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Abstract

The problem of the optimal approximation of circular arcs by parametric polynomial curves is
considered. The optimality relates to the curvature error. Parametric polynomial curves of low
degree are used and a geometric continuity is prescribed at the boundary points of the circular
arc. Analysis is done for cases of parabolic G0, cubic G1 and quartic G2 interpolation. The
comparison of the approximation of circular arcs based on curvature with the approximation
based on radial error is provided.
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1. Introduction

The approximation of circular arcs is not only interesting from a theoretical perspective but
also important for practical applications. Many control systems use parametric polynomials
as basic building blocks. Since circular arcs cannot be represented in this way, it is important
to find the best possible polynomial approximations. Several error functions can be used to
measure the quality of approximants. If we are only interested in the visual image of the ap-
proximant, it is probably best to minimise the Hausdorff distance between the circular arc and
the approximant. It is well known that the Hausdorff distance between a circular arc and a curve
is (under some conditions) equal to the maximum of the radial distance between the arc and the
approximant [4]. This fact makes the analysis of the problem easier. Still, the error function is
irrational since part of it is the root of a polynomial function. In the first attempts to find the
best approximation, the radial distance was replaced by the corrected polynomial error. The
quadratic G0 case was studied by Mørken [7], and the cubic G1 and the quartic G2 cases were
considered by Hur and Kim [3]. Later, the problem was also solved with respect to the radial
distance and for every inner angle 2ϕ ∈ (0,π] of the circular arc (see [10]) and for some other
cases with more parameters ([9], [8]).

Instead of the radial distance, the error function can be used to that measure how the cur-
vature of the approximant matches the curvature of the circular arc. Such an approximation is
useful, for example, in cases where the curve is considered as the trajectory of a moving body.
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The curvature function of the curve itself is more complicated than the distance function, so
the analysis of finding the optimal approximant is more difficult and appears less frequently
in the literature. Since the curvature of a circular arc is constant, one can determine the min-
imum value of the integral of the absolute value of the derivative of its curvature to measure
the change of curvature of the approximant (see [5]). However, more often the error function
is taken to be the maximum of the absolute value of the difference between the curvature of
the circular arc and of the approximant. Dokken, Dæhlen, Lyche and Mørken [2] constructed a
cubic G1 approximant p of a circular arc with the property that ∥p(·)∥2 − 1 is an equioscillating
function; i.e. all five local extrema have the same absolute value. In [1] de Boor, Hölling and
Sabin described a parametric cubic spline interpolation scheme for plane curves which works
very well for circular arcs. In both papers, the authors also realised that the curvature of the
approximant of the circular arc is very close to 1, the curvature of the unit circular arc. The
graph of the curvature function of the approximant oscillates five times around the constant
1, which is the same property as for the graph of the radial distance of the approximant. The
difference is that the local extrema agree in absolute value in the case of radial distance, whereas
in the curvature, they do not. For an optimal approximant, it might be natural to require that
the curvature is an equioscillating function. Unfortunately, it turns out that there are no such
approximants except for only one inner angle 2ϕ. Kovač and Žagar [6] impose the condition that
the curvature of the approximant coincides with the circular arc’s curvature at the midpoint and
at the edges. They proved that their approximants have an optimal asymptotic approximation
order. We show that their construction provides the optimal cubic G1 approximant only for in-
ner angles smaller than some angle, which is calculated in the paper and at which the curvature
is an equioscillating function, and that there are better approximations for circular arcs with an
inner angle larger than the above one. We also show that something similar holds for the case of
the quadratic G0 and the quartic G2 approximants.

The paper is organized as follows. After the introduction in Section 1, some basic prelimi-
naries are explained in Section 2. In Section 3 the quartic G0 case is considered and the main
theorem Theorem 3.2 describes the optimal approximants. In Section 4 the cubic G1 case is con-
sidered. In the beginning, two cases motivate the analysis of the error function, and the main
theorem Theorem 4.5, which gives the algorithm for finding the optimal approximant, is stated
at the end of the section. Section 5 deals with the quartic G2 case, where the algorithm for find-
ing the optimal approximant is stated in Theorem 5.4. Numerical examples are shown at the
end of Section 4 and Section 5. Some closing remarks are given in the last section.

2. Preliminaries

Let us denote the considered circular arc with the inner angle 2ϕ by c. More precisely, c will
be parametrized as c : [−ϕ,ϕ] → R

2, 0 < ϕ ≤ π
2 . It is enough to consider the unit circular arc

centered at the origin of a particular coordinate system and symmetric with respect to the first
coordinate axis. We can assume that c(α) = (cosα,sinα)T . Let the polynomial approximation
of degree n of c be denoted by pn : [−1,1] → R

2, where pn = (xn, yn)T , and xn, yn are scalar
polynomials of degree at most n. The Bernstein-Bézier representation of pn will be considered,
i.e.

pn(t) =
n∑

j=0

Bn
j (t)bj ,
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where Bn
j , j = 0,1, . . . ,n, are (reparameterized) Bernstein polynomials over [−1,1], given as

Bn
j (t) =

(
n
j

)(1 + t
2

)j (1− t
2

)n−j
,

and bj ∈ R2, j = 0,1, . . . ,n, are the control points. Note that since c is symmetric with respect to
the first coordinate axis, the best parametric polynomial interpolant must possess the same sym-
metry, i.e. bj = r(bn−j), j = 0,1, . . . ,n, where r : R2→ R

2 is the reflection over the first coordinate
axis.

Circular arc c and the parametric polynomial pn have the geometric contact of order k at the
boundary points c(±ϕ), if there exists a smooth regular reparametrisation ρ : [−1,1]→ [−ϕ,ϕ]
with ρ′(±1) > 0, such that

djpn

dtj
(±1) =

dj(c ◦ ρ)
dtj

(±1), j = 0,1, . . . , k.

In such case, we say that pn is a Gk approximation of c. In particular, the G0 approximation is
equivalent to the interpolation of boundary points, the G1 approximation provides that c and pn
share the same tangents at the boundary points and the G2 approximation additionally requires
that c and pn have the same curvature at the boundary points.

Since the curvature of c is identically 1, the appropriate signed curvature error function for
pn is

en(t) = 1−
p′n(t)×p′′n(t)
∥p′n(t)∥3

.

The goal of the approximation is thus to find a parametric polynomial pn satisfying the required
geometric continuity for which the maximum of the absolute value of the function en is as small
as possible. The cubic G1 and the quartic G2 cases are considered in this paper. In both cases,
the set of all polynomial approximants is a one-parametric family. Since a free parameter will be
related to distance, we later denote it by d, and the function en becomes a function of parameters
t and d.

Throughout the paper, we will write some polynomials in the basis Bnx = {xi(1 − x)n−i}0≤i≤n
instead of the standard basis Snx = {xi}0≤i≤n. We have

p(x) =
n∑
i=0

aix
i =

n∑
i=0

aix
i(x+ 1− x)n−i =

n∑
i=0

n−i∑
j=0

(
n− i
j

)
aix

i+j(1− x)n−i−j

=
n∑
i=0

n∑
j=i

(
n− i
j − i

)
aix

j(1− x)n−j =
n∑

j=0


j∑

i=0

(
n− i
j − i

)
ai

xj(1− x)n−j ,

so the transition matrix is lower triangular, with binomial coefficients for the elements. By
analogy, the polynomial of two variables can be written in Bnx ×Bmy basis instead of Snx ×Smy basis,
and we have

p(x,y) =
n∑
i=0

m∑
j=0

ai,jx
iyj =

n∑
k=0

m∑
l=0

 k∑
i=0

l∑
j=0

(
n− i
k − i

)(
m− j
l − j

)
ai,j

xk(1− x)n−kyl(1− y)m−l .
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The main reason for the new basis is the following argument, which will be used several times in
the paper: if a polynomial p in the basis Bnx ×Bmy has all coefficients nonnegative, then p(x,y) ≥ 0
provided 0 ≤ x,y ≤ 1. We can do the same for polynomials with several variables.

3. Quadratic G0 approximants

This case may not be interesting in practice, because for trajectory approximations we often
prescribe not only the edge points but also the start and the end directions, so we are looking
for at least a G1 approximant. Although, the analysis of this case is not difficult we belive that
the result is surprising. Geometrically, we are looking for a parabola that passes through given
boundary points of the circular arc with the curvature as close as possible to the curvature of the
arc. If for a fixed ϕ ∈ (0, π2 ] we denote c = cosϕ ∈ [0,1), the control points are

b0 = (c,−
√

1− c2)T ,b1 = (d,0)T ,b2 = (c,
√

1− c2)T ,

where d > 0. The corresponding signed curvature error function is

e2(t,d) = 1 +

√
1− c2(c − d)√

(1− c2 + (c − d)2t2)3
.

Since de2
dt (t,d) = −3

√
1− c2(c − d)3t

(
1− c2 + (c − d)2t2

)−5/2
, the only candidates for the extrema of

e2(·,d) on [-1,1] are 0 and ±1.
If d < c, the graph of the function e2(·,d) is above the line c = 1, so the optimal parameter must

be greater than c; in fact the graph of the function e2(·,d) is the mirror image over horizontal line

c = 1 of the graph of the function e2(·,2c − d). And for d > c we have d2e2
dt2 (0,d) = 3(d−c)3

(1−c2)2 > 0, so
e2(·,d) has minimum at t = 0 and maximum at t = ±1.

The only value d > c for which de2
dd (1,d) = 0 is de(c) := c+

√
2

2

√
1− c2. If |e2(0,de(c))| ≤ |e2(1,de(c))|,

then de(c) is the optimal parameter. As the examples below show, both possibilities exist.

Example 3.1. Let ϕ1 = π
4 , then c1 =

√
2

2 and de(c1) = 1+
√

2
2 . Since e2(0,de(c1)) = 0, de(c1) is the

optimal parameter (see the left graph on Figure 1).

Let ϕ2 = π
6 , then c2 =

√
3

2 and de(c2) =
√

2+2
√

3
4 . Since |e2(0,de(c2))| =

√
2−1 > 9−4

√
3

9 = e2(1,de(c2)),
de(c2) is not the optimal parameter. There exists d < de(c2) for which |e2(0,d)| = e2(1,d) and
induces a better approximant than de(c2) as it is show on the right graph on Figure 1.

Let us denote the optimal parameter d by d∗(c).

Theorem 3.2. Let c ∈ [0,1).

1. If c ≤
√

6
36

√
181− 12

√
6 ≈ 0.83778, then d∗(c) = de(c) = c+

√
2

2

√
1− c2.

2. If c >
√

6
36

√
181− 12

√
6 then d∗(c) is the unique solution of e2(1,d) = −e2(0,d) on [c,de(c)].

Proof. 1. If e2(1,de(c)) + e2(0,de(c)) ≥ 0, then d∗(c) = de(c). The statement follows since the

inequality holds for c ≤
√

6
36

√
181− 12

√
6.
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Figure 1: On the left it is the graph of the error function of the optimal approximant for c =
√

2
2 ; the solid one is

the graph of the error function of the optimal approximant and the dashed one of the approximant that has the
property that the error function equioscillates. On the right it is the graph of the error function of the optimal

approximant for c =
√

3
2 ; the solid one is the graph of the error function of the approximant induced by de(c2) and

the dashed one of the optimal approximant, for which, in this case, the error function equioscillates.

2. If c >
√

6
36

√
181− 12

√
6 then e2(1,de(c)) + e2(0,de(c)) < 0. For every d ∈ (c,de(c)) we have

de2
dd (1,d) = −

(
1− 3c2 + 4cd − 2d2

)√
1− c2

(
1− 2cd + d2

)−5/2
< 0, hence the function e2(1, ·) is

strictly decreasing. The function e2(0, ·) is strictly decreasing since de2
dd (0,d) = − 1

1−c2 < 0.
Therefore, e2(0, ·) + e2(1, ·) is strictly decreasing on [c,de(c)]. Since e2(0, c) + e2(1, c) = 2 > 0
and e2(1,de(c)) + e2(0,de(c)) < 0 there exists the unique parameter d∗(c) ∈ [c,de(c)] such that
e2(0,d∗(c))+e2(1,d∗(c)) = 0. For d < d∗(c) we have e2(1,d) > e2(1,d∗(c)) = maxt∈[−1,1] e2(t,d∗(c))
and for d > d∗(c) we have |e2(0,d)| > |e2(0,d∗(c))| = maxt∈[−1,1] e2(t,d∗(c)), so d∗(c) is the opti-
mal parameter.

We have seen that although there are approximants for which the error function is equioscil-
lating, in some cases, the error function of the optimal approximant does not have this property.
Moreover, the error function can be nonnegative, as shown by the example ϕ = π

4 (see Figure 1).

4. Cubic G1 approximants

In this section, we consider the G1 approximation of the circular arc c, where ϕ ∈ (0, π2 ] is
fixed. If we again denote c = cosϕ ∈ [0,1), the control points are

b0 = (c,−
√

1− c2)T , b1 = (c,−
√

1− c2)T + d (1− c2, c
√

1− c2)T ,

b3 = (c,
√

1− c2)T , b2 = (c,
√

1− c2)T + d (1− c2,−c
√

1− c2)T ,

where d > 0.
The corresponding signed curvature error function is

e3(t,d) = 1 +
8d

(
cd − 2 + (3cd − 2)t2

)
3
√

((2− cd)2 + 2(d(2d + c(8− 5cd))− 4)t2 + (2− 3cd)2t4)3
=: 1 +

f (t,d)√
g(t,d)3

.

Since e3(0,d) = 1− 8d(2−cd)
3|2−cd|3 and e3(1,d) = 1− 4(1−cd)

3d2 , the function e3(0, ·) is strictly decreasing and

the function e3(1, ·) is strictly increasing for 0 < d < 2
c if c ∈ (0,1) or for d > 0 if c = 0. For d > 2

c ,
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the curvature at t = 0 is greater than one, which means that such d does not induce an optimal
approximant. Hence we may assume that d < 2

c if c , 0 and in this case e3(1, ·) and e3(0, ·) are
strictly monotone rational functions.

The equation e3(0,d) = e3(1,d) implies the unique solution

de(c) :=
5c2 +

(
5
√

3−
√

27 + c3
) 3
√√

27 + c3 + 3
√

3−
(
5
√

3 +
√

27 + c3
) 3
√√

27 + c3 − 3
√

3

3(2 + c3)
.

In the examples below we show that e3(0,de(c)) is equal max |e3(·,de(c))| for some values c but not
for all. If e3(0,de(c)) = max |e3(·,de(c))|, then de(c) = d∗(c) and it induces the optimal approxima-
tion, since for d > de(c) we have e3(1,d) > e3(1,de(c)) = max |e3(·,de(c))| and for d < de(c) we have
e3(0,d) > e3(0,de(c)) = max |e3(·,de(c))|.

Example 4.1. Let c = 1
2 , i.e. the inner angle of the circular arc is 2π

3 . Then

de

(1
2

)
=

2
51

5− 383
3
√

12671 + 408
√

1302
+

3
√

12671 + 408
√

1302

 ≈ 0.8800,

e3

(
0,de

(1
2

))
= max

∣∣∣∣∣e3

(
·,de

(1
2

))∣∣∣∣∣
=

1
36

38− 193
3
√

14113− 384
√

1302
−

3
√

14113− 384
√

1302

 ≈ 0.0358.

In this case, de
(

1
2

)
induces the optimal approximant (see the left graph on Figure 2).
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Figure 2: On the left it is the graph of the error function of the optimal approximant for c = 1
2 . On the right, the

solid graph is the graph of the error function of the optimal approximant for c = 0, and the dotted graph is the
graph of the error function where the values at t = 0 and t = 1 coincide.

Example 4.2. Let c = 0, i.e. we consider the half circle. Then de(0) = 3
√

2 ≈ 1.2599. But ee(0,de(0)) =

1− 2 3√2
3 ≈ 0.1601 < 0.1880 ≈ |mine3(·,de(0))|. Thus, de(0) almost certainly does not induce the op-

timal approximant. It is easy to see that the optimal parameter d∗(0) is on the interval [2
√

3
3 , 3

2 ],
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since e3(1, 2
√

3
3 ) = 0 and e3(0, 3

2 ) = 0. For every d ∈ [2
√

3
3 , 3

2 ] we have

mine3(·,d) = 1−
32
√

2d
(
4− d2 +

√
144− 40d2 + d4

)
9
√

3(4− d2)3
(
12 + d2 −

√
144− 40d2 + d4

)3

which is an increasing function on (0, 3
2 ), since it is easy to observe that its derivative is posi-

tive. Hence there exists a unique d∗(0) ∈ [2
√

3
3 , 3

2 ] such that e3(1,d∗(0)) = −mine3(·,d∗(0)). More
precisely, d∗(0) ≈ 1.2721 induces the optimal approximant (see the right graph on Figure 2).
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Figure 3: On the left it is the graph of the function e3(0,de(c)) + mine3(·,de(c)) = maxe3(·,de(c)) + mine3(·,de(c)). On
the right it is a graph of function de with its upper and lower bounds d1 and d2.

The last example shows that for some values of c, it is necessary to analyze the behaviour
of the minimum of the function e3(·,d). In principle, it is possible to explicitly calculate the
function e3(0,de(c)) + mine3(·,de(c)), but its expression is very long. From its graph (see left
graph on Figure 3), it seems that only for c ≥ 0.32792, i.e. for a circular arc with the inner
angle 2ϕ ≤ 0.78731π, the method 3 from [6] produces the optimal approximant. However, the
function is too complicated to determine its zero analytically.

Since it is difficult to determine the minimum value of the error function as it depends on c
and d, for each c we will find (as small as possible) interval Ic such that the optimal parameter
d∗(c) ∈ Ic. For all parameters d ∈ Ic we will determine the necessary properties of the function
e3(·,d) to be able to determine the optimal parameter. Since we want the interval Ic to be small,
let’s look at the power series expansion for de around the point c = 1 and let us define

d1(c) :=
2
3

+
1
3

(1− c) +
1

24
(1− c)2,

d2(c) :=
2
3

+
1
3

(1− c) +
1
6

(1− c)2 +
101

1152
(1− c)3 +

25
512

(1− c)4.

The graphs of functions de, d1 and d2 are shown in the right graph of Figure 3 and two
examples of the graphs of the curvature function of parametric polynomial curves induced by
de(c), d1(c) and d2(c) are on Figure 4. Before we show that d∗(c) ∈ [d1(c),d2(c)] = Ic (Lemma 4.4),
we need the following technical lemma. The main point of the lemma is to show that for every
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Figure 4: Graphs of e3(·,de(c)) (solid), e3(·,d1(c)) (dashed) and e3(·,d2(c)) (dotted) for ϕ = π
4 and ϕ = π

2 .

d ∈ Ic, the graph of the function e3(·,d) looks like the graph of an even polynomial of degree four
with a positive leading coefficient (see Figure 4), and that the minimum of the function e3(·,d) is
a strictly increasing function of the parameter d ∈ Ic. Note that the last property is the one we
needed in Example 4.2.

Lemma 4.3. Let c ∈ (0,1).

1. We have d2(c) < 2
3c .

2. If d ∈ (0, 2
3c ) the function e3(·,d) has at most three local extrema.

3. For all d ∈ Ic, the function e3(·,d) has the local maximum at t = 0 and the minimum at a point
on the interval (3

5 ,1).
4. For t ∈ [3

5 ,1) the function e3(t, ·) is strictly increasing on Ic.

Proof. 1. The function h defined by h(c) = 2
3c −d2(c) is strictly decreasing since all coefficients

of c2h′(c) are negative in the basis B5
c . Since h(1) = 0, the function h is positive on (0,1) and

therefore d2(c) < 2
3c provided c ∈ (0,1).

2. The equation de3
dt (t,d) = 0 has at most five real solutions. One of them is t = 0. We only

need to prove that the equation has at most one solution on the interval (0,1], due to
e3(t,d) = e3(−t,d). The only candidates for positive solutions of the equation are

t1,2 =

√
−h(d)±

√
112c4d4 − 512c3d3 − 32c2d4 + 832c2d2 + 80cd3 − 576cd + d4 − 40d2 + 144

√
2(2− 3cd)

,

where

h(d) = 4− 8cd + d2 + 2c2d2 =
(
2c2 + 1

)(
d − 4c

2c2 + 1

)2
+

4− 8c2

2c2 + 1
.

It suffices to show that h(d) > 0 for d ∈ (0, 2
3c ), because then the solution t2 cannot be real.

If c ∈ (0, 1
2 ), then h has the minimum at d = 4c

2c2+1 and h
(

4c
2c2+1

)
= 4−8c2

2c2+1 > 0. If c ∈ [1
2 ,1)

then h is strictly decreasing, since h′(d) = −
(
2 + 4c2

)(
2
3c − d

)
− 4

3c

(
4c2 − 1

)
< 0, and h( 2

3c ) =
4

9c2 (1−c2) ≥ 0. Hence, h(d) > 0, so the solution t1 is the only candidate for a local extremum
of the function e3(·,d) on the interval (0,∞), which proves the statement.
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3. By the previous statement, it is enough to prove that de3
dt

(
3
5 ,d

)
< 0 and de3

dt (1,d) > 0 for all
d ∈ Ic. We have

de3

dt

(
3
5 ,d

)
=

−6250d · h1(d)

(−224c2d2 + 32cd + 225d2 + 256)5/2
and

de3

dt
(1,d) =

h2(d)
3d3 ,

where h1(d) = −1044c3d3 + 5288c2d2 + 1275cd3 − 7892cd − 2100d2 + 3776 and h2(d) = 8d −
24c+ 48c2d − 6cd2 − 24c3d2. Since h1((1− δ) · d1(c) + δ · d2(c)) and h2((1− δ) · d1(c) + δ · d2(c))
have all coefficients positive in bases B15

c ×B3
δ and B11

c ×B2
δ , respectively, we conclude that

de3
dt

(
3
5 ,d

)
< 0 and de3

dt (1,d) > 0 for d ∈ Ic. So the local maximum is at t = 0 and the minimum

of e3(·,d) is on the interval (3
5 ,1).

4. Recall that e3(t,d) = 1 + f (t,d)√
g(t,d)3

. Hence

de3

dd
(t,d) =

df
dd (t,d)g(t,d)− 3

2f (t,d)dgdd (t,d)√
g(t,d)5

=:
h(t,d)√
g(t,d)5

.

Since h(3+2τ
5 , (1 − δ) · d1(c) + δ · d2(c)) has all coefficients positive in the basis B15

c ×B6
τ ×B3

δ ,
the derivative of e3(t, ·) is positive on Ic.

Now we can prove that d1(c) and d2(c) are the bounds for the optimal parameter d∗(c).

Lemma 4.4. For every c ∈ (0,1) we have de(c),d∗(c) ∈ Ic.

Proof. First, we show that de(c) ∈ Ic. Since e3(0, ·) is strictly decreasing, e3(1, ·) is strictly increasing
and e3(0,de(c)) = e3(1,de(c)) it is enough to show that e3(0,d1(c)) > e3(1,d1(c)) and e3(0,d2(c)) <
e3(1,d2(c)) for all c ∈ (0,1). Since

(5−c)4(48−25c+10c2−c3)2

32(1−c)2 (e3(0,d1(c))− e3(1,d1(c)))

has all coefficients positive in the basis B7
c , we get that d1(c) is the lower bound for de(c). And

since

(6005−5184c+3330c2−1304c3+225c4)2(9216−6005c+5184c2−3330c3+1304c4−225c5)2

6144(1−c)2 (e3(1,d2(c))− e3(0,d2(c)))

has all coefficients positive in the basis B13
c , we get that d2(c) is the upper bound for de(c).

Let us show that d∗(c) ∈ Ic. Above we have proved that e3(1,d2(c)) = maxe3(·,d2(c)). Let us
show that e3(1,d2(c)) = max |e3(·,d2(c))|. It suffices to prove that e3(1,d2(c)) + e3(t,d2(c)) ≥ 0 for
all t ∈ [−1,1]. Recall that e3(t,d2(c)) = 1 + f (t,d2(c))√

g(t,d2(c))3
. Since e3(1,d2(c)) > 0 and f (t,d2(c)) < 0,

we can square both sides of the inequality e3(1,d2(c)) + 1 ≥ −f (t,d2(c))g(t,d2(c))−3/2. Hence, the
inequality follows because(

6005− 5184c+ 3330c2 − 1304c3 + 225c4
)4 (

(e3(1,d2(c)) + 1)2g(t,d2(c))3 − f (t,d2(c))2
)
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has all coefficients nonnegative in the basis B46
c × B12

t . Since e3(1, ·) is strictly increasing, for
d > d2(c), we have max |e3(·,d)| ≥ e3(1,d) > e3(1,d2(c)) = maxe3|(·,d2(c))|, so d2(c) is the upper
bound for d∗(c).

Since
(5−c)4(6005−5184c+3330c2−1304c3+225c4)2

2(1−c)2 (e3(1,d1(c)) + e3(1,d2(c))),

has all coefficients negative in the basis B10
c and e3(1, ·) is strictly increasing, for d < d1(c) we have

max |e3(·,d)| ≥ |e3(1,d)| > |e3(1,d1(c))| > e3(1,d2(c)) = max |e3(·,d2(c))|. Therefore, d∗(c) ≥ d1(c).

By Lemma 4.3 for every d ∈ Ic the function e3(·,d) has the minimum at t1(d) ∈ (3
5 ,1) and the

maximum at 0 or 1. The following theorem describes how to find the optimal parameter d∗(c).

Theorem 4.5. Let c ∈ [0,1).

1. If e3(1,de(c)) ≥ |e3(t1(de(c)),de(c))|, then d∗(c) = de(c).
2. If e3(1,de(c)) < |e3(t1(de(c)),de(c))|, then there exists a unique d > de(c) such that |e3(t1(d),d)| =

e3(1,d). Then d∗(c) = d.

Proof. 1. Since e3(1, ·) is increasing every d > de(c) induces a worse approximant and since
e3(0, ·) is decreasing every d < de(c) induces a worse approximant, hence d∗(c) = de(c).

2. By Lemma 4.3 the function e3(t1(·), ·) is increasing, hence |e3(t1(·), ·)| is decreasing. Since
e3(1, ·) is increasing there exists a unique d ∈ (de(c),d2(c)] such that e3(1,d) = |e3(t1(d),d)|.
For every d′ < d we have |e3(t1(d′),d′)| > |e3(t1(d),d)| and for every d′ > d we have e3(1,d′) >
e3(1,d) > 0, hence d = d∗(c).

Although the analysis of the error function itself is very technical, the algorithm for deter-
mining the optimal parameter is very simple. For some circular arcs, there are closed forms for
the optimal parameter, as shown in Example 1. For some, the optimal parameter is obtained
as the solution of a system of nonlinear equations. In the above analyses, we have found good
bounds for the optimal parameter so we have good initial approximations for solving the system
numerically. In Table 1, numerical values of optimal parameters d∗ according to the curvature
error and optimal parameters dr according to the radial error [9] are shown for several values of
an inner angle 2ϕ.

Since dr > d∗, the optimal approximant with respect to the radial error has maximal curvature
at the boundary points. The graph of the curvature error function oscillates three times, but
the maximum is always greater than the absolute value of the minimum (see the left graph on
Figure 5). Also, the graph of the radial error of the optimal approximant with respect to the
curvature error oscillates three times, and the maximal amplitude is at the midpoint (see the
right graph on Figure 5).

5. Quartic G2 approximants

As in the previous sections, angle ϕ ∈ (0, π2 ] is fixed and c = cosϕ ∈ [0,1). Let us first look
at the case c = 0, which is very different from the others. If the boundary control points are

10



ϕ d∗ curvature error radial error dr curvature error radial error
π
2 1.272063 1.76× 10−1 4.60× 10−2 1.315740 2.30× 10−1 1.32× 10−2

π
3 0.879981 3.58× 10−2 5.01× 10−3 0.886910 5.66× 10−2 1.11× 10−3

π
4 0.778639 1.16× 10−2 9.03× 10−4 0.780526 1.93× 10−2 1.96× 10−4

π
6 0.714105 2.33× 10−3 8.00× 10−5 0.714440 4.03× 10−3 1.71× 10−5

π
8 0.692914 7.40× 10−4 1.43× 10−5 0.693017 1.30× 10−3 3.04× 10−6

π
12 0.678197 1.47× 10−4 1.26× 10−6 0.678216 2.60× 10−4 2.67× 10−7

Table 1: The table of the optimal parameters d∗(c) and the corresponding errors for cubic G1 approximants. In the
last three columns are the optimal parameters d(c) according to the radial error and the corresponding errors. Note
that in [9], the forms of control points are different, so the optimal parameters d in the paper differ for the factor√

1− c2 from the parameters in the table.

-1.0 -0.5 0.5 1.0

-0.1

0.1

0.2

-1.0 -0.5 0.5 1.0

-0.04

-0.03

-0.02

-0.01

0.01

Figure 5: On the left, there are the graphs of the curvature error of the optimal approximant with respect to the
curvature error (solid) and the optimal one with respect to the radial distance (dashed) for the half circle. On the
right, there are graphs showing the radial error of the optimal approximant with respect to curvature error (solid)
and the optimal one with respect to the radial distance (dashed) again for the half circle.

b0 = (0,−1)T and b4 = (0,1)T , G2 condition forces that b1 =
(√

3
2 ,−1

)T
and b3 =

(√
3

2 ,1
)T

. We set

b2 = (d,0)T and we get

e4(t,d) = 1−
2
(
2t2

(
3− t2

)
+
√

3d
(
1− t2

)2
)

√(
3− 3(2− d2) t2 +

(
3 + 4

√
3d − 6d2

)
t4 +

(
4− 4

√
3d + 3d2

)
t6
)3

=: 1−
f (t,d)√
g(t,d)3

.

Since e4(0,d) = 1− 2d
3 the function e4(0, ·) is strictly decreasing. Note that e4(1,d) = 0.

The graphs of the functions e4

(
·, 3

2

)
and e4

(
·, 8
√

3
9

)
are on Figure 6. This are the functions with

the following properties: e4

(
0, 3

2

)
= 0 and de4

dt

(
1, 8
√

3
9

)
= 0. We see that max |e4(·, 3

2 )| = −mine4(·, 3
2 )

and the minimum is on the interval [3
5 ,1]. Since

de4
dd (t,d) = −

(
df
dd (t,d)g(t,d)− 3

2f (t,d)dgdd (t,d)
)
g(t,d)−

5
2 =: h(t,d)g(t,d)−

5
2

and h
(
(1− τ)3

5 + τ, 8
√

3
9 δ

)
has positive coefficients in the basis B10

τ × B2
δ , for every t ∈ [3

5 ,1] the

11



-1.0 -0.5 0.5 1.0

-0.02

-0.01

0.01

0.02

Figure 6: The graphs of the functions e4(·, 3
2 ) and e4(·, 8

√
3

9 ); for the second function the graph is dashed.

function e4(t, .) is strictly increasing for d ∈ [0, 8
√

3
9 ]. Therefore, every d < 3

2 induces a worse

approximant than the parameter d = 3
2 . For the second function we see that max |e4(·, 8

√
3

9 )| =
−mine4(·, 8

√
3

9 ) = −e4(0, 8
√

3
9 ). Since e4(0,d) is strictly decreasing, every d > 8

√
3

9 induces a worse

approximant than the parameter d = 8
√

3
9 . Therefore, we observe that d∗(0) ∈ [3

2 ,
8
√

3
9 ].

There is a parameter d ∈ [3
2 ,

8
√

3
9 ], such that there exists t ∈ [0,1] such that e4(0,d) = e4(t,d)

and de4
dt (t,d) = 0. The first equation is equivalent to 2d

3 = f (t,d)g(t,d)−
3
2 and the second is equiv-

alent to df
dt (t,d)g(t,d)− 3

2f (t,d)dgdt (t,d) = 0. Using Gröbner basis for polynomials 1
t ((2d

3 )2g(t,d)3 −
f (t,d)2) and 1

t (dfdt (t,d)g(t,d)− 3
2f (t,d)dgdt (t,d)) with order d < t we see that the system has only one

solution where d ∈ [3
2 ,

8
√

3
9 ]. We denote the solution by d∗(0) ≈ 1.5112. Since max |e4(·,d∗(0))| =

−e4(0,d∗(0)) = −e4(t,d∗(0)), for some t ∈ [3
5 ,1], we see that d∗(0) is the optimal parameter.

Let us now consider the case c ∈ (0,1). The control points are

b0 = (c,−
√

1− c2)T , b1 = (c,−
√

1− c2)T + d (1− c2, c
√

1− c2)T ,

b2 =
(

3− 4d2(1− c2)
3c

,0
)T

, b3 = (c,
√

1− c2)T + d(1− c2,−c
√

1− c2)T ,

b4 = (c,
√

1− c2)T ,

where d > 0. The corresponding curvature error function is

e4(t,d) = 1−
2c2

(
3
(
3− 4d2

)(
1− t2

)2
+ 8cd3

(
1 + 3t4

)
− 6cd

(
1− t2

)(
1− (5− 4cd)t2

))
√(

(1− c2) t2 (4cdt2 + (3− 4d2) (1− t2))2 + c2 (2 + (1− 2cd) (1− 3t2))2
)3

=: 1−
f (t,d)√
g(t,d)3

.

Since we are considering G2 approximation, the function e4(1, ·) is identically zero. Hence, the
function e4(·,d) has no local extremum at t = 1, and we need more properties of the function
e4(·,d) as for e3(·,d) in the G1 cubic case. Numerical experiments have shown that the optimal

parameter is near 3c2+
√

6
√

2+c(1−c)
2(c3+2) which is the solution of the equation e4(0,d) = 0. Let us define

12



two rational approximations of the solution as

d1(c) :=
1

192(c3 + 2)

(
192
√

3− 8
(
16 + 9

√
3
)
c+

(
144 + 37

√
3
)
c2 + 3

(
592 + 232

√
2− 533

√
3
)
c3

−
(
2608 + 1104

√
2− 2415

√
3
)
c4 +

(
1104 + 408

√
2− 973

√
3
)
c5

)
,

d2(c) :=
1

120(c3 + 2)

(
120
√

3− 8
(
4 + 9

√
3
)
c+

(
144− 11

√
3
)
c2 +

(
444 + 588

√
2− 735

√
3
)
c3

−
(
652 + 996

√
2− 1191

√
3
)
c4 +

(
276 + 408

√
2− 493

√
3
)
c5

)
,

for which it is not hard to see that

d0(c) :=
1 +
√

2
2

c −
√

2
2

<
c
2
< d1(c) < d2(c) <

3c2 +
√

6
√

2 + c(1− c)
4 + 2c3 < d3(c) :=

1−
√

3
2

(c − 1) +
1
2
<

3
2c

holds for all c ∈ (0,1). We will show that the optimal parameter d∗(c) is on the interval Ic =
[d1(c),d2(c)] for all c ∈ (0,1). It should be noted that the two bounds are quite precise, as their
difference is very small, which can be seen in Figure 7. Before we prove that d∗(c) ∈ Ic, let us

0.2 0.4 0.6 0.8 1.0

0.0001

0.0002

0.0003

0.0004

Figure 7: The difference between the upper bound d2 and the lower bound d1 for the optimal parameter.

show some properties of the function e4 from which we get the essential properties of functions
e4(·,di(c)) for further analysis.

Lemma 5.1. Let c ∈ (0,1).

1. Function e4(0, ·) is strictly increasing on ( c2 ,
3
2c ) and strictly decreasing on (−∞, c2 ).

2. For every t ∈ [0.45,1) the function e4(t, ·) is strictly decreasing on [d1(c),d3(c)].
3. For d ∈ Ic the function e4(·,d) has exactly 5 local extrema, local minima are at t = 0 and on

(−1,−0.45)∪ (0.45,1), and e4(0,d) < 0, e4(0.9,d) < 0.

Proof. 1. For every d < 3
2c we have

de4
dd (0,d) =

24(c − 2d)
c(2cd − 3)3 ,

and the statement holds.
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2. Since de4
dd (t,d) = −

(
df
dd (t,d)g(t,d)− 3

2f (t,d)dgdd (t,d)
)
g(t,d)−5/2 =: −h(t,d)g(t,d)−5/2 and

(2 + c3)6

c4 h ((1− τ)0.45 + τ, (1− δ)d1(c) + δd3(c))

has positive coefficients in the basis B31
c ×B10

τ ×B6
δ , the statement holds.

3. The local extremum is at t = 0. The number of local extrema on the interval (0,1) of the
function e4(·,d) is the same as that of the function e4(

√·,d). The derivative de4
dt (
√
t,d) is

of the form c2h(t,d)g(
√
t,d)−5/2 for some polynomial h. To show that a function e4(

√·,d)
has two local extrema on (0,1), we have to prove that h(·,d) has two zeros on (0,1). To
prove that it suffices to show that the second derivative d2h

dt2 (t,d) is non-zero for (t,d) ∈
(0,1) × (d1(c),d2(c)). This is true since (2 + c3)7 d2h

dt2 (t, (1 − δ)d1(c) + δd2(c)) has positive co-
efficients in the basis B38

c × B2
t × B7

δ . Since e4(0,d2(c)) < 0 and e4(0, ·) is strictly increas-
ing on Ic, we have e4(0,d) < 0 for all d ∈ Ic. Since e4(0.45, ·) is strictly decreasing and
(2 + c3)−12

(
g(0.45,d2(c))3 − f (0.45,d2(c))2

)
has positive coefficient in the basis B66

c we have

e4(0.45,d) ≥ e4(0.45,d2(c)) = 1−
f (0.45,d2(c))√
g(0.45,d2(c))3

> 0

for all d ∈ Ic. Since e4(0.9, ·) is strictly decreasing, (2 + c3)−3f (0.9,d1(c)) has positive coeffi-
cients in the basis B18

c , and (2 + c3)−12
(
f (0.9,d2(c))2 − g(0.9,d1(c))3

)
has positive coefficient

in the basis B66
c we have

e4(0.9,d) ≤ e4(0.9,d1(c)) = 1−
f (0.9,d1(c))√
g(0.9,d1(c))3

< 0

for all d ∈ Ic. Since

de4

dt
(0.45,d) = −

(
df
dt (0.45,d)g(0.45,d)− 3

2f (0.45,d)dgdt (0.45,d)
)
g(0.45,d)−

5
2 =:

h(0.45,d)

g(0.45,d)
5
2

and
(2 + c3)7

c5 h(0.45, (1− δ)d1(c) + δd2(c))

has all coefficients positive in the basis B35
c ×B7

δ , the statement follows.

From the above properties and the fact that e4(1,d) = 0, it follows that the functions e4(·,d),
for d ∈ Ic, have exactly five local extrema on [−1,1]. We will see that only for some values of c, the
error function of the optimal approximant has the minimum at t = 0 (see Figure 8). This will be
used in the following lemma, which describes some additional properties of the four functions
e4(·,di(c)) that will be crucial for further analysis.

Lemma 5.2. Let c ∈ (0,1).

1. We have maxt∈[−1,1] |e4(t,d1(c))| = −e4(0,d1(c)).
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Figure 8: On the left it is the graph of the error function of the optimal approximant for c = 1
10 . On the right, the

solid graph is the graph of the error function of the optimal approximant for c = 1
2 , and the dotted graph is the

graph of the error function where the values of all three minima coincide.

2. There exists t0 ∈ [0.45,1) such that maxt∈[−1,1] |e4(t,d2(c))| = −e4(t0,d2(c)).
3. We have |e4(0,d0(c))| > maxt∈[−1,1] |e4(t,d1(c))| and for every d ∈ (0,d0(c)) it holds e4(0.4,d) >

maxt∈[−1,1] |e4(t,d1(c))|.
4. We have e4(0,d3(c)) > maxt∈[−1,1] |e4(t,d1(c))|.

Proof. 1. We have to show that e4(0,d1(c)) + e4(t,d1(c)) ≤ 0 and e4(0,d1(c))− e4(t,d1(c)) ≤ 0 for
all t ∈ [0.45,1], since e4(·,d1(c)) has no local extrema on (0,0.45) (Lemma 5.1).
For the first inequality we have to show that f (t,d1(c)) ≥ (1 + e4(0,d1(c)))

√
g(t,d1(c))3. We

have f (t,d1(c)) ≥ 0 for all t ∈ [0.45,1], since (2 + c3)3c−3f (55τ+45
100 ,d1(c)) has positive coeffi-

cients in the basisB15
c ×B4

τ . Since e4(0,d) = 1− 6−8d2

c(3−2cd)2 , f (t,d1(c))2−(1+e4(0,d1(c))2g(t,d1(c))3

is a rational function and it is positive for t ∈ [0.45,1] since it has the form c6(1 − c)3(3 −
2cd1(c))4(2 + c3)−16h(t, c), where h(55τ+45

100 , c) has positive coefficients in the basis B81
c ×B37

τ .
The second inequality follows since 1 − e4(0,d1(c)) ≥ 0 and (1 − e4(0,d1(c))2g(t,d1(c))3 −
f (t,d1(c))2 is a rational function and it is positive for t ∈ [0.45,1] since it has the form
t2c6(1 − c)3(3 − 2cd1(c))−4(2 + c3)−16h(t, c), where h(55τ+45

100 , c) has positive coefficients in the
basis B75

c ×B16
τ .

2. By the previous lemma we know that e4(·,d2(c)) has a local minimum at some t0 ∈ [0.45,1).
So it is enough to show that e4(0.9,d2(c)) < e4(0,d2(c)) and e4(0.9,d2(c)) + e4(t,d2(c)) ≤ 0 for
all t ∈ [0,1].
Since (2+c3)3c−3f (0.9,d2(c)) has positive coefficients in the basis B15

c we have f (0.9,d2(c)) ≥
0. Hence, for the first inequality, it is enough to show that f (0.9,d2(c))2g(0.9,d2(c))−3 >
f (0,d2(c))2g(0,d2(c))−3. This follows since

(2 + c3)16

c12(3− 2cd2(c))2

(
f (0.9,d2(c))2g(0,d2(c))3 − g(0.9,d2(c))3f (0,d2(c))2

)
has positive coefficients in the basis B78

c . For the second inequality, we have to prove
2
√
g(0.9,d2(c))3g(t,d2(c))3 − f (0.9,d2(c))

√
g(t,d2(c))3 − f (t,d2(c))

√
g(0.9,d2(c))3 ≤ 0. We have

shown above that f (t,d2(c)) ≥ 0 for all t ∈ [0.45,1], so it is enough to show that

4g(0.9,d2(c))3g(t,d2(c))3 ≤
(
f (0.9,d2(c))

√
g(t,d2(c))3 + f (t,d2(c))

√
g(0.9,d2(c))3

)2
,
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which is equivalent to

l(t, c) := 4g(0.9,d2(c))3g(t,d2(c))3 − f (0.9,d2(c))2g(t,d2(c))3 − f (t,d2(c))2g(0.9,d2(c))3 ≤

2f (0.9,d2(c))f (t,d2(c))
√
g(t,d2(c))3g(0.9,d2(c))3 =: r(t, c).

Then l(t, c) ≥ 0 for all (c, t) ∈ [0,1] × [0.45,1] since c12(2 + c3)−24l(55τ+45
100 , c) has positive co-

efficients in the basis B120
c ×B18

τ , and r(t, c)2 − l(t, c)2 ≥ 0 for all (c, t) ∈ [0,1]× [0.45,1] since
c24(2 + c3)−48

(
r(55τ+45

100 , c)2 − l(55τ+45
100 , c)2

)
has positive coefficients in the basis B264

c × B67
τ .

Hence, the second inequality follows.
3. Due to e4(0,d0(c)) < 0 the first inequality is equal to −1+ f (0,d0(c))√

g(0,d0(c))3
> −1+ f (0,d1(c))√

g(0,d1(c))3
. The in-

equality follows from the fact that (2+c3)3

c5(1−c)3

(
f (0,d0(c))

√
g(0,d1(c))3 − f (0,d1(c))

√
g(0,d0(c))3

)
is polynomial with positive coefficients in the basis B17

c .
Since c−2f (0.4,d0(c)δ) is a polynomial with positive coefficients in the basis B4

c ×B3
δ we have

f (0.4,d0(c)δ) > 0 for δ ∈ [0,1]. So the second inequality is equivalent to

e4(0.4,d0(c)δ) + e4(0,d1(c)) = 1 + e4(0,d1(c))−
f (0.4,d0(c)δ)√
g(0.4,d0(c)δ)3

> 0,

(2 + c3)4(3− 2cd1(c))4
(
(1 + e4(0,d1(c))2g(0.4,d0(c)δ)3 − f (0.4,d0(c)δ)2

)
> 0.

The inequality holds since the left side of the last inequality is a polynomial with positive
coefficients in the basis B42

c ×B12
δ ,

4. Due to e4(0,d3(c)) > 0, we have to show that e4(0,d3(c)) + e4(0,d1(c)) > 0. Since

(2 + c2)2

c2 (e4(0,d3(c)) + e4(0,d1(c)))
√
g(0,d3(c))3g(0,d1(c))3

is a polynomial with positive coefficients in the basis B16
c , the inequality follows.

From the above properties of the functions e4(·,di(c)), it is now easy to show that the optimal
parameter is on the interval Ic.

Lemma 5.3. For every c ∈ (0,1) we have d∗(c) ∈ Ic.

Proof. Since de4
dd (0,d) = 24(2d−c)

c(2cd−3)3 > 0 for d > 3
2c and limd→∞ e4(0,d) = 1 − 2c−3 < −1, we have

e4(0,d) < −1 for all d > 3
2c . For d = 3

2c the curvature at t = 0 is not defined, so d∗(c) < 3
2c .

For d3(c) ≤ d < 3
2c , we have e4(0,d) ≥ e4(0,d3(c)) > maxt∈[−1,1] |e4(·,d1(c))|. For d2(c) < d ≤

d3(c), we have e4(t0,d) < e4(t0,d2(c)) = −maxt∈[−1,1] |e4(·,d2(c))| for some t0 ∈ [0.45,1). For d0(c) ≤
d < d1(c), we have e4(0,d) < e4(0,d1(c)). For 0 < d < d0(c), we have e4(0.4,d) > |e4(0,d1)| =
maxt∈[−1,1] |e4(·,d1(c))|. Therefore, d∗(c) ∈ Ic.

By lemma 5.1 for every d ∈ Ic the function e4(·,d) has a local minimum at t = 0 and two local
extrema on (0.45,1). Let us denote by tM(d) and tm(d) the points on (0,1) at which the function
e4(·,d) has the local maximum and local minimum, respectively.

Since e4(0,d1(c)) < e4(tm(d1(c)),d1(c)), e4(tm(d2(c)),d2(c)) < e4(0,d2(c)), e4(0, ·) is strictly increas-
ing on Ic and e4(tm(·), ·) is strictly decreasing on Ic, there exists a unique de(c) ∈ Ic such that
e4(0,de(c)) = e4(tm(de(c)),de(c)).
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Theorem 5.4. Let c ∈ (0,1).

1. If e4(tM(de(c)),de(c)) ≤ |e4(0,de(c))|, then d∗(c) = de(c).
2. If e4(tM(de(c)),de(c)) > |e4(0,de(c))|, then there exists a unique d > de(c) such that

e4(tM(d),d) = |e4(tm(d),d)|. Then d∗(c) = d.

Proof. 1. Since e4(tm(·), ·) is decreasing on Ic every d > de(c) induces a worse approximant
and since e4(0, ·) is increasing on Ic every d < de(c) induces a worse approximant, hence
d∗(c) = de(c).

2. Since functions e4(tm(·), ·) and e4(tM(·), ·) are both decreasing on Ic, we have

e4(tM(de(c)),de(c)) > |e4(tm(de(c)),de(c))| and e4(tM(d2(c)),d2(c)) ≤ |e4(tm(d2(c)),d2(c))|.

Hence there exists a unique d ∈ Ic such that e4(tM(d),d) = |e4(tm(d),d)|. Since e4(tM(·), ·) is
decreasing on Ic every d′ < d induces a worse approximant and since e4(tm(·), ·) is decreasing
on Ic every d′ > d induces a worse approximant, hence d∗(c) = d.

The numerical solution of equations e4(0,d(c)) = e4(tm(d(c)),d(c)) = −e4(tM(d(c)),d(c)) is c =
0.181857. We can conclude that d∗(c) = de(c) for c < 0.181857, i.e. for ϕ > 0.44178π, otherwise
we have to increase d.

In Table 2, numerical values of optimal parameters d∗ according to the curvature error and
optimal parameters dr according to the radial error [9] are shown for several values of an inner
angle 2ϕ.

ϕ d∗ curvature error radial error dr curvature error radial error
π
2 1.511152 7.43473× 10−3 1.07833× 10−3 1.513820 9.21346× 10−3 6.95275× 10−4

π
3 0.631866 6.89404× 10−4 3.24026× 10−5 0.631836 7.7361× 10−4 2.62103× 10−5

π
4 0.569351 1.25139× 10−4 2.99058× 10−6 0.569344 1.35554× 10−4 2.59234× 10−6

π
6 0.529434 1.10948× 10−5 1.11141× 10−7 0.529429 1.17661× 10−5 1.00281× 10−7

π
8 0.516294 1.98032× 10−6 1.09529× 10−8 0.516294 2.08568× 10−6 1.00093× 10−8

π
12 0.507161 1.74187× 10−7 4.22729× 10−10 0.507161 1.82575× 10−7 3.89715× 10−10

Table 2: The table of the optimal parameters d∗(c) and the corresponding errors for quartic G2 approximants. In
the last three columns are the optimal parameters dr (c) according to the radial error and the corresponding errors.
Note that in [9], the forms of control points are different, so the optimal parameters d in the paper differ for the
factor

√
1− c2 from the parameters in the table. Note that the parameter for the half circle (ϕ = π

2 ) has a different
meaning than for the other cases (see the definition of the control points).

6. Conclusion

In this paper, we have confirmed that the cubic G1 parametric approximant given in [6],
whose curvatures at the middle and at the boundary point coincide, is indeed, under some
conditions, the best fit for a circular arc in terms of curvature. This only holds for a circular
arc whose inner angle is less than a certain angle. We have shown that all other circular arcs’
optimal approximants satisfy a different condition. A similar characterization for the optimal
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Figure 9: On the left, there are the graphs of the curvature error of the optimal approximant with respect to the
curvature error (solid) and the optimal one with respect to the radial distance (dashed) for the half circle. On the
right, there are graphs showing the radial error of the optimal approximant with respect to curvature error (solid)
and the optimal one with respect to the radial distance (dashed) again for the half circle.

quartic G2 approximant was done. The nature of the curvature function makes the analysis of
parametric polynomials of a higher degree too complex. Still, numerical results show that the
Gn−2 approximation by a parametric polynomial of degree n yields a similar characterization of
the optimal approximants. Also, the problem of finding the optimal quartic G1 interpolant is a
challenging issue, and we do not know the characterization of optimal approximants.

Acknowledgments. The authors are grateful to Emil Žagar for numerous fruitful discussions,
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