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Abstract. We give a systematic definition of the fundamental
groups of gropes, which we call grope groups. We show that there
exists a nontrivial homomorphism from the minimal grope group
M to another grope group G only if G is the free product of M
with another grope group.

1. Introduction

Here we study groups whose classifying spaces are (open infinite)
gropes (a recent short note on gropes in general is [10]). In algebra
these groups first appeared in the proof of a lemma by Alex Heller [7]
as follows. Let ϕ0 be a homomorphism from the free group F0 on one
generator α to any perfect group P . Let

ϕ0(α) = [p0, p1][p2, p3] · · · [p2n−2, p2n−1] ∈ P (∗)
then we can extend ϕ0 to a homomorphism ϕ1 of a (nonabelian) free
group F1 on 2n generators β0, . . . , β2n−1 by setting ϕ1(βi) = pi. Note
that ϕ0(α0) may have several different expressions as a product of
commutators, so we may choose any; even if some of the elements
p1, . . . , p2n−1 coincide we let all elements βi to be distinct. Now we
repeat the above construction for every homomorphism ϕ1|〈βi〉 of the
free group on one generator to P and thus obtain a homomorphism
ϕ2 : F2 → P . Repeating the above construction we obtain a direct
system of inclusions of free groups F1 → F2 → F3 → · · · and homo-
morphisms ϕn : Fn → P . The direct limit of Fn is a locally free perfect
group D and every group obtained by the above construction is called
a grope group (and its clasifying space is a grope). This construction
shows therefore that every homomorphism from a free group on one
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generator to a perfect group P can be extended to a homomorphism
from a grope group to P . Note that in case the perfect group P has
the Ore property ([8], [6]) that every element in P is a commutator,
in the above process (∗) we can make every generator in the chosen
basis of Fn a single commutator of two basis elements of Fn+1. The
group obtained in this way is the minimal grope group M . Clearly
every grope group admits many epimorphisms onto M . In the sequel
we show that M admits a nontrivial homomorphism to another grope
group G only if the latter is the free product G ∼= M ∗K where K is
a grope group.

Gropes were introduced by Štan’ko [9]. They have an important
role in geometric topology ([3], for more recent use in dimension the-
ory see [5] and [4]). Their fundamental groups were used by Berrick
and Casacuberta to show that the plus-construction in algebraic K-
theory is localization [2]. Recently [1] such a group has appeared in
the construction of a perfect group with a nonperfect localization.

In the first part of the paper we give a systematic definition of grope
groups and prove some technical lemmas. In the second part we prove
that the minimal grope group admits nontrivial homomorphisms to
almost no other grope group thus proving that there exist at least two
distinct grope groups.

2. Systematic definition of grope groups and basic facts

For every positive integer n let n = {0, 1, . . . , n − 1}. The set of
non-negative integers is denoted by N. We denote the set of finite
sequences of elements of a setX by Seq(X) and the length of a sequence
s ∈ Seq(X) by lh(s). The empty sequence is denoted by ∅. For
s, t ∈ Seq(X) let the concatenation be s t ∈ Seq(X).

For a non-empty set A let L(A) be the set {a, a− : a ∈ A}, which
we call the set of letters. We identify (a−)− with a. Let W(A) =
Seq(L(A)), which we call the set of words. For a word W ≡ a0 · · · an,
define W− ≡ a−n · · · a−0 . We write W ≡ W ′ for identity in W(A) while
W = W ′ for identity in the free group generated by A. For instance
a a− = ∅ but aa− 6≡ ∅. We adopt [a, b] = a b a−1 b−1 as the definition of
a commutator.

To describe all the grope groups we introduce some notation.
A grope frame S is a subset of Seq(N) satisfying: ∅ ∈ S and for every

s ∈ S there exists n > 0 such that 2n = {i ∈ N : si ∈ S} and we wite
ω(s) = 2n− 1. If there is no ambiguity we write ω = ω(s).

For each grope frame S we induce formal symbols cSs for s ∈ S and
define ES

m = {cSs : lh(s) = m, s ∈ S} and a free group F S
m = 〈ES

m〉.
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Then define eSm : F S
m → F S

m+1 by: eSm(cSs ) = [cSs0, c
S
s1] · · · [cSsω−1, cSsω]. Let

GS = lim−→(F S
m, e

S
m : m ∈ N) and every such group GS is a grope group.

For s ∈ S, s is binary branched, if {i ∈ N : si ∈ S} = 2. Let
S0 be a grope frame such that every s ∈ S0 is binary branched, i.e.
S0 = Seq(2). Then GS0 = M is the so-called minimal grope group.
Since eSm is injective, we frequently regard F S

m as a subgroup of GS.
For a non-empty word W let head(W ) of W be the left most letter

b of W , i.e. W ≡ bX for some word X, and let tail(W ) of W be the
right most letter c of W , i.e. W ≡ Y c for some word Y .

For short we write the composite eSm,n = eSn−1 · · · eSm for m ≤ n. For

a word W ∈ W(ES
m) and n ≥ m, the word eSm,n[W ] ∈ W(ES

n ) can

be expressed inductively as follows: eSm,m[W ] ≡ W and eSm,n+1[W ] is

obtained by replacing every ct in eSm,n[W ] by

(P0) cSt0c
S
t1c

S−
t0 c

S−
t1 · · · cSt ω−1cSt ωcS−t ω−1cS−t ω

and every cS−t by

(P1) cSt ωc
S
t ω−1c

S−
t ω c

S−
t ω−1 · · · cSt1cSt0cS−t1 cS−t0

respectively.
We drop the superscript S, if no confusion can occur.
For a reduced word W ∈ W(En) with W ∈ Fm for m < n, let

W0 ∈ W(Em) such that em,n[W0] ≡ W . (The existence of W0 is assured
in Lemma 2.4.) A subword V of W is small, if there exists a letter cs or
c−s in W0 and i ∈ N such that V is a subword of em+1,n[csi] or em+1,n[c−si]
respectively. Note that being small depends on m: in the identities in
the minimal grope group

c∅ = c0c1c
−
0 c
−
1 = c00c01c

−
00c
−
01c10c11c

−
10c
−
11c01c00c

−
01c
−
00c11c10c

−
11c
−
10 ≡ W

we see that V ≡ c00c01 is a small subword of W for m = 0, i.e. W0 = c∅,
and it is not a small subword of W for m = 1, i.e. W0 = c0c1c

−
0 c
−
1 . In

case n = m + 1 the small subwords of W are exactly all letters in W .
In the following usage of the expression small subword the numbers m
and n are always fixed in advance.

Observation 2.1. Let n > m + 1 and let W ≡ em+1,n[cs0]. Suppose
that X ∈ W(En) is a reduced word and X ∈ Fm. When W is a subword
of X, W may appear in

(C0) em,n[cs] = em+1,n[cs0cs1c
−
s0c
−
s1 · · · csω−1csωc−sω−1c−sω]

or

(C1) em,n[c−s ] = em+1,n[csωcsω−1c
−
sωc
−
sω−1 · · · cs1cs0c−s1c−s0].
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The successive letter to W in (C0) is head(em+1,n[cs1]) = cs10...0, but in
(C1) it is head(em+1,n[c−s1]) = head(em+2,n[cs1ω(s1)]) = cs1ω(s1)0...0. Thus
the successive letter to W in X is not uniquely determined. However,
if X ≡ WY for some Y , the case (C1) can not appear, so the head of
Y is uniquely determined as cs10···0.

Similarly, the preceding letter to W is not uniquely determined –
there are four possibilities:

• tail(em+1,n[cs1]) = tail(em+2,n[c−s1ω(s1)]) = tail(em+3,n[c−s1ω(s1)0]) =

c−s1ω(s1)0...0 in case (C1)

• If X ≡ WY for some Y , there is no preceding letter to W
• tail(em,n[ct]) = tail(em+1,n[c−tω]) = tail(em+2,n[c−tω0]) = c−tω0...0 in

case (C1) if X = em+1,n[ZctcsY ] for some Z, Y
• tail(em,n[c−t ]) = tail(em+1,n[c−t0]) = c−t0...0 in case (C1) if X =
em+1,n[Zc−t csY ] for some Z, Y .

However, the preceding letter to W determines the succesive letter to
W uniquely:

• If the preceding letter to W is c−s1ω(s1)0...0 then we are in (C1)

• In all other cases we are in (C0).

Observation 2.2. A letter cs0···0 ∈ W(En) for lh(s) = m possibly
appears in em,n[W0] in the following cases. When n = m + 1, cs0
appears once in em,n[cs] and also once in em,n[c−s ]. According to the
increase of n, cs0···0 appears in many parts. cs0···0 appears 2n−m−1-times
in em,n[cs] and also 2n−m−1-times in em,n[c−s ].

Lemma 2.3. For a word W ∈ W(Em) and n ≥ m, em,n[W ] is reduced,
if and only if W is reduced.

Lemma 2.4. For a reduced word V ∈ W(En) and n ≥ m, V ∈ Fm if
and only if there exists W ∈ W(Em) such that em,n[W ] ≡ V .

Proof. The sufficiency is obvious. To see the other direction, let W be a
reduced word in W(Em) such that em,n[W ] = V in Fn. By Lemma 2.3
em,n[W ] is reduced. Since every element in Fn has a unique reduced
word in W(En) presenting itself, we have em,n[W ] ≡ V . �

Lemma 2.5. Let m < n and A be a non-empty word in W(En). Let
X0AY0 and X1AY1 be reduced words inW(En) satisfying X0AY0, X1AY1 ∈
Fm.

(1) If A is not small, X0A /∈ Fm and X1A /∈ Fm, then the heads of
Y0 and Y1 are the same.

(2) Let X0 be an empty word. If A is not small and A /∈ Fm, the
heads of Y0 and Y1 are the same.
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(3) Let X0 and X1 be empty words. If A /∈ Fm, the heads of Y0 and
Y1 are the same.

Proof. (1) Since X0AY0 ∈ Fm but X0A /∈ Fm, we have a letter c ∈
Em ∪E−m and words U0, U1, U2 such that U1 6≡ ∅, U2 6≡ ∅, X0A ≡ U0U1

and U1U2 ≡ em,n[c]. Since A is not small, c and U0, U1, U2 are uniquely
determined by A. Since the same thing holds for X1AY1, we have the
conclusion by Observation 1 for n > m + 1. (The case for n = m + 1
is easier.)

(2) Since AY0 ∈ Fm, A /∈ Fm and A is not a small word, for any word
B such that BA is reduced we have BA /∈ Fm. In particular X1A /∈ Fm
and the conclusion follows from (1).

(3) Since AY0 ∈ Fm, there are A0 and non-empty U0, U1 such that
A0 ∈ Fm, A ≡ A0U0 and U0U1 ≡ em,n[c] for some c ∈ Em ∪ E−m. Since
A /∈ Fm, the head of U1 is uniquely determined by A and hence the
heads of Y0 and Y1 are the same (Observation 1). �

Lemma 2.6. Let m < n and A,X, Y inW(En) and AXA−Y ∈ Fm. If
AXA−Y is reduced and A is not small, then AXA− ∈ Fm and Y ∈ Fm.

Proof. The head of the reduced word inW(Em) for the elementAXA−Y
is cs or c−s for cs ∈ Em. According to cs or c−s , A ≡ em+1,n[cs0]Z or
em+1,n[csk]Z for a non-empty word Z, where k + 1 = {i ∈ N : si ∈ S}
is even. Then A− ≡ Z−em+1,n[c−s0] or A− ≡ Z−em+1,n[c−sk] and hence
AXA− ∈ Fm and consequently Y ∈ Fm. �

Lemma 2.7. For e 6= x ∈ F S
m and u ∈ GS, uxu−1 ∈ F S

m implies
u ∈ F S

m.

Proof. There exists n ≥ m such that u ∈ Fn. Let W be a cyclically
reduced word and V be a reduced word such that x = VWV − in Fm
and VWV − is reduced. Then em,n(x) = em,n[V ]em,n[W ]em,n[V ]− and
em,n[V ] is reduced and em,n[W ] is cyclically reduced by Lemma 2.3. Let
U be a reduced word for u in Fn. Let k = lh(U). Then em,n(x2k+1) =
em,n[V ]em,n[W ]2k+1em,n[V ]− and the right hand term is a reduced word.
Hence the reduced word for uxku− of the form Xem,n[W ]Y , where
Uem,n[V ]em,n[W ]k = X and em,n[W ]kem,n[V ]−U− = Y . Since uxku−1 ∈
Fm, X ∈ Fm and Y ∈ Fm. Now we have Uem,n[V ] ∈ em,n(Fm) and
hence U ∈ em,n(Fm), which implies the conclusion. �

Lemma 2.8. Let UWU− be a reduced word inW(En). If UWU− ∈ Fm
and W is cyclically reduced, then U,W ∈ Fm.

Proof. If U is empty or n = m, then the conclusion is obvious. If
U ∈ Fm, then WU− ∈ Fm and so W ∈ Fm. Suppose that U is
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U 6∈ Fm. Since UWU−, UW−U− ∈ Fm, the head of W and that of W−

is the same by Lemma 2.5 (3), which contradicts that W is cyclically
reduced. �

Lemma 2.9. Let XY and Y X be reduced words in W(En) for n ≥ m.
If XY and Y X belong to Fm, then both of X and Y belong to Fm.

Proof. We may assume n > m. When n > m, the head of em,n[W ] for
a non-empty word W ∈ W(Em) is cs0···0 or csk0···0 where lh(s) = m and
k + 1 = {i ∈ N : si ∈ S} is even. (When n = m + 1, there appears no
0 · · · 0.) Since X−Y − ∈ Fm and X−Y − is reduced, the tail of X is of the
form c−s0···0 or c−sk0···0. We only deal with the former case. Suppose that
X /∈ Fm. Since XY ∈ Fm and XY is reduced, X ≡ Zem+1,n[cs1c

−
s0] for

some Z. This implies X− ≡ em+1,n[cs0c
−
s1]Z

−, which contradicts that
X−Y − ∈ Fm and X−Y − is reduced. Now we have X, Y ∈ Fm. �

Lemma 2.10. Let m < n and A,B,C inW(En) and e 6= ABCA−B−C− ∈
Fm. If ABCA−B−C− is a reduced word and at least one of A,B,C is
not small, then A,B,C ∈ Fm.

Proof. Since ABCA−B−C− 6= e, at most one of A,B,C is empty.
When C is empty, the conclusion follows from Lemma 2.6 and the fact
that BAB−A− is also reduced and BAB−A− ∈ Fm.

Now we assume that A,B,C are non-empty. If A is not small, then
ABCA− ∈ Fm and B−C− ∈ Fm by Lemma 2.6. Since BC is cycli-
cally reduced, A ∈ Fm and BC ∈ Fm by Lemma 2.8. The conclusion
follows from Lemma 2.9. In the case that C is not small, the argu-
ment is similar. The remaining case is when A and C are small. Then
ABCA−B−C− ∈ Fm and CBAC−B−A− ∈ Fm imply A ≡ C, which
contradicts the reducedness of ABCA−B−C−. �

Lemma 2.11. Let m < n and A,B,C inW(En) and e 6= ABCA−B−C− ∈
Fm. If ABCA−B−C− is a reduced word and A,B,C are small, then
one of A,B,C is empty.

Assume C is empty. Then there exists cs ∈ Em such that s is binary
branched and either

A ≡ em+1,n[cs0] and B ≡ em+1,n[cs1],

or

A ≡ em+1,n[cs1] and B ≡ em+1,n[cs0].

Proof. Since A,B,C are small, all the words A,B,C and their inverses
must be subwords of em+1,n[csi], i = 0, 1, or em+1,n[c−si], for an element
cs ∈ Em, and in particular that either

ABCA−B−C− = em,n(cs) = em+1,n[cs0cs1c
−
s0c
−
s1]
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or

ABCA−B−C− = em,n(c−s ) = em+1,n[cs1cs0c
−
s1c
−
s0],

where the left most and right most terms are reduced words. We remark
that if the cardinality of {i ∈ N : si ∈ S} were greater than 2, one of
A,B,C would not be small; hence in our case s is binary branched.

We only deal with the first case. Then ABC ≡ em+1,n[cs0cs1] and
A−B−C− ≡ em+1,n[c−s0c

−
s1]. In case A,B,C are non-empty, A is a proper

subword of em+1,n[cs0] or C is a proper subword of em+1,n[cs1]. In either
case A−B−C− ≡ em+1,n[c−s0c

−
s1] does not hold. Hence one of A,B,C

is empty. We may assume C is empty. Since A,B are small, A ≡
em+1,n[cs0] and B ≡ em+1,n[cs1]. �

3. Proof of Theorem 3.1

In this section we prove

Theorem 3.1. The minimal grope group M = GS0 admits a nontrivial
homomorphism into a grope group GS, if and only if there exists s ∈ S
such that a frame {t ∈ Seq(N) : st ∈ S} is equal to S0.

It is easy to see that the condition on GS in the above theorem is
equivalent to GS ∼= M ∗K, where K is another grope group.

In our proof of Lemma 3.9 we analyze a reduction procedure of
a word Y −ABYX−A−B−X where Y −ABY and X−A−B−X are re-
duced. Lemmas 3.2, 3.3, 3.4 and 3.5 show connections between our
reduction steps in case at least one of X and Y is empty. Lemma 3.6
corresponds to the final step, i.e. when we have the reduced word. Lem-
mas 3.7 and 3.8 correspond to the case that X and Y are non-empty.
In the following lemmas we assume m < n.

Lemma 3.2. Let A,B ∈ W(En) be non-empty reduced words such
that ABA−B− 6= e and AB and A−B− are reduced words. Then the
following hold:

(1.1) If B ≡ B0A, then B0 is non-empty, AB0 and A−B−0 are reduced
words and AB0A

−B−0 = ABA−B−. In addition if AB0, A
−B−0 ∈

Fm, then AB,A−B− ∈ Fm.
(1.2) If A ≡ A0B, then A0 is non-empty, A0B and A−0 B

− are reduced
words and A0BA

−
0 B
− = ABA−B−. In addition if A0B,A

−
0 B
− ∈

Fm, then AB,A−B− ∈ Fm.
(1.3) If A ≡ A0Z and B ≡ B0Z for non-empty words A0 and B0 and

B0A
−
0 is reduced, then A0ZB0A

−
0 Z
−B−0 is reduced and A0ZB0A

−
0 Z
−B−0 =

ABA−B−. In addition if A0, B0, Z ∈ Fm, then AB,A−B− ∈
Fm.
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Proof. We only show (1.1). The non-emptiness of B0 follows from
ABA−B− 6= e. Since AB and A−B− are reduced, AB0 and A−B−0
are cyclically reduced and hence the second statement follows from
Lemma 2.9. �

Lemma 3.3. Let A,B,C ∈ W(En) be reduced words (possibly empty)
such that ABCA−B−C− 6= e and AB and CA−B−C− are reduced
words. Then the following hold:

(2.1) If B ≡ B0C
−, then AB0 and A−CB−0 C

− are reduced words and
AB0A

−CB−0 C
− = ABCA−B−C−. In addition if AB0A

−, CB−0 C
− ∈

Fm, then AB,CA−B−C− ∈ Fm.
(2.2) If C ≡ B−C0, then AC0 and A−B−C−0 B are reduced words and

AC0A
−B−C−0 B = ABCA−B−C−. In addition if AC0A

−, B−C−0 B ∈
Fm, then AB,CA−B−C− ∈ Fm.

(2.3) If B ≡ B0Z
− and C ≡ ZC0 for non-empty words B0 and

C0 and B0C0 is reduced, then AB0C0A
−ZB−0 C

−
0 Z
− is reduced

and AB0C0A
−ZB−0 C

−
0 Z
− = ABCA−B−C−. In addition if

AB0C0A
−, ZB−0 C

−
0 Z
− ∈ Fm, then AB,CA−B−C− ∈ Fm.

Proof. (2.1) The first proposition is obvious. Let B0 ≡ XB1X
− for a

cyclically reduced word B1. Since (AX)B1(AX)−, (CX)B−1 (CX)− ∈
Fm, AX,CX,B1 ∈ Fm by Lemma 2.8. Now AB = (AX)B1(CX)− ∈
Fm and CA−B−C− = (CX)(AX)−(CB−0 C

−) ∈ Fm. We see (2.2)
similarly.

For (2.3) observe the following. Since the both B0 and C0 are non-
empty, B0C0 and B−0 C

−
0 are cyclically reduced. Hence, using Lem-

mas 2.8 and 2.9, we have (2.3). �

The next two lemmas are straightforward and we omit the proofs.

Lemma 3.4. Let A,B,C ∈ W(En) be reduced words (possibly empty)
such that ABA−CB−C− 6= e and AB and A−CB−C− are reduced.
Then the following hold:

(3.1) If A ≡ A0B, then A0B and A−0 CB
−C− are reduced and A0BA

−
0 CB

−C− =
ABA−CB−C−. In addition if A0BA

−
0 , CB

−C− ∈ Fm, then
ABA−, CB−C− ∈ Fm.

(3.2) If B ≡ B0A, then AB0 and CA−B−0 C
− are reduced and AB0CA

−B−0 C
− =

ABA−CB−C−. In addition if AB0, CA
−B−0 C

− ∈ Fm, then
ABA−, CB−C− ∈ Fm.

(3.3) If B ≡ B0Z and A ≡ A0Z for non-empty words A0 and B0 and
B0A

−
0 is reduced, then A0ZB0A

−
0 CZ

−B−0 C
− is reduced. In ad-

dition if A0ZB0A
−
0 , CZ

−B−0 C
− ∈ Fm, then ABA−, CB−C− ∈

Fm.
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Lemma 3.5. Let A,B,C ∈ W(En) be reduced words (possibly empty)
such that ABA−CB−C− 6= e and A and BA−CB−C− are reduced
words. Then the following hold:

(4.1) If A ≡ A0B
−, A0 and BA−0 CB

−C− are reduced and A0BA
−
0 CB

−C− =
ABA−CB−C−. In addition if A0BA

−
0 , CB

−C− ∈ Fm, then
ABA−, CB−C− ∈ Fm.

(4.2) If B ≡ A−B0, and B0A
−CB−0 AC

− is reduced and B0A
−CB0AC

− =
ABA−CB−C−. In addition if B0A

−, CB−0 AC
− ∈ Fm, then

ABA−, CB−C− ∈ Fm.
(4.3) If A ≡ A0Z

− and B ≡ ZB0 for non-empty words A0, B0

and A0B0 is reduced, then A0B0ZA
−
0 CB

−
0 Z
−C− is reduced and

A0B0ZA
−
0 CB

−
0 Z
−C− = ABA−CB−C−. In addition if A0B0ZA

−
0 ,

CB−0 Z
−C− ∈ Fm, then ABA−, CB−C− ∈ Fm.

Lemma 3.6. Let A,B,C,D ∈ W(En) be reduced non-empty words.

(1) if ABA−B− is reduced and ABA−B− ∈ Fm and at least one of
A,B is not small, then A,B ∈ Fm;

(2) if ABCA−B−C− is reduced and ABCA−B−C− ∈ Fm at least
one of A,B,C is not small, then A,B,C ∈ Fm;

(3) if CABC−DA−B−D− is reduced and CABC−DA−B−D− ∈
Fm, then A,B,C,D ∈ Fm.

(4) if CAC−DA−D− is reduced and CAC−DA−D− ∈ Fm, then
CAC−, DA−D− ∈ Fm.

Proof. The statements (1) and (2) are paraphrases of Lemma 2.10.
(3) Let c be the head of C and d be the tail of D−. Since c− and d− are
contiguous, we have CABC−, DA−B−D− ∈ Fm. Since AB and A−B−

are reduced and the both A and B are non-empty, AB is cyclically
reduced. Now the conclusion follows from Lemmas 2.8 and 2.9.
(4) This follows from a reasoning in the proof of (3). �

Lemma 3.7. Let A−B− and X0ABX
−
0 be reduced words such that

X0AB ≡ BAX1 for some X1. If lh(X0) ≤ lh(B), then there exist
A′, B′ such that lh(B′) < lh(B), (A′)−(B′)− and X0A

′B′X−0 are re-
duced words, X0A

′B′ ≡ B′A′X1, A
−B−X0ABX

−
0 = (A′)−(B′)−X0A

′B′X−0 ,
and A,B ∈ 〈X0, A

′, B′〉.

Proof. First we remark that lh(X0) 6= lh(B) since BX−0 is reduced.
Hence lh(B) > lh(X0). If lh(B) = lh(X0) + lh(A), then we have
X0A ≡ B ≡ AX1 and have the conclusion, i,e, A′ ≡ A and B′ ≡ ∅.

If lh(B) < lh(X0) + lh(A), we have k > 0 and A0, A1 such that
B ≡ X0A0A1, A ≡ (A0A1)

kA0, and A1 is non-empty. (We remark that
A0 may be empty.) Let A′ ≡ A0 and B′ ≡ A1. Since lh(X0) + lh(A) =
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lh(B) + (k− 1)lh(A0A1) + lh(A0), we have B ≡ A1A0X1. Let A′ ≡ A0

and B′ ≡ A1, then we have the conclusion.
If lh(B) > lh(X0) + lh(A), we have k > 0 and B0, B1 such that

B0B1 ≡ X0A, B ≡ (B0B1)
kB0, and B1 is non-empty. (We remark that

B0 may be empty.) Since lh(B1B0) = lh(AX1), we have B1B0 ≡ AX1.
Now B ≡ X0A(B0B1)

k−1B0 ≡ (B0B1)
k−1B0AX1 holds. Let A′ ≡ A

and B′ ≡ (B0B1)
k−1, then we have the conclusion. �

In Lemma 3.7 we haveA−B−X0ABX
−
0 = X1X

−
0 = (A′)−(B′)−X0A

′B′X−0 .

Lemma 3.8. Let A,B,X, Y ∈ W(En) be reduced words (possibly empty)
such that X and Y are non-empty, Y −A−B−Y X−ABX 6= e, Y −A−B−Y
and X−ABX are reduced words, and the reduced word of Y −A−B−Y X−ABX
is cyclically reduced.

If Y −A−B−Y X−ABX ∈ Fm, then

(1) Y −A−B−Y,X−ABX ∈ Fm, or
(2) Y −A−B−Y X−ABX is equal to cs or c−s for some s such that

lh(s) = m and s is binary branched.

Proof. If Y X− is reduced, then Y −A−B−Y X−ABX is cyclically re-
duced. By an argument analyzing the head and the tail of Y − and X
we can see Y −A−B−Y,X−ABX ∈ Fm.

Otherwise, in the cancellation of Y −A−B−Y X−ABX the leftmost
Y − or the rightmost X is deleted. Since Y −A−B−Y X−ABX 6= e
and lh(Y −A−B−Y ) = 2lh(Y ) + lh(AB) and lh(X−ABX) = 2lh(X) +
lh(AB), lh(X) 6= lh(Y ). We suppose that lh(X) > lh(Y ), i.e. the
head of Y − is deleted. Then we have X ≡ ZY for a non-empty word
Z.

We first analyze a reduced word of A−B−Z−ABZ, where A−B−

is deleted. The head part of Z−AB is BA. Applying Lemma 3.7
for X0 ≡ Z− and X1 repeatedly, we have reduced words A0 and B0

such that Z−A0B0Z is reduced, Z−A0B0 ≡ B0A0X1 for some X1,
A−0 B

−
0 Z
−A0B0Z = A−B−Z−ABZ, A,B ∈ 〈Z,A0, B0〉 and lh(B0) <

lh(Z).
It never occurs that the both A0 and B0 are empty, but one of A0

and B0 may be empty. If B0 = ∅, interchange the role of A0 and B0 and
by Lemma 3.7 we can assume B0 is non-empty and lh(B0) < lh(Z).

First we deal with the case A0 is empty. Since the left most B−0 is
deleted in the reduction of B−0 Z

−B0Z, we have non-empty Z0 such that
Z ≡ Z0B

−
0 and have a reduced word Z−0 B0Z0B

−
0 with Z−0 B0Z0B

−
0 =

B−0 Z
−B0Z. Since the left most Y − is deleted in the reduction of

Y −B−0 Z
−B0ZY and Z−0 B0Z0B

−
0 Y is reduced, Z−0 B0Z0B

−
0 is cyclically
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reduced and hence the reduced word of Y −A−B−Y X−ABX is a cycli-
cal transformation of Z−0 B0Z0B

−
0 . By the fact that Y is the head

part of B−0 Z
−B0ZY , Y is of the form (Z−0 B0Z0B

−
0 )kY0 where Y0Y1 ≡

Z−0 B0Z0B
−
0 for some non-empty Y1 and k ≥ 0.

If Y0 is empty, we have Y −A−B−Y X−ABX = Z−0 B0Z0B
−
0 . If

one of Z0 and B0 is not small, then Z0, B0 ∈ Fm by Lemma 2.10
and we have Y −A−B−Y,X−ABX ∈ Fm by Lemma 3.7 and the fact
Y = (Z−0 B0Z0B

−
0 )k. Otherwise, i.e., when of Z0 and B0 are small,

Y −A−B−Y X−ABX = Z−0 B0Z0B
−
0 is equal to cs or c−s for some s such

that lh(s) = m and s is binary branched by Lemma 2.11.
If Y0 ≡ Z−0 , Y0 ≡ Z−0 B0 or Y0 ≡ Z−0 B0Z0, the argument is sim-

ilar to the case that Y0 is empty. Otherwise Y0 cut short Z−0 , B0,
Z0 or B−0 . Since arguments are similar, we only deal with the case
that Y0 ≡ Z−0 B1 where B1B2 ≡ B0 for non-empty B1 and B2. Then
Y −A−B−Y X−ABX = B2Z0B

−
2 B

−
1 Z
−
0 B1 and henceB2Z0B

−
2 , B

−
1 Z
−
0 B1 ∈

Fm by Lemma 3.6 (4). Let Z1 be a cyclically reduced word such that
Z0 ≡ U−Z1U . Then Z1, B2U

−, UB1 ∈ Fm by Lemma 2.8. Now

Y −Z0Y = B−1 Z0(B1B2Z
−
0 B

−
2 B

−
1 Z0)

kZ0(Z
−
0 B1B2Z0B

−
2 B

−
1 )kZ−0 B1

= (B−1 Z0B1B2Z
−
0 B

−
2 )kB−1 Z0B1(B2Z0B

−
2 B

−
1 Z
−
0 B1)

k

Y −B0Y = B−1 Z0(B1B2Z
−
0 B

−
2 B

−
1 Z0)

kB1B2(Z
−
0 B1B2Z0B

−
2 B

−
1 )kZ−0 B1

= B−1 Z0B1(B2Z
−
0 B

−
2 B

−
1 Z0B1)

kB2Z
−
0 B1(B2Z0B

−
2 B

−
1 Z
−
0 B1)

k.

Hence Y −Z0Y, Y
−B0Y ∈ Fm. Since Z = Z0B

−
0 and A,B ∈ 〈Z,B0〉, we

have Y −ABY,X−A−B−X ∈ Fm.
Next we suppose that A0 is non-empty. We have k > 0 and A1

and A2 such that Z− ≡ B0A1A2, A0 ≡ (A1A2)
kA1, X1 ≡ A2A1B0.

Since X−AB ≡ UX1 for some U and X−ABZ is reduced, X1Z ≡
A2A1B0A

−
2 A
−
1 B
−
0 is a reduced word. By the assumption a reduced word

of Y −A2A1B0A
−
2 A
−
1 B
−
0 Y is cyclically reduced and A2A1B0A

−
2 A
−
1 B
−
0 Y

is reduced, henceX1Z ≡ A2A1B0A
−
2 A
−
1 B
−
0 is cyclically reduced and the

reduced word of Y −A2A1B0A
−
2 A
−
1 B
−
0 Y is given by a cyclical transfor-

mation of A2A1B0A
−
2 A
−
1 B
−
0 . Hence Y ≡ (A2A1B0A

−
2 A
−
1 B
−
0 )kY0 where

k ≥ 0 and A2A1B0A
−
2 A
−
1 B
−
0 ≡ Y0Y1 for some Y1.

For instance the reduced word of Y −A2A1B0A
−
2 A
−
1 B
−
0 Y is of the

form B0A
−
2 A
−
1 B
−
0 A2A1 or B2A

−
2 A
−
1 B
−
2 B

−
1 A2A1B1 where B0 ≡ B1B2.

By Lemma 3.6 (4) or (3) respectively we conclude A1, A2, B0 ∈ Fm or
A1, A2, B1, B2 ∈ Fm which implies Y −ABY,X−A−B−X ∈ Fm. �

Lemma 3.9. For every grope group GS the following hold:
If e 6= [u, v] ∈ Fm and at least one of u and v does not belong to

Fm, then [u, v] is conjugate to cs or c−s in Fm for some s such that
lh(s) = m and s is binary branched.
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Proof. We have n > m such that u, v ∈ Fn. It suffices to show the
lemma in case that the reduced word for [u, v] is cyclically reduced.
For, suppose that we have the conclusion of the lemma in the indicated
case. Let [u, v] ∈ Fm and [u, v] = XYX− where XYX− is a reduced
word and Y is cyclically reduced. Then we have [X−uX,X−vX] =
X−[u, v]X = Y . On the other hand X, Y ∈ Fm by Lemma 2.8. By the
assumption at least one of X−uX and X−vX does not belong to Fm.
Since [u, v] is conjugate to Y in Fm, we have the conclusion.

Let u, v ∈ Fn such that [u, v] 6= e and the reduced word for [u, v]
is cyclically reduced. There exist a cyclically reduced non-empty word
V0 ∈ W(En) and a reduced word X ∈ W(En) such that v = X−V0X
and the word X−V0X is reduced. Let U0 be a reduced word for uX−.
Since V0 is a cyclically reduced word, at least one of U0V0 and V0U

−
0 is

reduced. When U0V0 is reduced, there exist k ≥ 0 and reduced words
Y,A,B such that Y −ABY is reduced, U0 ≡ Y −AV k

0 and V0 ≡ BA.
When V0U

−
0 is reduced, there exist k ≥ 0 and reduced words Y,A,B

such that Y −ABY is reduced, U0 ≡ Y −A(V −0 )k and V0 ≡ BA. In the
both bases uvu−1 = Y −ABY and v = X−BAX. We remark that AB
and BA are cyclically reduced.

We analyze a reduction procedure of Y −ABYX−A−B−X in the fol-
lowing.
(Case 0): X and Y are empty.

In this case the both A and B are non-empty and corresponds to
Lemma 3.2. Using (1.1) and (1.2) alternately and (1.3) possibly as
the last step we obtain a reduced word of ABA−B−. If the reduced
word XY ZX−Y −Z− satisfies that one of X, Y, Z is not small, by (1)
and (2) of Lemma 3.6 and applying Lemma 3.2 repeatedly we can see
A,B ∈ Fm. Otherwise, one of X, Y, Z is empty and [u, v] = cs or
[u, v] = c−s for some binary branched s with lh(s) = m by Lemma 2.11.
(Case 1): Y is empty, but X is non-empty.
(Case 2): X is empty, but Y is non-empty.

In these cases arguments are symmetric, we only deal with (Case 1).
There is possibility that one of A and B may be empty, though at least
one of A and B is non-empty. We assume that A is non-empty. We
trace Lemmas 3.3, 3.4, 3.5 to get a reduced word of ABX−A−B−X.
Then we apply one of (2), (3) and (4) of Lemma 3.6 to the reduced
word and applying Lemma 3.2 repeatedly we get a reduced word. Then
we have A,B ∈ Fm, which implies u, v ∈ Fm, or [u, v] = cs etc. as in
(Case 0).
(Case 3): The both X and Y are non-empty.
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Only in this case we use the assumption that the reduced word of
Y −ABYX−A−B−X is cyclically reduced. By Lemma 3.8 we have the
conclusion. �

Lemma 3.10. Let F be a free group generated by C and c, d ∈ C be
distinct elements. If [c, d] = [u, v] for u, v ∈ F , then neither u nor v
belongs to the commutator subgroup of F .

Proof. Since c, d are generators, [c, d] /∈ [F, [F, F ]] and the conclusion
follows. �

Lemma 3.11. Let F be a free group generated by B and b0, b1 ∈ B
be distinct. If c, d ∈ {b, b− : b ∈ B} and [b0, b1] = [x−1cx, y−1dy]
for x, y ∈ F , then c, d ∈ {b0, b−0 , b1, b−1 } and moreover c ∈ {b0, b−0 } iff
d ∈ {b1, b−1 } and c ∈ {b1, b−1 } iff d ∈ {b0, b−0 }.

Proof. Using a canonical projection to 〈b0, b1〉 we easily see that c, d ∈
{b0, b−0 , b1, b−1 }. To see the remaining part it suffices to show that if
c = b0, and d = b0 or b−0 , then [b0, b1] 6= [x−1cx, y−1dy] for any x, y.

We show that b0b1b
−
0 b
−
1 is not cyclically equivalent to the reduced

word for [x−1cx, y−1dy]. For this purpose we may assume x = e.
We only deal with d = b0. We have a reduced word Y such that
y−1b0y = Y −b0Y and Y −b0Y is reduced. (Note that y = Y may
not hold.) The head of Y is not b0 nor b−0 , since Y −b0Y is reduced.
When the tail of Y is b0 or b−0 , we choose n ≥ 0 so that Y ≡ Zbn0
or Y ≡ Z(b−0 )n respectively and n is maximal. Then Z is non-empty.
Now b0Z

−b0Zb
−
0 Z
−b−0 Z is a cyclically reduced word which is cyclically

equivalent to b0Y
−b0Y b

−
0 Y
−b−0 Y . Since b0Z

−b0Zb
−
0 Z
−b−0 Z is not cycli-

cally equivalent to b0b1b
−
0 b
−
1 , we have the conclusion. �

Proof of Theorem 3.1. Let h : GS0 → GS be a nontrivial homomor-
phism. Then there exists s∗ ∈ S0 such that h(cs∗) is nontrivial (clearly
for every finite sequence s starting with s∗ also h(cs) is nontrivial). We
let cs = cS0

s and dt = cSt and Fm = F S
m.

We have n such that h(cs∗) ∈ Fn. Since Fn is free, Im(h) is not
included in Fn and hence there exists s0 ∈ S0 starting with s∗ and such
that h(cs0) ∈ Fn, but h(cs00) /∈ Fn or h(cs01) /∈ Fn. Then by Lemma 3.9
we have dt0 ∈ En such that h(cs0) is conjugate to dt0 or d−t0 and t0 is
binary branched.

Moreover, Lemma 2.7 implies that neither h(cs00) nor h(cs01) belongs
to Fn. We show the following by induction on k ∈ N:

(1) For u ∈ Seq(2) with lh(u) = k

(a) h(cs0u) is conjugate to dt0v or d−t0v in Fn+k and t0v is binary
branched for some v ∈ Seq(2) with lh(v) = k;
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(b) Neither h(cs0u0) nor h(cs0u1) belongs to Fn+k;

(2) For every v ∈ Seq(2) with lh(v) = k there exists u ∈ Seq(2) such
that lh(u) = k and h(cs0u) is conjugate to dt0v or d−t0v in Fn+k.

We have shown that this holds when k = 0.
Suppose that (1) and (2) hold for k. Let lh(u) = k and h(cs0u) is

conjugate to dt0v or d−t0v etc. Then [h(cs0u0), h(cs0u1)] is conjugate to
[dt0v0, dt0v1] or [dt0v1, dt0v0] in Fn+k+1. We claim h(cs0u0) ∈ Fn+k+1. To
show this by contradiction, suppose that h(cs0u0) /∈ Fn+k+1. Apply
Lemma 3.9 to Fn+k+1, then we have [h(cs0u0), h(cs0u1)] is a conjugate
to dt or d−t with lh(t) = n+ k + 1 in Fn+k+1, which is impossible since
[h(cs0u0), h(cs0u1)] ∈ [Fn+k+1, Fn+k+1]. Similarly we have h(cs0u1) ∈
Fn+k+1.

On the other hand, neither h(cs0u0) nor h(cs0u1) belongs to [Fn+k+1, Fn+k+1]
by Lemma 3.10. Hence at least one of h(cs0u00) and h(cs0u01) does not
belong to Fn+k+1 and consequently neither h(cs0u00) nor h(cs0u01) be-
longs to Fn+k+1 by Lemma 2.7.

Hence h(cs0u0) is conjugate to dt or d−t with lh(t) = n + k + 1 by
Lemma 3.9. Similarly, h(cs0u1) is conjugate to dt′ or d−t′ with lh(t′) = n+
k+1. Since [h(cs0u0), h(cs0u1)] is conjugate to [dt0v0, dt0v1] or [dt0v0, dt0v1]
in Fn+k+1, h(cs0u0) and h(cs0u1) are conjugate to dt0vj or d−t0vj for some
j ∈ 2 and for each j ∈ 2 the element dt0vj is conjugate to exactly one
of h(cs0u0), h(cs0u1), h(cs0u0)

− and h(cs0u1)
− by Lemma 3.11. Hence (1)

and (2) hold for k + 1. Now we have shown the induction step and
finished the proof. �

Remark 3.12. Though the conclusion of Theorem 3.1 is rather sim-
ple, embeddings from GS0 into GS may be complicated. In particular
automorphisms on GS0 may be complicated, since the following hold:

[dc−d−, dcd−c−d−] = dc−d−dcd−c−d−dcd−dcdc−d− = cdc−d− = [c, d].
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