumbersome to work with, so he suggested that instead of the radial distance, we should

use the simplified radial distance dsr defined by dsr(c,p) = maxt
∣∣x2(t) + y2(t) − 1

∣∣. The involved function x2 + y2 − 1 is a

polynomial, which significantly simplifies an analysis of the optimality of the best interpolant.

There are many papers where different types of geometric approximations are considered. But only a few of them are dealing

with the optimality of the solution. Mørken considered the parabolic G0 interpolation of a circular arc [8]. Hur and Kim analyzed

the cubic G1 and the quartic G2 cases [4]. In this three cases there is only one free parameter involved. Two parametric cases

were considered by Vavpetič and Žagar in [9] where the optimal solutions for the cubic G0 and the quartic G1 interpolants were

found. So far there are no results on the optimal solution of the quintic or higher degree interpolants. In all cases the optimality

order 2 3 4

G0 Mørken (1991) Vavpetič, Žagar (2019) this paper

G1 Knez, Žagar (2018) Hur, Kim (2011) Vavpetič, Žagar (2019)

G2 – Knez, Žagar (2018) Hur, Kim (2011)

G3 – – Knez, Žagar (2018)

Table 1: The list of results where the optimality of the solution was proved.

is measured by simplified radial distance. The only paper where the optimality of the best interpolant is proved according to the

real radial distance is [10]. Let us also mention the Gn interpolation of order n + 1. For every circular arc and for every n ∈ N
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there are only finitely many Gn interpolants of order n+ 1, and for many circular arcs there is only one such interpolant. Hence

there is nothing much to optimize, the only question is the existence of the optimal interpolant, which was positively answered

by Knez and Žagar [7]. In this paper we consider the only remaining case of order less than 5, i.e., the quartic G0 interpolation.

The paper is organised as follows. In Section 2 we review basic definitions and describe the idea of the construction of the

best G0 interpolant of order n. In Section 3 we use our method to confirm known results about the cubic interpolations and

also extend our results to circular arcs with an inner angle greater than π. The main part of the paper is Section 4, where we

construct the best quartic interpolant of a circular arc and we prove its optimality according to the simplified radial distance. In

Section 5 we give some concluding remarks and suggestions for possible future research.

2. Preliminaries

Let 0 ≤ ϕ ≤ π
2 and let c : [−ϕ,ϕ] → R2, c(t) = (cos t, sin t)T , be the standard nonpolynomial parametrization of a unit

circular arc. We’d like to find the best approximation of c by polynomial curve p : [−1, 1] → R2 of degree n ∈ N for which

p(±1) = (cosϕ,± sinϕ)T . It is convenient to write p = (x, y)T , where x and y are polynomials of degree at most n. We shall

choose the Bernstein-Bézier representation of p, i.e.,

p(t) =

n∑
j=0

Bnj (t) bj , (1)

where Bnj , j = 0, 1, . . . , n, are (reparameterized) Bernstein polynomials over [−1, 1], given as

Bnj (t) =

(
n

j

)(
1 + t

2

)j (
1− t

2

)n−j
,

and bj ∈ R2, j = 0, 1, . . . , n, are the control points. Since we consider G0 interpolation, we have b0 = (cosϕ,− sinϕ)T and

bn = (cosϕ, sinϕ)T . The circular arc is symmetric over x axis, therefore the best interpolant possesses the same symmetry, i.e.,

bn−j = r(bj) for all j = 0, 1, . . . , n, where r : R2 → R2 is the reflection over x axis. Therefore all possible sets of control points of

desired interpolants can be described by n− 1 parameters. The simplified signed radial error function ψ will be defined as

ψ(t) = x2(t) + y2(t)− 1 = ‖p(t)‖22 − 1, t ∈ [−1, 1],

where ‖ · ‖2 is the Euclidean norm. The function ψ also depends on ϕ and n − 1 parameters which describe control points and

consequently an interpolant p. Our goal is for a fixed ϕ find an interpolant p; i.e., find n− 1 parameters for which the maximum

mp = max{|ψ(t)| ; t ∈ [−1, 1]} of the corresponding simplified error function is as small as possible. Note that a maximum mp

can be small but the polynomial curve p is far to be a good interpolant. Namely, according to the definition of ψ a polynomial

curve p with small mp can be good interpolation of the circular arc d : [−ϕ,ϕ − 2π] → R2, d(t) = (cos t, sin t)T . Note that the

mid point p(0) is always on the x-axis, so a necessary condition on p to be a good interpolant of c is that the point p(0) lies on

the positive half of x-axis. And if p(0) lies on the negative half of x-axis then p can be viewed as an interpolant of the arc d.

Therefore an analysis of the function ψ gives us the best interpolant of the circular arc c with the inner angle 2ϕ ∈ (0, π] and

also the best interpolant of the circular arc d with the inner angle 2(π − ϕ) ∈ [π, 2π].

In the case of G0 interpolant, the corresponding simplified error function ψ has zeros at ±1. Eisele showed [3] that the best Gk

interpolant of order n (if it exists) is an alternant with 2(n− k − 1) + 1 extreme points, i.e., the corresponding signed simplified

error function has 2(n−k−1) + 1 local extrema of the same absolute value and sequential ones have different sign (see Figure 1).

In the case of G0 interpolants which is considered in this paper, the simplified error function of the best interpolant of order n is

of the form χ(t) = µT2n(ζnt), where T2n is the Chebyshev polynomial of order 2n, ζn = cos π
2n is its largest zero and µ ∈ R \ {0}

is a multiplicative constant.

The candidates for the best interpolants are those which have the corresponding simplified error function of the form χ. Hence,

to find all candidates for the best interpolant of a circular arc of order n we have to solve the system of equations ψ(ui) = 0,

where ui = (cos π
2n )−1 cos( 2i+1

2n π), i = 1, . . . , n − 1, are zeros of the function χ on the interval (0, 1). This is a nonlinear system

of n− 1 polynomial equations for n− 1 parameters (which describe control points of an interpolant). The system is solved using

Gröbner basis. Namely, we find a Gröbner basis for the ideal 〈ψ(ui) | i = 1, . . . , n − 1〉 for some monomial order, such that one

element of the basis is a polynomial f in only one variable (of order n). All interpolants obtained as a solution of the above
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Figure 1: The graph of the error function of the best quartic G0 interpolant.

system of equations induce error functions of the same shape (see Figure 1), which differ only by the multiplicative constant

µ. To find the best interpolant of the circular arc c (the circular arc d) we have to find the zero of f , such that the mid point

p(0) of the induced interpolant p lies on the positive (negative) half of x-axis, and that the absolute value of the corresponding

multiplicative constant µ is the smallest possible. Note that µ is the smallest possible if and only if the absolute value of the

leading coefficient (or any other coefficient) of the simplified error function is the smallest possible.

In what follows many mathematical expressions are considered as polynomial in cosϕ, so it makes sense to define new variables

c := cosϕ and s := sinϕ.

3. The cubic G0 case

This case was considered in [9] but only for a circular arcs with the inner angle not greater than π. In [9] we used a purely

geometric argument to prove the existence of the best interpolant. Here we use an appoach with Gröbner basis which can be easier

generalised to the quartic G0 case. The control points for an arbitrary cubic G0 interpolant are b0 = (c,−s)T , b1 = (ξ,−η)T ,

b2 = (ξ, η)T b3 = (c, s)T , and the corresponding signed simplified error function is

ψ(t) =
1

16
(t2 − 1)

(
(3η − s)2t4 + (16s2 − 9(η + s)2 + 9(ξ − c)2)t2 + (16− (3ξ + c)2)

)
.

The simplified error function of the best interpolant is of the form χ(t) = µT6(ζ3t) = c(t2−1)(t2−u2)(t2−v2), where u =
√

3−1

and v = 2 −
√

3. To get parameters (ξ, η) of the best interpolant, we have to solve the system of equations: ψ(u) = ψ(v) = 0.

From (1− v2)2v2ψ(u)− (1− u2)2u2ψ(v) = 0, we get

η =
1

s

(
2 +
√

3

8
(3ξ + c)

2 − ξc− 3− 2
√

3

)
, (2)

provided s 6= 0. To keep the symmetry we use (2) in the equality ψ(u)− ψ(v) = 0. We get one solution ξ = c and the remaining

ones satisfy the equality

f(ξ) := 243ξ3 − 27c
(

11− 16
√

3
)
ξ2 − 3

(
32
(

1 + 2
√

3
)
− 3

(
81− 32

√
3
)
c2
)
ξ − 32

(
13 + 2

√
3
)
c−

(
163− 112

√
3
)
c3 = 0. (3)

For all c ∈ (0, 1) we have − 1
3 (4 + c) < − 1

9 (8
√

3− 1)c < − 1
3c < c < 1

3 (4− c) and

f
(
− 1

3 (4 + c)
)

= −64
(

7− 4
√

3)
)

(1 + c)3 < 0,

f
(
− 1

9 (8
√

3− 1)c
)

= 256
3 c(1− c2) > 0,

f
(
− 1

3c
)

= −64
(

6 + (7 + 4
√

3)c2
)
c < 0,

f(c) = −256(2 +
√

3)c(1− c2) < 0,

f
(
1
3 (4− c)

)
= 64

(
7− 4

√
3
)

(1− c)3 > 0.

Therefore the cubic polynomial f has zeros on the intervals
(
− 1

3 (4 + c),− 1
9 (8
√

3− 1)c
)
,
[
− 1

9 (8
√

3− 1)c,− 1
3c
]

and
(
c, 13 (4− c)

)
.

This is also true for c = 0, sice in that case f has zeros ± 4
9

√
2
(
1 + 2

√
3
)

and 0.
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The necessary condition on a polynomial p = (x, y) to be good interpolant of c is 0 ≤ x(0) = 1
4 (3ξ + c), hence ξ ≥ − c

3 . We

have only two candidates ξ = c and the zero of f on the interval
(
c, 13 (4− c)

)
. The constant coefficient of ψ is − 1

16 (16−(3ξ+c)2),

which is negative and increasing on
(
− c

3 ,
1
3 (4− c)

)
. Therefore the best interpolant of c is induced by the only zero of f on the

interval
(
c, 13 (4− c)

)
.

The necessary condition on a polynomial p = (x, y) to be good interpolant of d is 0 ≥ x(0) = 1
4 (3ξ + c), hence ξ ≤ − c

3 .

For c 6= 1, i.e., 2(π − ϕ) 6= 2π, we have only two candidates. The constant coefficient of ψ is negative and decreasing on(
− 1

3 (4 + c),− c
3

)
. Therefore the best interpolant of d is induced by the only zero of f on the interval

(
− 1

3 (4 + c),− c
3

)
.

In the last case when we interpolate the whole unit circle we still have the necessary condition ξ ≤ − c
3 = − 1

3 . We can not

use (3), because the equation (2) is not valid for s = 0. But from the equality (1− v2)2v2ψ(u)− (1− u2)2u2ψ(v) = 0 we get only

one desired solution ξ = − 1
9 (8
√

3− 1) and from ψ(u) = 0 we get η = 4
9

√
38 + 22

√
3.

We have proved the following theorem.

Theorem 1. For every ϕ ∈ (0, π] there exists the unique pair of parameters (ξ, η) which induces the best polynomial interpolant of
a circular arc with the inner angle 2ϕ. If ϕ ∈ (0, π2 ], then ξ is the only zero of the function f on the interval

(
cosϕ, 13 (4 + cosϕ)

)
and η is defined by (2). If ϕ ∈ (π2 .π) then ξ is the only zero of the function f on the interval

(
− 1

3 (4 + cosϕ),− 1
9 (8
√

3− 1) cosϕ
)

and η is defined by (2). If ϕ = π the pair of parameters is (ξ, η) =
(
− 1

9 (8
√

3− 1), 49

√
38 + 22

√
3
)

.

inner angle ξ η radial error

2π −1.42849 3.87726 3.25356× 10−1

11π
6 −1.50262 3.24480 2.15914× 10−1

7π
4 −1.52161 2.94230 1.71465× 10−1

5π
3 −1.52964 2.65270 1.33756× 10−1

3π
2 −1.51679 2.11990 7.68372× 10−2

4π
3 −1.47274 1.65620 4.04723× 10−2

inner angle ξ η radial error

π 1.32800 0.94046 7.97742× 10−3

2π
3 1.16617 0.47494 7.50902× 10−4

π
2 1.09754 0.31523 1.36878× 10−4

π
3 1.04465 0.19043 1.22221× 10−5

π
4 1.02537 0.13762 2.18815× 10−6

π
6 1.01136 0.08926 1.92912× 10−7

Table 2: A table of the simplified radial errors of the best cubic G0 geometric interpolants of a circular arc with a given inner angle.

Jaklič in [5] considered the best cubic polynomial approximant of the unite circle, i.e., an approximant where we do not

assume that the boundary points are on the circle. He found the interpolant such that its error function has five local extrema

on (−1, 1) all having the absolute value 0.23921 but it has the value 0.27186 at the end points ±1. According to Eisele’s theorem

this is not the best approximant but it is close to the best one, since the best approximant has simplified error between 0.23921

and 0.27186. We see that the best cubic G0 interpolant constructed above is not far from the best cubic approximant.

4. The quartic G0 case

This is a three-parametric problem. The control points are b0 = (c,−s)T , b1 = (α, β)T , b2 = (γ, 0)T , b3 = (α,−β)T ,

b4 = (c, s)T , and the corresponding signed simplified error function is

ψ(t) = −1 +
1

64

(
4
(
1− t4

)
α+ 3

(
1− t2

)2
γ +

(
1 + 6t2 + t4

)
c
)2

+
1

4
t2
(
2
(
1− t2

)
β +

(
1 + t2

)
s
)2
.

By Eisele’s theorem the simplified error function of the best interpolant is of the form χ(t) = µT8 (ζ4t), with three zeros

u1 =
√

2
(
2 +
√

2
)
−1−

√
2, u2 =

√
2 +
√

2−1 and u3 = 1+
√

2−
√

2 +
√

2 on the interval (0, 1). We have to solve the system of

equations ψ(uj) = 0, j = 1, 2, 3, and find out which solution (α, β, γ) induces the best interpolation of the circular arc. In what

follows it is useful to define σ1 = (1−u21)+(1−u21)+(1−u21) ≈ 1.92, σ2 = (1−u21)(1−u22)+(1−u21)(1−u23)+(1−u22)(1−u23) ≈ 1.11,

and σ3 = (1− u21)(1− u21)(1− u21) ≈ 0.18.

We form the linear combination of equations of the system so that we eliminate the variable β and get

0 = 64

(
u22u

2
3ψ(u1)

(u22 − u21)(u21 − u23)(1− u21)
+

u21u
2
3ψ(u2)

(u23 − u22)(u22 − u21)(1− u22)
+

u21u
2
2ψ(u3)

(u21 − u23)(u23 − u22)(1− u23)

)
= 64 + u21u

2
2u

2
3(4α− 3γ − c)2 − (4α+ 3γ + c)2, (4)
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then set x := 4α− 3γ − c and y := 4α+ 3γ + c. Similarly we eliminate β2 and y2 and get

0 =

3∑
j=1

(u2j−1
(
1− u2j−1

)2 − u2j+1

(
1− u2j+1

)2
)ψ(uj)−

σ2
64

(
u21 − u22

) (
u22 − u23

) (
u23 − u21

) (
64 + u21u

2
2u

2
3x

2 − y2
)

= 2
(
u21 − u22

) (
u22 − u23

) (
u23 − u21

)
(σ2 − σ1 + 1)

(
−1 +

1

128
σ3x

2 +
1

8
(x+ y)c+ βs

)
,

where u0 = u3 and u4 = u1, therefore

0 = −1 +
1

128
σ3x

2 +
1

8
(x+ y)c+ βs. (5)

Using the equalities (4) and (5) we get

0 =
ψ(u1)

1− u21
+
ψ(u2)

1− u22
+
ψ(u3)

1− u23
+

1

64
σ1(64 + u21u

2
2u

2
3x

2 − y2)−
(
σ2
1 − 3σ1 − 2σ2 + 6

)(
−1 +

1

128
σ3x

2 +
1

8
c(x+ y) + βs

)
=

1

128

(
σ2
1 − 2σ2 − σ1

) (
96− 4xy − 128β2 + 16c(x− y) + 32c2 − (4− 2σ1 + σ3)x2

)
,

so

0 = 96− 4xy − 128β2 + 16c(x− y) + 32c2 − (4− 2σ1 + σ3)x2.

We multiply the last equality by s2, use the equality β2s2 = (−1 + 1
128σ3x

2 + 1
8c(x+y))2 obtained from (5), then use the equality

y2 = 64 + u21u
2
2u

2
3x

2 = 64 + (1− s1 + s2 − s3)x2 obtained from (4), and get

0 =

(
− x

32
+
c

8
+
c3

8
− 1

512
σ3cx

2

)
y − 1

4

((
1

64
σ3x

2 +
1

4
cx− s2

)2

− 1

16
(1− σ2 + 2σ3) c2x2 +

1

16
(2− σ1)x2 − c(x− 8c)

)
. (6)

By combining the equalities (6) and (4), we see that we have to investigate the zeros of the function

f(x) :=
1

16

((
1

64
σ3x

2 +
1

4
cx− 1 + c2

)2

− 1

16
(1− σ2 + 2σ3) c2x2 +

1

16
(2− σ1)x2 − c(x− 8c)

)2

− (64 + u21u
2
2u

2
3x

2)

(
x

32
− c

8
− c3

8
+

1

512
σ3cx

2

)2

. (7)

Note that for every real zero x of the function f there are the unique (real) number y obtained from (6) and the unique (real)
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Figure 2: The graph of the function f for the angle ϕ = 1
4
π is on the left and the graph of the function f for the angle ϕ = 1

24
π on smaller interval

around 0 where the desired zeros of f appear on the right. The vertical lines on the right graph are drawn at x = −(1− cosϕ)2, x = 4 cosϕ(1 + cos2 ϕ),

and x = (6− 3
√

2 +
√

68− 46
√

2)(1 + cos4 ϕ)2.

number β obtained from (5), such that the triple (α = 1
8 (x + y), β, γ = 1

6 (y − x − 2 cosϕ)) induces an interpolant with the

simplified error function ψ of the form χ. The amplitude of the simplified error function ψ is the smallest possible if the leading

coefficient of ψ is the smallest possible. The leading coefficient of ψ is x2

64 , hence among all zeros of f which induce a good

interpolant for a given circular arc we must find the one with the smallest absolute value.

The function f is a polynomial of two variables x and c. Quite often we consider an expression f(g(c)), where g is a polynomial

in c. Then f ◦ g is a polynomial of only one variable and it is easy to check if it has zero on the interval [0, 1].
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Remark 2. Sometimes we will use the following argument: Let p(x) = c0 + c1x+ . . .+ cnx
n be a nonzero polynomial such that

the sum dj := c0+ . . .+cj is nonnegative for all j = 0, . . . , n. Then we can write p(x) = (1−x)(d0+d1x+ . . .+dn−1x
n−1)+dnx

n,
therefore p(x) > 0 for all x ∈ (0, 1). Similarly, if dj ≤ 0 for all j = 0, . . . , n, then p(x) < 0 for all x ∈ (0, 1).

Lemma 3. For every c ∈ [0, 1] the function f has exactly two zeros on the interval [−(1 − c)2, 4(6 − 3
√

2 +
√

68− 46
√

2)], the

one is on the interval [−(1− c)2, 0] and the other is on the interval (4c(1 + c2), (6− 3
√

2 +
√

68− 46
√

2)(1 + c4)2].

Proof. For c ∈ [0, 1) we have f
(
−(1− c)2

)
< 0, f(0) > 0, f

(
4c(1 + c2)

)
> 0, and f

(
(6− 3

√
2 +

√
68− 46

√
2)(1 + c4)2

)
< 0.

If c = 1, f has zeros at 0 and 4(6 − 3
√

2 +
√

68− 46
√

2). Thus for all c ∈ [0, 1] the polynomial f has at least one zero on

[−(1− c)2, 0] and at least one zero on (4c(1 + c2), (6− 3
√

2 +
√

68− 46
√

2)(1 + c4)2]. To show that f has exactly two zeros on

[−(1− c)2, 4(6− 3
√

2 +
√

68− 46
√

2)] it is enough to show that f is increasing on (−(1− c)2, 4c2), f is concave on (4c2, 8c), and

f is decreasing on (8c, 4(6− 3
√

2 +
√

68− 46
√

2)).

The function f is increasing on (−(1 − c)2, 0): We have f ′(x) > 0 for all x ∈ (−(1 − c)2, 0) if and only if g′(t) < 0 for all

t ∈ (0, 1), where g(t) = f(−t(1− c)2). We can write g′(t) = −
(
(1− c)4g1(t) + 1

213 (1− c)8 (g2(t) + g3(t) + g4(t))
)

where

g1(t) =
1

16
(1 + c)2

(
5 + c2

)
c+

1

128

(
12− 56c2 + 28c4 + 2σ1

(
1− c2

) (
1 + 5c2 + 2c4

)
+ 2σ2

(
1− c2

)2
c2 + σ3

(
1− c2

)3)
t

+
3

1024

(
4σ1

(
1− 3c2

)
+ 4σ2

(
2− c2 + c4

)
+
(
1− c2

) (
−16 +

(
−9 + 5c2

)
σ3
))

(1− c)2ct2,

g2(t) =

(
5

2
σ3 − σ2c

)2

t3,

g3(t) =
(
σ2
(
32s2 + σ3

(
5− 8cs2

)
c
)
− 1

4
σ3
(
64
(
1− 5c2 + 2c4

)
+ σ3

(
37− 24c2 + 12c4

))
+ 8σ1

(
2σ2c

2 − σ3
(
1 + c2 − 2c4

))
− 8σ2

1 −
(
c2 + 8c4

)
σ2
2

)
t3 − 5

8
σ3
(
8σ2 + 5c2σ3

)
(1− c)2ct4 − 3

64
σ2
3

(
4 + 4c2σ1 + c2σ3

)
(1− c)4t5 − 1

4096
σ4
3(1− c)8t7,

g4(t) =
5

8
σ3
(
4σ1 + 4c2σ2 + 3σ3

)
(1− c)2ct4 +

3

64
σ2
3

(
2σ1 + 2c2σ2 + σ3

)
(1− c)4t5 +

7

512
σ3
3(1− c)6ct6.

It is easy to see that g2(t) > 0 and g4(t) ≥ 0 for all t ∈ (0, 1) and c ∈ [0, 1]. By Remark 2, also g1(t) ≥ 0 for all t ∈ (0, 1) and

c ∈ [0, 1]. The coefficients of t4, t5 and t7 in the polynomial g3 are obviously nonpositive for all c ∈ [0, 1]. Hence if we replace all

tk in g3 by t3, we decrease the value of g3(t) and we get the expression of the form t3h(c), where h is a polynomial. By Remark 2

we get h(c) > 0 for all c ∈ [0, 1], hence g2(t) ≥ 0 for all t ∈ (0, 1) and c ∈ [0, 1]. This implies that f is increasing on the interval

(−(1− c)2, 0).

The function f is increasing on (0, 4c2): Since f ′(0) ≥ 0 and f ′(4c2) ≥ 0 for all c ∈ (0, 1] it is enough to show that f ′ is

concave on (0, 4c2). Let us define

g1(x) = − 1

224
(
21σ4

3x
4 + 84cσ3

3 (10 + cσ3)x3 + 48σ2
3

(
160 + 80σ1 − 80σ2 + 70σ3 + 7σ2

3

)
x2
) (

4c2 − x
)
,

g2(x) = −3σ2
3

220
(
80(1 + c)(2σ1 − σ2) + σ3

(
10
(
11 + 11c+ 7c2

)
+ 7

(
1 + c+ c2 + c3

)
σ3
))

(1− c)x3,

g3(x) = −3σ3(1− c)
218

(
80σ2

(
4
(
c2 + c− 1

)
− (1 + c)σ3

)
+ 80σ1 (4 + (1 + c)σ3) + σ3

(
70(1 + c)σ3 − 80c(3 + 5c) + 7(1 + c)σ2

3

))
x2

It is easy to see that g1(x) < 0, g2(x) ≤ 0 and g3(x) ≤ 0 for all x ∈ (0, 4c2) and c ∈ (0, 1]. Hence it is enough to show that

g0(x) = f ′′′(x)− g1(x)− g2(x)− g3(x) ≤ 0 for all x ∈ (0, 4c2) and c ∈ (0, 1]. This is true, since for all c ∈ (0, 1] the function q0 is

a quadratic polynomial with negative leading coefficient, g0(0) ≤ 0, and g0(4c2) ≤ 0.

The function f is concave on (4c2, 8c): Let us define

g1(x) = − 1

225

(
7σ4

3x
5 + 56cσ3

3 (6 + σ3)x4 + 64σ2
3

(
60 + 30σ1 − 30σ2 + 42σ3 + 7σ2

3

)
x3

+ 512cσ3
(
7 (σ3 + 2) 3 + 80 (σ1 − 2σ2) + 30 (σ1 − σ2)σ3 − 56 + 36σ3 + 20 (4σ2 − 5σ3) c2

)
x2
)

(8c− x),

g2(x) = − 1

219
σ2
3 (60σ1 − 30σ2 + σ3(57 + 7σ3) (1− c2)x4,

g3(x) = − 1

213

(
7σ3 (σ3 + 2) 3 + (30σ1 − 30σ2 − 73)σ2

3 + 24 (4− 2σ1 + σ2)σ2 + 8 (7σ1 − 10σ2 − 25)σ3

+
(
24σ2

2 + 96σ3 − 48σ1σ3 + 56σ2σ3 − 91σ2
3

)
c2
) (

1− c2
)
x2.
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It is easy to see that g1(x) < 0, g2(x) < 0, and g3(x) ≤ 0 for all x ∈ (4c2, 8c) and c ∈ (0, 1]. Therefore it is enough to prove that

g0(x) = f ′′(x) − g1(x) − q2(x) − q3(x) ≤ 0. This is true, since for all c ∈ (0, 1] the function g0 is the quadratic polynomial with

negative leading coefficient, g0(4c2) < 0, and g0(8c) < 0.

The function f is decreasing on (8c, 4(6−3
√

2 +
√

68− 46
√

2)): We have f ′(x) < 0 for all x ∈ (8c, 4(6−3
√

2 +
√

68− 46
√

2))

if and only if g′(t) < 0 for all t ∈ (0, 1), where g(t) = f(4(
√

2 +
√

68− 46
√

2− 2c)t + 8c). By Remark 2, we get g(t) < 0 for all

t ∈ (0, 1) and c ∈ [0, 1]. �

Lemma 4. Let c ∈ [0, 1].

1. If x ∈ [−14, 0) the the unique solution y of the equation (6) is positive.

2. If x ∈
(

4c(1 + c2),
(

6− 3
√

2 +
√

68− 46
√

2
)

(1 + c4)2
]

the the unique solution y of the equation (6) is negative.

Proof. Let us define

q1(x) = − x

32
+
c

8
+
c3

8
− 1

512
σ3cx

2,

q2(x) =
1

4

(
σ3x

2

64
+
cx

4
− 1 + c2

)2

,

q3(x) =
1

4

(
− 1

16
(1− σ2 + 2σ3) c2x2 +

1

16
(2− σ1)x2 − c(x− 8c)

)
,

then by (6) we have q1(x)y = q2(x) + q3(x).

Let x ∈ [−14, 0). Because the polynomial q1 is decreasing on [−14, 0) and q1(0) ≥ 0, we have q1(x) > 0. The polynomial q3

is decreasing on (−∞, 0] and q3(0) ≥ 0, hence q3(x) > 0. Because also q2(x) ≥ 0, we have y > 0.

Let x ∈
[
4c(1 + c2),

(
6− 3

√
2 +

√
68− 46

√
2
)

(1 + c4)2
]
. Because the polynomial q1 is decreasing on [0,∞) and q1(8c) < 0,

we have q1(x) < 0. To show that q2(x) + q3(x) > 0 it is enough to show that q0(x) = q2(x) + q3(x) − 1
214 (32cσ3x

3 + σ2
3x

4) > 0.

For c ≥ 0.9 the function q0 is a quadratic polynomial with positive leading coefficient and negative discriminant, hence q0(x) > 0.

If c ≤ 0.9 then q′0(x) < 0 and q0

((
6− 3

√
2 +

√
68− 46

√
2
)

(1 + c4)2
)
> 0, hence q0(x) > 0. �

The following theorem follows from Lemma 3 and Lemma 4.

Theorem 5. For every ϕ ∈ (0, π] there exists the unique triple of parameters (α, β, γ), which induces the best polynomial
interpolant of a circular arc of the inner angle 2ϕ, where α = 1

8 (x+ y), γ = 1
6 (y − x− 2 cosϕ), x is the only zero of the function

(7) on the interval [−(1−cosϕ)2, 0], if ϕ ∈ (0, π2 ], x is the only zero of the function (7) on the interval
(

0, 6− 3
√

2 +
√

68− 46
√

2
]
,

if ϕ ∈ (π2 , π], y is the solution of the equation (6), and β is the solution of the equation (5).

inner angle α β γ radial error

2π 0.72323 −2.59930 −4.00076 2.75264× 10−2

11π
6 0.25762 2.33512 −3.35153 1.45985× 10−2

7π
4 0.06000 2.19627 −3.06840 1.03522× 10−2

5π
3 −0.11542 2.05518 −2.81103 7.19767× 10−3

3π
2 −0.40437 1.77231 −2.36754 3.25472× 10−3

4π
3 −0.61961 1.49705 −2.00895 1.32486× 10−3

inner angle α β γ radial error
π
2 0.87518 0.99857 1.49995 1.42325× 10−4

π
3 0.97471 0.59188 1.20039 5.83570× 10−6

π
4 0.99193 0.42228 1.10839 5.94378× 10−7

π
6 0.99840 0.27073 1.04680 2.34778× 10−8

π
8 0.99949 0.20014 1.02605 2.36051× 10−9

π
12 0.99990 0.13203 1.01149 9.23852× 10−11

Table 3: A table of the radial errors of the best quartic G0 geometric interpolants of a circular arc with a given inner angle.

Numerical computations reveal that the function f has five real zeros for ϕ ≈ 0.9188, six real zeros for ϕ < 0.9188, and only

four real zeros for ϕ > 0.9188. All real zeros of f induce a quartic G0 interpolant which have an alternating simplified signed

error function, i.e., its error function has the same shape as the error function χ of the best interpolant (only the amplitude can

vary). We have proved that the largest negative zero of f induces the best interpolant of the unit circular arc with the inner

angle 2ϕ and the smallest zero of f induces the best interpolant of the unit circular arc with the inner angle 2(π − ϕ). Most of

the remaining zeros induce a non admissible interpolant, i.e., an interpolant with self intersections. The reason why interpolant

7



has self intersections is that some of the control points b1, b2, b3 of an interpolant lie left and some right from the control points

b0 and b4. Numerical computations show that for ϕ < 0.6772, the second largest negative zero induces an admissible interpolant

(all three control points b1, b2, b3 are right of the control points b0 and b4) but the corresponding error function has a larger

amplitude than the error function of the best interpolant (see Figure 3). We can see that the curvature of the best interpolant is

much closer to the curvature of the unit circular arc than the curvature of the other interpolant. The quartic approximant of the

0 0.5 1

-0.5

0.5

0 0.5 1

-0.5

0.5

-1.0 -0.5 0.5 1.0

0.99997

0.99998

0.99999

1.00000

1.00001

-1.0 -0.5 0.5 1.0

0.95

1.00

1.05

Figure 3: Two quartic G0 interpolants of circular arc of inner angle π
3

with the simplified signed error function as in the Figure 1. The left one is the

best interpolant with the error 2.34778× 10−8, the right one has the error 4.01760× 10−5. In the bottom row there are graphs of the curvatures of the

interpolants from the first row.

whole unit circle constructed in [5] has the error function with seven local extrema on (−1, 1) all have the absolute value 0.021873

but it has the value 0.022115 at the end points ±1. Again we can see the best quartic G0 interpolant constructed above is not

far from the best quartic approximant of the unit circle. We can also check that the graph of the curvature of the best quartic

G0 interpolant of the whole unit circle and the graph of the curvature of the approximant constructed in [5] are almost identical.

5. Conclusion

In this paper we presented an interpolation of a circular arc given by an inner angle 2ϕ ∈ (0, 2π], where both boundary points

of the arc are interpolated. Our method works well in the parabolic case, where for every ϕ we get only one candidate for the

best interpolant, and also in the cubic case, where for every ϕ we get only one admissible candidate. In the quartic case we get

more candidates and the analysis to figure out which candidate is the best one is quite demanding. Our method could be applied

for interpolation of a circular arc by higher order polynomials, but it seems that it is very hard to prove which candidate is the

best one. Maybe the method can be used for some particular cases, like half circular arc or quarter circular arc.
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