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Abstract

The optimal one-sided parametric polynomial approximants of a circular arc are considered. More pre-
cisely, the approximant must be entirely in or out of the underlying circle of an arc. The natural restriction
to an arc’s approximants interpolating boundary points is assumed. However, the study of approximants,
which additionally interpolate corresponding tangent directions and curvatures at the boundary of an
arc, is also considered. Several low-degree polynomial approximants are studied in detail. When several
solutions fulfilling the interpolation conditions exist, the optimal one is characterized, and a numerical
algorithm for its construction is suggested. Theoretical results are demonstrated with several numerical
examples and a comparison with general (i.e. non-one-sided) approximants are provided.
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1. Introduction

Circular arcs are among the most fundamental geometric objects used in the design of planar curves.
Joining two arcs together in a biarc is quite a popular procedure in engineering, specially in robotics (see
[1] and references therein). Although circular arcs can be considered as canonical objects in a particular
computer-based design system, it is often desirable to work with polynomial objects only. Since a cir-
cular arc does not possess an exact polynomial representation, this leads to the problem of good (or the
optimal) approximation of circular arcs by parametric polynomial curves. Several authors studied this
problem in the frame of computer-aided geometric design (CAGD), from the pioneering paper [2] to the
recent results on optimal approximation in [3] and [4]. Meanwhile, many authors considered a relaxed
problem. They have either used the simplified radial distance as a measure of optimality, or they have
fixed some free parameters to make the problem easier to handle (see [5] and a comprehensive list of
references therein).
In this paper, we focus on the optimal one-sided approximation, i.e., the one where an approximant of
a circular arc is entirely in or entirely out of the underlying circle. This might be of interest when an
approximant must not cross a circular arc for some reason (e.g., a design of circular molds). In both cases,
the inner and outer ones will be studied in detail, and optimal solutions will be provided according to
the Hausdorff distance.
The paper is organized as follows. In Section 2, we review some basic definitions and discuss the number
of free parameters for approximants of different degrees and the order of the geometric continuity. Sec-
tions 3, 4, and 5 deal with one–parametric optimization problems related the optimal one-sided G0,G1
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emil.zagar@fmf.uni-lj.si (Emil Žagar)
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and G2 approximants of degree 2,3 and 4, respectively. In Sections 6 and 7, we move further to the
two parametric problems and construct the optimal one-sided cubic G0 and quartic G1 approximants.
Some numerical examples and comparison of the obtained results are presented in Section 8. The paper
concludes with Section 9 where we give some final remarks and suggestions for possible future work.

2. Preliminaries

Let c : [−ϕ,ϕ]→ R
2, 0 < ϕ ≤ π

2 , denote the standard parameterization of a canonical unit circular arc
given by c(α) = (cosα,sinα)T . Note that any other arc can be easily translated, rotated and scaled to the
canonical one, and these transformations do not affect the optimality. We are looking for a polynomial
approximant p of c, where p : [−1,1]→R

2 is a parametric polynomial curve of degree n that interpolates
two boundary points of c, i.e., p(∓1) = (cosϕ,∓sinϕ)T . Let

ψ(t) = ∥p(t)∥22 − 1, t ∈ [−1,1],

where ∥.∥2 denotes the Euclidean norm, be the simplified radial error function. Our goal is to find p which
minimizes

∣∣∣ψ∣∣∣ over [−1,1]. In addition, we shall require that ψ is either non-positive or non-negative, and
refer to the corresponding p as an inner or an outer approximant, respectively. Note that the radial error
is given by ψr =

√
ψ + 1 − 1, and it implies the Hausdorff distance (see [6], e.g.). For the inner and outer

approximation, we also observe that optimality of ψr coincides with optimality of ψ, thus it is enough to
consider ψ only.
It will turn out convenient to express the polynomial curve p in the Bernstein-Bézier form as

p(t) =
n∑
i=0

Bni (t)bi , t ∈ [−1,1],

where bi , i = 0,1, . . . ,n, are control points and Bni , i = 0,1, . . . ,n, are reparameterized Bernstein basis poly-
nomials over interval [−1,1], i.e.,

Bni (t) =
(
n
i

)(1 + t
2

)i (1− t
2

)n−i
.

The interpolation of boundary points implies that the interpolant p is a G0 approximant. If we addition-
ally require that also tangent directions are interpolated, then we deal with G1 approximant, and if we
further interpolate the signed curvature, then the approximant is called a G2 approximant.
Since a circular arc c is symmetric across the abscissa, the approximant p must possess this property too.
This reduces the number of free parameters in p from 2n + 2 to n + 1. Since p is a G0 approximant, the
number of free parameters is further reduced to n − 1. Since ψ depends on these n − 1 free parameters,
our goal is to determine them in a way that the corresponding p minimizes

max
t∈[−1,1]

∣∣∣ψ(t)
∣∣∣ . (1)

The number of free parameters depends on the degree n of the approximant p, and on the order of
geometric continuity. The bigger the difference between the degree and the order is, the harder the
optimization of (1). Our discussion will first deal with the cases where the difference is two, followed
by the analysis of cases where it is three. However, rising the degree n also makes the problem much
more difficult to handle, so we shall restrict it to degrees up to four.
In the following analyses, cosϕ and sinϕ will often be involved, and we will use the abbreviations c =
cosϕ and s = sinϕ. Note that 0 ≤ c < 1 and 0 < s ≤ 1.
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3. Optimal quadratic G0 approximants

In the quadratic G0 case control points determining the approximant p are given as b0 = (c,−s)T ,
b1 = (ξ,0)T , and b2 = (c, s)T , where ξ > 0. The function ψ is a quartic polynomial depending only on the
parameter ξ and can be expressed as

ψ(t,ξ) =
1
8

(
1− t2

)(
2
(
1− t2

)
ξ2 + 4c

(
1 + t2

)
ξ − 8 + 2c2

(
1− t2

))
.

We observe that ψ(·,ξ) increases on (0,∞) for all t ∈ (−1,1) and 0 ≤ c < 1. Thus, the optimal inner approxi-
mant is uniquely determined by the maximal ξ > 0 for which maxt∈(−1,1)ψ(t,ξ) = 0 and the optimal outer
approximant is also uniquely given by the minimal ξ > 0 for which mint∈(−1,1)ψ(t,ξ) = 0. Let us denote
them as ξ∨ and ξ∧, respectively.
Sinceψ(·,ξ) is symmetric on (−1,1), the parameter ξ∨ is obtained as a solution of the equationψ(0,ξ∨) = 0,
i.e., ξ∨ = 2− c and the parameter ξ∧ is determined as a solution of the equation ψ′(1,ξ) = 0, i.e., ξ∧ = 1

c .
Note that in the latter case we get the G1 approximant.

4. Optimal cubic G1 approximants

In this case, the control points of an approximant p are given as

b0 = (c,−s)T , b1 = (c,−s)T + ξ(s, c)T , b2 = (c, s)T + ξ(s,−c)T and b3 = (c, s)T ,

where ξ > 0. Note that the G1 condition at the boundary points has already been incorporated. The error
function ψ is a polynomial of degree 6, which can be written as

ψ(t,ξ) =
1

16

(
1− t2

)2 (
9ξ2

(
c2t2 + 1− c2

)
+ 12ξ

(
2− t2

)
c
√

1− c2 − 4
(
4− t2

)(
1− c2

))
.

Again, ψ(t, ·) is an increasing function for all t ∈ (−1,1) and 0 ≤ c < 1. Since in addition ψ(·,ξ) is a polyno-
mial of degree six with a positive leading coefficient, the parameter ξ∧ of the optimal outer approximant

must fulfil the condition ψ(0,ξ∧) = 0, and consequently ξ∧ = 4
√

1−c2

3(1+c) .
On the other hand, the condition for the approximant being an inner one is that t = ±1 are triple zeros of
ψ, i.e., ψ′′(±1,ξ) = 0 which implies the solution ξ∨ = 2

3

√
1− c2(

√
3 + c2 − c).

5. Optimal quartic G2 approximants

As we will see in the following, the analysis gets more complicated here as in the previous two cases.
Considering G1 and G2 conditions, we can express control points of an approximant p as

b0 = (c,−s)T ,b1 = (c,−s)T + ξ(s, c)T ,b2 =
(

3−4ξ2

3c ,0
)T
,b3 = (c, s)T + ξ(s,−c)T ,b4 = (c, s)T ,

where again ξ > 0. The free parameter ξ was chosen similarly as in the previous section. The control point
b2 is not defined for c = 0, but this case can be obtained as the limit c→ 0. The function ψ is now a poly-
nomial of degree 8, and with β1,2 = 1

2

(
c
√

1− c2 −
√

3± 8c+ 6c2 − c4
)
, β3,4 = 1

2

(
c
√

1− c2 +
√

3∓ 8c+ 6c2 − c4
)
,

α1,2 = ∓1
2

√
1− c2

(√
3 + c2 ± c

)
, it can be written as

ψ(t,ξ) =
(t2 − 1)3

64c2

(
16(ξ −α1)2(ξ −α2)2t2 − 16(ξ − β1)(ξ − β2)(ξ − β3)(ξ − β4)

)
,
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so its leading coefficient is lc(ψ(·,ξ)) = 1
64c2 16(ξ −α1)2(ξ −α2)2. Unfortunately, ψ(t, ·) is no longer a mono-

tone function, and a more involved analysis is needed.
Observe first that ψ(0,ξ) = 1

4c2 (ξ −β1)(ξ −β2)(ξ −β3)(ξ −β4) and ∂ψ
∂ξ (0,ξ) = 1

c2 (ξ −γ1)(ξ −γ2)(ξ −γ3), where

γ2 = 1
2c
√

1− c2 and γ1,3 = 1
2 (c
√

1− c2 ∓
√

3 + 6c2 − c4). Let

td(ξ) := ψ′′′(1,ξ) =
48
√

1− c2ξ3

c
+ 48ξ2 − 12

√
1− c2

(3
c

+ c
)
ξ + 12

(
1− c2

)
.

Then td(0) = 12(1− c2) > 0, td′(0) = −12
c

√
1− c2(3 + c2) < 0, and td(β3) = 12(1− c)4

(
(2 + c)−

√
1 + c
√

3 + c
)2
>

0. Furthermore, td′(ξ) = 144
c

√
1− c2(ξ − δ1)(ξ − δ2), where δ1,2 = 1

6
√

1−c2
(−2c∓

√
9− 2c2 − 3c4), and

td(δ2) = −
48

(
1− c2

)3 (
27− 18c2 − c4

)
c
(
8c

(
27(1− c2)2 + 22c2 − 18c4

)
+ 4

(
9− 2c2 − 3c4)√9− 2c2 − 3c4

) < 0.

It is easy to see that α1,β1,γ1,δ1 ≤ 0 and β2 ≤ γ2 ≤ δ2 ≤ β3 ≤ α2 ≤ γ3 ≤ β4 for all c and β2 ≥ 0 if and only if
c ≥ 3

5 .

5.1. Optimal inner approximant

For ξ∨ = β3 we have ψ(t,ξ∨) = −1
4 (1− c)4(2 + c −

√
3 + 4c+ c2)2t2(1− t2)3. A parameter ξ > β4 does not

induce an inner approximant since ψ(0,ξ) > 0. Suppose β3 < ξ ≤ β4. Since td is increasing on [β3,β4]
there is ε > 0, such that ψ(t,ξ) < ψ(t,ξ∨) for t ∈ (1−ε,1). If ξ induces a better approximant as ξ∨, then the
graphs of ψ(·,ξ) and ψ(·,ξ∨) have two intersection on (0,1), therefore ten intersections on [−1,1], which
is not possible. If c < 3

5 , there are no ξ ∈ [0,ξ∨] which induce an inner approximant. Suppose c ≥ 3
5 and

0 ≤ ξ ≤ β2. Since lc(ψ(·,ξ∨)) < lc(ψ(·,β2)), the parameter ξ∨ induces a better approximant then β2. Since
td is decreasing on [0,β2] a parameter ξ < β2 induces a worse approximant then β2. Therefore, ξ∨ induces

the optimal inner approximant. In the limit case, when c = 0, we get ξ∨ =
√

3
2 and the abscissa of the

control point b2 is limc→0
3−4β2

3
3c = 2

3 (4−
√

3).

5.2. Optimal outer approximant
Let ξ∧ be the only zero of td on the interval [δ2,∞). By the above calculations ξ∧ < β3, so ξ∧ induces

an outer approximant. If ξ > ξ∧, then td(ξ) > 0, hence ξ does not induce an outer approximant. Sup-
pose that 0 ≤ ξ < ξ∧. If td(ξ) < 0, then ξ does not induce an outer approximant. Let td(ξ) ≥ 0. Since
lc(ψ(·,ξ)) > lc(ψ(·,ξ∧)) the graphs of ψ(·,ξ) and ψ(·,ξ∧) intersect on (1,∞). Hence, the graphs can not have
an intersection on the interval (−1,1), so ξ induces a worse approximant as ξ∧. In the limit case, when

c = 0, we get ξ∧ =
√

3
2 and the abscissa of the control point b2 is 8

√
3

9 .
In all previous cases, only one parameter was involved in the optimization process. Now we move to the
two–parametric optimization.

6. Optimal cubic G0 approximants

This section deals with cubic one-sided approximants of c. The control points determining the ap-
proximant p are

b0 = (c,−s), b1 = (ξ,−η), b2 = (ξ,η) and b3 = (c, s),

where ξ > 0. The function ψ is of degree 6 and it is of the form

ψ(t,ξ,η) =
1

16

(
t2 − 1

)((
3η −

√
1− c2

)2
t4 +

(
16

(
1− c2

)
− 9

(
η +
√

1− c2
)2

+ 9(ξ − c)2
)
t2 +

(
16− (3ξ + c)2

))
,
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hence

lc(ψ(·,ξ,η)) =
1

16

(√
1− c2 − 3η

)2
, ψ(0,ξ,η) =

1
16

(3ξ + c)2 − 1, ψ′(1,ξ,η) = 3
(
1− ξc − η

√
1− c2

)
. (2)

We deal with the two-parametric optimization problem here, and the analysis is much more involved
than in the previous cases. Let us consider the inner and the outer approximation separately again.

6.1. Optimal inner approximant

Following the idea of equioscillation of the best polynomial approximant in the functional case, we
might expect equioscillation of ψ. Since it is an inner approximant, it should touch the abscissa from
below as many times as possible. Thus, the guess is that its graph looks like the one in Figure 1 (left).
Since ψ is of degree 6 and it has two simple zeros at ±1, the remaining two zeros on (−1,1) should be
double ones and related to the maxima of the Chebyshev polynomial of degree six. Consequently, they
equal to ±1

2 and we must have
ψ
(

1
2 ,ξ,η

)
= 0, ψ′

(
1
2 ,ξ,η

)
= 0. (3)

It will be shown that the above system has a unique solution with ξ > c and that this solution implies the
optimal approximant. Observe that (3) is an algebraic system of equations for ξ and η. Two polynomials
of a Gröbner basis for the ordering η ≺ ξ are p1(·) = (· − c)g1(·) and g2, where

g1(ξ) = 2187ξ3 + 3807cξ2 + (1953c2 − 3840)ξ + 245c3 − 4352c,

g2(ξ,η) = −8
(
1− c2

)
η +
√

1− c2
(
27ξ2 + 10cξ + 3c2 − 40

)
.

The zero ξ = c of p1 is not admissible, since the corresponding polynomial approximant reduces to the
line segment, which is not the optimal one. Thus, we are restricted to the positive zeros of g1. Let
I = (ξmin,ξmax), where

ξmin =
1

27

(
−5c+ 8

√
2
√

9− c2
)

and ξmax =
4− c

3
.

Note that c < 1 < ξmin < ξmax for all c ∈ [0,1).

Lemma 1. The only positive zero of g1 is in I .

Proof. We have g1

(
−37

27c
)

= 8192
9 c(1 − c2) ≥ 0, g1(0) = c(245c2 − 4352) ≤ 0, g1(ξmin) = − 2048(1−c2)2

4c+
√

2
√

9−c2
< 0, and

g1(ξmax) = 64(1− c)3 > 0. Since the leading coefficient of g1 is positive, g1 has two non-positive zeros and
the unique positive one in I . This completes the proof.

Since g2(·,η) is a linear polynomial, the unique solution of the system (3) is (ξ∨,η∨), where ξ∨ is the
unique zero of g1 in I , and

η∨ =
27ξ∨2 + 10cξ∨ + 3c2 − 40

8
√

1− c2
. (4)

Let J = (ηmin,ηmax), where

ηmin =

√
1− c2

3
and ηmax =

3− c
1 + c

√
1− c2

3
.

Lemma 2. If (ξ∨,η∨) is the solution of the system (3), then η∨ ∈ J .

Proof. Let f (ξ) = 27ξ2+10cξ+3c2−40
8
√

1−c2
. Then f ′(ξ) = 27ξ+5c

4
√

1−c2
and f is strictly increasing on I . Thus f (ξmin) =

√
1−c2

3 < f (ξ) < 3−c
1+c

√
1−c2

3 = f (ξmax). Since ξ∨ ∈ I and η∨ = f (ξ∨) by (4), the proof is complete.
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We shall see in the following that (ξ∨,η∨) induces the polynomial approximant p with

(ξ∨,η∨) = argmin
(ξ,η)

(
max
t∈[−1,1]

∣∣∣ψ(t,ξ,η)
∣∣∣) ,

i.e., the optimal one.
Let us suppose that (ξ,η) induces a better approximant. If ξ < ξ∨, then by (2) we have ψ(0,ξ,η) ≤
ψ(0,ξ∨,η∨) < 0. Thus

∣∣∣ψ(0,ξ,η)
∣∣∣ ≥ ∣∣∣ψ(0,ξ∨,η∨)

∣∣∣, and ψ(·,ξ,η) does not provide a smaller error than
ψ(·,ξ∨,η∨).

If ξ ≥ ξ∨ and η > η∨, then by (2)

ψ′(1,ξ,η) < ψ′(1,ξ∨,η∨) and lc(ψ(·,ξ,η)) > lc(ψ(·,ξ∨,η∨)).

Consequently, ψ(·,ξ,η) and ψ(·,ξ∨,η∨) must intersect six times in [−1,1] (see Figure 2 (left)) and at least
twice out of [−1,1], which contradicts the fact that ψ(·,ξ,η) is of degree six. If ξ = ξ∨ and η < η∨, then
ψ′(1,ξ,η) > ψ′(1,ξ∨,η∨), so ψ(·,ξ,η) and ψ(·,ξ∨,η∨) must intersect at least eight times in [−1,1] (see Fig-
ure 2 (left) again), which can not be the case.
Thus, we are left with ξ > ξ∨ and η ≤ η∨. The case where ψ′(1,ξ,η) ≥ ψ′(1,ξ∨,η∨) is eliminated by us-
ing the same argument as in the previous case, and the following lemma eliminates the last case, i.e.,
ψ′(1,ξ,η) < ψ′(1,ξ∨,η∨).

Figure 1: Graph of error function ψ in cubic G0 case (left) and quartic G1 case (right).

Figure 2: Potential optimal approximants in the cubic G0 case (left) and in the quartic G1 case (right).

Lemma 3. If ξ > ξ∨, η ≤ η∨ and ψ′(1,ξ,η) < ψ′(1,ξ∨,η∨), then ψ
(

1
2 ,ξ,η

)
> 0 and ψ

(
·,ξ,η

)
is not an inner

approximant.
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Proof. Since the pair of parameters (ξ,η) provides an inner approximant, we have ξ ≤ ξmax. The assump-
tions of the lemma then imply

ξ ∈
(
ξ∨,ξmax

]
, η ∈

(
− c
√

1− c2
ξ +

c
√

1− c2
ξ∨ + η∨,η∨

]
. (5)

Thus (ξ,η) ∈ T , where T is the triangle given by (5) (see Figure 3 (left)). We need to show thatψ(1
2 ,ξ,η) > 0

for (ξ,η) ∈ T , or, equivalently, that T lies outside of the ellipse E given by ψ(1
2 ,ξ,η) = 0. The implicit

equation of the ellipse reads

4(9ξ + 7c)2 + (9η + 13
√

1− c2)2 − 1024 = 0, (6)

revealing that its centre is in the third quadrant. Thus, it is concave and decreasing in the first quadrant.
The triangle T is above the line ℓT given by the equation

η = − c
√

1− c2
ξ +

c
√

1− c2
ξ∨ + η∨. (7)

Let ℓE be the tangent line of the ellipse E at (ξ∨,η∨). Note that the lines ℓT and ℓE intersect in (ξ∨,η∨)
(see Figure 3 (left)). The result of the lemma will follow if we prove that the slope of ℓT is greater than
the slope of ℓE since then the triangle T is out of the ellipse E. Both slopes can be easily computed using
(6) and (7) and we have to verify the inequality

√
1− c2(12ξ∨ + 5c)− 3cη∨ > 0.

But it follows from the fact that
√

1− c2(12ξ+5c)−3cη > 0 for (ξ,η) ∈ I ×J (we simply check the inequality
at the corner points of I × J) and the fact that (ξ∨,η∨) ∈ I × J .

Figure 3: Schematic depiction of an ellipse and line segment in proof of lemma 3 (left) and of parabola and ellipse in proof of
lemma 6 (right).

Let us summarize the results in the following theorem.

Theorem 4. The optimal inner cubic G0 approximant of a circular arc is given by the pair of parameters
(ξ∨,η∨) ∈ I × J , where ξ∨ is a unique zero of g1 in I and η∨ is a unique zero of g2(·,ξ∨) in J .
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6.2. Optimal outer approximant
We will show that the optimal outer approximant isG2 approximant. From the equationsψ(0,ξ∧,η∧) =

0 and ψ′(1,ξ∧,η∧) = 0 we get ξ∧ = 4−c
3 and η∧ = 3−4c+c2

3
√

1−c2
. Suppose that a pair (ξ,η) induces a better outer

approximant. From ψ(0,ξ,η) ≥ ψ(0,ξ∧,η∧) = 0 we get ξ ≥ ξ∧. From

1−
√

1− c2η − cξ = 1
3ψ
′(1,ξ,η) ≤ 1

3ψ
′(1,ξ∧,η∧) = 1−

√
1− c2η∧ − cξ∧ = 0

we get ξ ≥ 1
c

(√
1− c2(η∧ − η) + cξ∧

)
. From

1
108

(
(3η + 5

√
1− c2)2 + 27(ξ + c)2 − 108

)
= ψ(

√
3

3 ,ξ,η)

≤maxψ(·,ξ∧,η∧) = ψ(
√

3
3 ,ξ

∧,η∧) = 1
108

(
(3η∧ + 5

√
1− c2)2 + 27(ξ∧ + c)2 − 108

)
we get η ≤ η∧. From the last two inequalities we get

0 ≤ (3η∧ + 5
√

1− c2)2 + 27(ξ∧ + c)2 − (3η + 5
√

1− c2)2 − 27(ξ + c)2

≥ (3η∧ + 5
√

1− c2)2 + 27(ξ∧ + c)2 − (3η + 5
√

1− c2)2 − 27(1
c

(√
1− c2(η∧ − η) + cξ∧

)
+ c)2

= − 3
c2

(
η∧ − η

)(
(9− 6c2)(η∧ − η) + 2c2(4

√
1− c2 − 3η∧) + 18c

√
1− c2ξ∧

)
≥ 0.

The last inequality follows since η ≤ η∧ ≤ 4
3

√
1− c2. Hence all inequalites are equalities, so (ξ,η) =

(ξ∧,η∧).

7. Optimal quartic G1 approximants

In the G1 quartic case the control points of an approximant p are given as

b0 = (c,−s)T ,b1 = (c,−s)T + ξ(s, c)T ,b2 = (η,0)T ,b3 = (c, s)T + ξ(s,−c)T ,b4 = (c, s)T ,

where ξ > 0 due to the G1 continuity. The function ψ is again a polynomial of degree 8 and can be written
as

ψ(t,ξ,η) = (t2 − 1)2
(
a2(ξ,η)t4 + a1(ξ,η)t2 + a0(ξ,η)

)
,

where

a2(ξ,η) = lc(ψ(·,ξ,η)) =
1

64

(
3η − 4

√
1− c2ξ − 3c

)2
,

a1(ξ,η) =
1

64

(
32c2ξ2 + 32ξ2 − 64c

√
1− c2ξ − 18η2 + 36cη − 34c2 + 16

)
,

a0(ξ,η) = ψ(0,ξ,η) =
1

64

(
(3η + 4

√
1− c2ξ + 5c)2 − 64

)
,

and its second derivative is ψ′′(1,ξ,η) = 8ξ2 + 6cη − 6.

7.1. Optimal inner approximant
It will turn out that the optimal inner quartic G1 approximant is actually the optimal G2 approximant

from Section 5.1. Recall that, in this case, we have ψ(0,ξ,η) = 0 and ψ′′(1,ξ,η) = 0, and the appropriate
solution which induces the best approximant is given by

ξ∨ =
c
(
1− c2

)
+ (1− c)2

√
3 + 4c+ c2

2
√

1− c2
, η∨ =

1
3

(
8− 7c+ 2c3 − 2(1− c)2

√
3 + 4c+ c2

)
,
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with the error 1
1024

(
27(1− c)4

(
(2 + c)−

√
3 + 4c+ c2

)2
)
≤ 27(2−

√
3)2

1024 . Suppose that a pair (ξ,η) , (ξ∨,η∨)

induces the optimal inner G1 approximant. By Section 5.1, we know that the induced approximant is not
a G2 approximant. First, we show η ≥ 0.

Suppose that η < 0. Since ψ(0,ξ,η) ≥ mint∈[−1,1]ψ(·,ξ∨,η∨) =: m, we have 3η + 4
√

1− c2ξ + 5c <
−8
√

1 +m < −2. Then

lc(ψ(·,ξ,η)) =
1

64

(
−3η + 4

√
1− c2ξ + 3c

)2
≥ 1

64

(
8
√

1− c2ξ + 8c+ 2
)2
≥ 1

64
(8c+ 2)2

>
1
4

(1− c)4
(
7 + 8c+ 2c2 − 2(2 + c)

√
3 + 4c+ c2

)
= lc(ψ(·,ξ∨,η∨)).

Together with the inequality ψ′′(1,ξ,η) < ψ′′(1,ξ∨,η∨) = 0 we get that ψ(t,ξ,η) < ψ(t,ξ∨,η∨) < 0 for all
t close but not equal to 1. Hence the graphs of ψ(·,ξ,η) and ψ(·,ξ∨,η∨) have one intersection on (1,∞)
and one on (−∞,−1). Since they have at least double zeros at ±1, they have at most two intersections on
(−1,1), so there are no intersections on (−1,1). Hence (ξ,η) induces a worse G1 inner approximant then
(ξ∨,η∨), hence η ≥ 0.

Since η ≥ 0 and ψ(t,ξ,η) = b2η
2 + b1η + b0, where

b2 = 9
64 (1− t2)4 > 0, b1 = 3

32

(
1− t2

)2 (
c
(
5 + 6t2 − 3t4

)
+ 4
√

1− c2
(
1− t4

)
ξ
)
> 0,

for all t ∈ (−1,1), the function ψ(t, ·,η) is increasing. If ψ(0,ξ,η) < 0 we can enlarge ξ and get better
inner G1 approximant. Hence ψ(0,ξ,η) = 0 and therefore η = η(ξ) = 1

3 (8 − 4
√

1− c2ξ − 5c). If ξ > ξ∨

then ψ(0,ξ,η(ξ)) > 0, so (ξ,η(ξ)) does not induce an inner approximant. If ξ < ξ∨, then ψ(1
2 ,ξ,η(ξ)) <

ψ(1
2 ,ξ
∨,η∨) = mint∈[−1,1]ψ(·,ξ∨,η∨), hence (ξ,η) induces worse approximant then (ξ∨,η∨).

7.2. Optimal outer approximant
To simplify the coefficients of the polynomial ψ, we introduce two new variables

u = 3η − 4
√

1− c2ξ, v = 3η + 4
√

1− c2ξ

which implies ξ = v−u
8
√

1−c2
and η = 1

6 (u + v). Now ψ can be written as ψuv(t,u,v) = ψ(t,ξ(u,v),η(u,v)) and
we get

lc(ψuv(·,u,v)) =
1

64
(u − 3c)2 , ψuv(0,u,v) =

1
64

(
(v + 5c)2 − 64

)
, ψ′′uv(1,u,v) =

(v −u)2

8(1− c2)
+ c(v+u)−6. (8)

Observe that ξ > 0 due to the G1 interpolation condition and ψuv(0,u,v) ≥ 0 since the approximant is the
outer one. This implies

v > u and |v + 5c| ≥ 8. (9)

Let us first assume that v ≥ 8− 5c.
It is clear that ψuv is symmetric and has two double zeros at ±1. Following the idea of equioscillation of
the best polynomial approximant in the functional case, we might expect that ψuv equioscillates. Since it
is an outer approximant, it may touch the abscissa several times. Thus, the guess is that its graph looks
like on Figure 1 (right). But then its four double zeros on [−1,1] must be related to the minima of the
Chebyshev polynomial of degree eight. Consequently, the two double zeros on (−1,1) are equal to 1−

√
2

and
√

2− 1. Since these points are also minima of ψuv , we must have

ψuv
(√

2− 1,u,v
)

= 0, ψ′uv
(√

2− 1,u,v
)

= 0. (10)
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Figure 4: Graphs of polynomials p1 (black) and −β0
β1

(gray).

This leads to the system of two algebraic equations for u and v. Its Gröbner basis according to the ordering
v ≺ u are polynomials p1 and p2, given as

p1(u) =
1

1− c2

(
α4u

4 +α3u
3 +α2u

2 +α1u +α0

)
, (11)

where

α4 = c2(c2 + 1),

α3 = −8(3 +
√

2)c5 + 4(4 + 5
√

2)c3 + 4(4 + 3
√

2)c,

α2 = 2(125 + 68
√

2)c6 − 2(229 + 182
√

2)c4 + 4(140 + 97
√

2)c2 − 4(65 + 46
√

2), (12)

α1 = −88(14 + 9
√

2)c7 + 12(116 + 89
√

2)c5 − 84(16 + 11
√

2)c3 + 4(50 + 36
√

2)c,

α0 = 5(457 + 312
√

2)c8 − (1655 + 1236
√

2)c6 + 12(16 + 9
√

2)c4 + 4(163 + 114
√

2)c2 + 272 + 192
√

2,

and
p2(u,v) =

1
c2 − 1

(β1v + β0(u)) ,

where

β1 = −2
(
4c8 + 4

(
4 +
√

2
)
c6 −

(
1 + 6

√
2
)
c4 + 2c2 + 3 + 2

√
2
)
,

β0(u) = 36
(
3− 2

√
2
)
c9 + 16

(
3
√

2− 5
)
c8u +

(
329− 198

√
2 +

(
12− 8

√
2
)
u2

)
c7 +

(
142
√

2− 253
)
c6u

+
(
169− 198

√
2 +

(
55− 34

√
2
)
u2

)
c5 +

(
174
√

2− 51 +
(
2
√

2− 3
)
u2

)
c4u +

(
4
(
43 + 9

√
2
)
− 5

(
6
√

2− 7
)
u2

)
c3

−
(
16

(
7 + 3

√
2
)
u +

(
3− 2

√
2
)
u3

)
c2 + 2

(
23 + 16

√
2
)
u − 4c

(
10 + 9

√
2 +
√

2u2
)
.

Let us define the domain of interest for (u,v) as

D = (3c, ũ)× [8− 5c,∞),

where

ũ = kc2 − (2k − 3)c+ k, k = 2

√
2
√

2− 1
7

.
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Note that D is a subset of (9). We shall prove in the following that there exists a unique solution (u∧,v∧) ∈
D of (10) with u∧ the unique zero of p1 on I = (3c, ũ) and v∧ = −β0(u∧)

β1
≥ 8− 5c. Moreover, this solution is

optimal, i.e., it induces the polynomial approximant p with ψu∧v∧ for which

(u∧,v∧) = argmin
(u,v)

(
max
t∈[−1,1]

∣∣∣ψuv(t,u,v)
∣∣∣) .

Let us first confirm the following lemma.

Lemma 5. The polynomial p1 has precisely one zero u∧ on I , and the system (10) has precisely one solution
(u∧,v∧) in D.

Proof. By (11) and (12) the leading coefficient of p1 is c4+c2

1−c2 , thus limu→±∞p1(u) =∞. A computer algebra
system reveals that (1 + c)p1(−6

√
2 − 5) =

∑7
i=0 aic

i(1 − c)7−i , (1 − c2)p1(0) =
∑4
i=0 bic

2i(1 − c2)4−i , p1(3c) =

16
(
17 + 12

√
2
)(

1− c2
)3

, and 49(1+c)p1(ũ) = 16c(1−c)3 ∑7
i=0dic

i(1−c)7−i , where ai < 0, i = 0,1, . . . ,7, bi > 0,

i = 0,1, . . . ,4, and di < 0, i = 0,1, . . . ,7. Thus p1(−6
√

2 − 5) < 0, p1(0) > 0, p1(3c) > 0, and p1(ũ) < 0 and the
result of the lemma follows since p1 is quartic.

Let us confirm that the solution (u∧,v∧) induces the optimal approximant. If not, then there exists a pair
(u,v) ∈ D, (u,v) , (u∧,v∧), for which

max
t∈[−1,1]

∣∣∣ψuv(t,u,v)
∣∣∣ < max

t∈[−1,1]

∣∣∣ψuv(t,u∧,v∧)
∣∣∣ .

If v > v∧, then ψuv(0, ·,v) > ψuv(0, ·,v∧) since v > 8 − 5c by (9), and (u,v) can not induce better approx-
imant than (u∧,v∧). Thus v ≤ v∧. Consider first the case u > u∧. By Lemma 5, u∧ > 3c and (8) im-
plies lc(ψuv(t,u,v)) > lc(ψuv(t,u∧,v∧)). If ψ′′uv(1,u∧,v∧) > ψ′′uv(1,u,v), then the graphs of ψuv(·,u∧,v∧) and
ψuv(·,u,v) intersect on (1,∞). Moreover, if (u,v) induces a better approximant as (u∧,v∧), then the graphs
of ψuv(·,u∧,v∧) and ψuv(·,u,v) would have to intersect at least eight times on [−1,1], which is not possible
since ψuv(·,u,v) is a polynomial of degree at most 8 (see Figure 2 (right)). Similarly, if ψ′′uv(1,u∧,v∧) ≤
ψ′′uv(1,u,v), the above-mentioned graphs would have to intersect at least ten times on [−1,1] which is
again a contradiction. Finally, let us consider the case v ≤ v∧ and u ≤ u∧. If ψ′′uv(1,u∧,v∧) ≤ ψ′′uv(1,u,v),
then the graphs of ψuv(·,u∧,v∧) and ψuv(·,u,v) would have to intersect at least ten times on [−1,1] which
is again an obvious contradiction. So, we are left with the case ψ′′uv(1,u∧,v∧) > ψ′′uv(1,u,v). The following
lemma reveals that, in this case, the approximant is not an outer one.

Lemma 6. Let v ≤ v∧ and u ≤ u∧. If ψ′′uv(1,u∧,v∧) > ψ′′uv(1,u,v), then ψuv(
√

2− 1,u,v) < 0.

Proof. Let us define

f (u,v) = ψ′′uv(1,u,v)−ψ′′uv(1,u∧,v∧), g(u,v) = ψuv(
√

2− 1,u,v). (13)

Observe that f (u,v) = 0 is a parabola and g(u,v) = 0 is an ellipse (see Figure 3, right) with leading coeffi-
cients of their tangent lines at (u,v) equal to

cp(u,v) =
−4c3 + 4c+u − v
4c3 − 4c+u − v

,

ce(u,v) =
(12
√

2− 17)u + 2c(15− 11
√

2 + (11
√

2− 15)c2 + (7− 5
√

2)cu) + (3− 2
√

2)v

(2
√

2− 3)u + v + 2c(1 +
√

2− c((1 +
√

2)c+ (
√

2− 1)v))
,
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respectively. With the help of a computer algebra system, it can be again shown that cp(u,v), ce(u,v) > 0
and cp(u,v) > ce(u,v) for (u,v) ∈ D. Thus, by (9) and Lemma 5, all these inequalities hold for u = u∧ and
v = v∧. The parabola and the ellipse intersect at (u∧,v∧), and f (0,0) = − 1

8(1−c2) (v
∧ − u∧)2 − c(v∧ + u∧) < 0,

g(0,0) = −16
√

2−20+(68
√

2−97)c2

4 < 0. Since, in addition, the ordinate of the intersection of the tangent line to
ellipse with v-axis is positive (which can be again checked by computer algebra system), and the parabola
is by (8) and (13) symmetric about the line v = u, the parabola and ellipse are concave at (u∧,v∧). This
implies ψuv(

√
2− 1,u,v) < 0 and the result of the lemma is confirmed.

Finally, consider v ≤ −8 − 5c. By (9) we have u < v, therefore u < −8 − 5c, and lc(ψuv(·,u,v)) = 1
64 (u −

3c)2 ≥ 1
64 (−8 − 5c − 3c)2 = (1 + c)2. From the above calculation we have lc(ψuv(·,u∧,v∧)) ≤ 1

64 (ũ − 3c)2 =
1

112

(
2
√

2− 1
)
(1 − c)4 ≤ lc(ψuv(·,u,v)). Hence, if the pair (u,v) induces a better outer approximant than

the pair (u∧,v∧), then the error graphs of induced approximants have at least ten intersections, which is
impossible. We can now finally formulate the main result of this subsection.

Theorem7. The optimal quarticG1 outer approximant is given by the unique solution of the nonlinear algebraic
system (10) on the domain D.

Remark 8. Note that although the zeros of p1 given by (11) can be found analytically (since p1 is a quartic
polynomial), it is much more efficient to compute the appropriate zero on (3c, ũ) by some numerical method
since the interval of interest provides a good starting point.

Figure 5: The optimal (left) and the second best (right) outer quartic G1 approximants of the circular arc given by the inner
angle 2ϕ = π

3 . The radial distances are 3.80× 10−8 and 5.31× 10−5, respectively.

8. Numerical examples

In this section, several numerical examples will be presented to confirm the theoretical results de-
rived in the previous sections. The quality of optimal inner and outer approximants will be compared
to the general optimal approximants obtained in [5] where the Hausdorff distance has been considered
as a measure of quality. Recall that in the case of inner and outer approximants, the radial distance |ψr |
coincides with the Hausdorff one, too.
For the parabolic G0 case, the optimal parameters and radial distances for several inner angles of a circu-
lar arc are collected in Table 1. The optimal parameters and corresponding radial distances for the cubic
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Figure 6: Two additional outer quartic G1 approximants of the circular arc given by an inner angle 2ϕ = π
3 . They approximate

the complementary circular arc with radial distances 2.34× 10−1 and 1.38× 10−2, respectively.

G0 and the cubic G1 case are in Table 2 and Table 3, respectively.
As we have seen in Section 7, the quartic G1 case is probably the most interesting. Optimal parameters
with the corresponding radial distances are in Table 4. There always exist four outer admissible solutions
arising from the zeros of p1 given by (11) but they provide quite different approximants. The best two
are on Figure 5. They look quite similar, but the radial distances differ significantly. The other two ap-
proximants correspond to two additional sets of parameters. Their graphs are presented on Figure 6. It is
seen that they represent an approximation of the complementary circular arc. This is because the radial
error at a particular point on the curve is measured in the radial direction from this point to the part of
the circle which might not necessarily include the considered circular arc). We guess that these solutions
imply the optimal approximants of the complementary arc (see [3]).
Finally, the optimal parameters with the corresponding radial distances for the quartic G2 case are col-
lected in Table 5.

ϕ ξ∗ error ξ∧ error ξ∨ error
π
2 2.21535 1.08× 10−1 no approximant – 2. 1.34× 10−1

π
3 1.54728 2.36× 10−2 2. 2.5× 10−1 1.5 3.18× 10−2

π
4 1.30843 7.77× 10−3 1.41421 6.07× 10−2 1.29289 1.08× 10−2

π
6 1.13713 1.58× 10−3 1.1547 1.04× 10−2 1.13397 2.25× 10−3

π
8 1.07713 5.04× 10−4 1.08239 3.14× 10−3 1.07612 7.25× 10−4

π
12 1.03427 1.× 10−4 1.03528 6.01× 10−4 1.03407 1.45× 10−4

Table 1: The optimal parameters ξ∗, ξ∧, and ξ∨ for parabolic G0 approximants according to the radial distance for several
different inner angles 2ϕ of a circular arc.

9. Conclusion

In this paper, we presented several optimal one-sided approximants of a circular arc given by an inner
angle ϕ ∈ (0, π2 ]. Detailed analyses of parabolic G0, cubic G0, G1, G2, and quartic G1, G2 cases have been
considered. Optimal inner and outer approximants are given explicitly as a solution of a (at most) quartic
algebraic equation. The uniqueness of the optimal solution was confirmed in all cases.
The problem of constructing the optimal inner and outer approximants gets increasingly complicated as
the gap between the order of geometric continuity and the degree of the polynomial is growing. Thus, the
topics for future work include the construction of higher-degree one-sided approximants with low-order
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ϕ ξ∗ η∗ error ξ∧ η∧ error ξ∨ η∨ error
π
2 1.32801 0.940495 3.99× 10−3 1.33333 1. 1.84× 10−2 1.32508 0.925926 6.19× 10−3

π
3 1.16617 0.474943 3.75× 10−4 1.16667 0.481125 1.54× 10−3 1.16587 0.473285 5.99× 10−4

π
4 1.09754 0.315229 6.84× 10−5 1.09763 0.316582 2.73× 10−4 1.09748 0.31486 1.1× 10−4

π
6 1.04465 0.190431 6.11× 10−6 1.04466 0.190599 2.39× 10−5 1.04465 0.190384 9.89× 10−6

π
8 1.02537 0.137616 1.09× 10−6 1.02537 0.137655 4.25× 10−6 1.02537 0.137605 1.77× 10−6

π
12 1.01136 0.0892586 9.65× 10−8 1.01136 0.0892636 3.73× 10−7 1.01136 0.0892572 1.57× 10−7

Table 2: The table of the optimal parameters (ξ∗,η∗), (ξ∧,η∧), and (ξ∨,η∨) for cubic G0 approximants according to the radial
distance for several different inner angles 2ϕ of a circular arc.

ϕ ξ∗ error ξ∧ error ξ∨ error
π
2 1.31574 1.32× 10−2 1.33333 1.84× 10−2 1.1547 1.34× 10−1

π
3 0.768087 1.11× 10−3 0.7698 1.54× 10−3 0.752158 1.15× 10−2

π
4 0.551915 1.96× 10−4 0.552285 2.73× 10−4 0.548584 1.96× 10−3

π
6 0.35722 1.71× 10−5 0.357266 2.39× 10−5 0.356822 1.66× 10−4

π
8 0.265206 3.04× 10−6 0.265216 4.25× 10−6 0.265115 2.92× 10−5

π
12 0.175535 2.67× 10−7 0.175537 3.73× 10−7 0.175524 2.54× 10−6

Table 3: The table of the optimal parameters ξ∗, ξ∧, and ξ∨ for cubic G1 approximants according to the radial distance for
several different inner angles 2ϕ of a circular arc.

ϕ ξ∗ η∗ error ξ∧ η∧ error ξ∨ η∨ error
π
2 0.871525 1.50505 1.57× 10−4 0.87247 1.50401 2.4× 10−4 0.866025 1.51197 9.47× 10−4

π
3 0.547788 1.20082 6.21× 10−6 0.547886 1.20071 9.59× 10−6 0.547225 1.20145 3.59× 10−5

π
4 0.402721 1.10847 6.25× 10−7 0.402742 1.10845 9.69× 10−7 0.402599 1.10858 3.56× 10−6

π
6 0.264731 1.0468 2.45× 10−8 0.264734 1.0468 3.8× 10−8 0.264716 1.04681 1.38× 10−7

π
8 0.197581 1.02605 2.46× 10−9 0.197582 1.02605 3.82× 10−9 0.197577 1.02605 1.38× 10−8

π
12 0.131263 1.01149 9.6× 10−11 0.131264 1.01149 1.49× 10−10 0.131263 1.01149 5.36× 10−10

Table 4: The table of the optimal parameters (ξ∗,η∗), (ξ∧,η∧), and (ξ∨,η∨) for quartic G1 approximants according to the radial
distance for several different inner angles 2ϕ of a circular arc.

ϕ ξ∗ error ξ∧ error ξ∨ error
π
2 − 6.95× 10−4 0.866025 1.04× 10−2 0.866025 9.47× 10−4

π
3 0.547186 2.62× 10−5 0.546677 3.62× 10−4 0.547225 3.59× 10−5

π
4 0.402587 2.59× 10−6 0.402437 3.5× 10−5 0.402599 3.56× 10−6

π
6 0.264714 1.× 10−7 0.264692 1.33× 10−6 0.264716 1.38× 10−7

π
8 0.197577 1.× 10−8 0.197572 1.32× 10−7 0.197577 1.38× 10−8

π
12 0.131263 3.9× 10−10 0.131262 5.1× 10−9 0.131263 5.36× 10−10

Table 5: The table of the optimal parameters ξ∗, ξ∧, and ξ∨ for quartic G2 approximants according to the radial distance for
several different inner angles 2ϕ of a circular arc.
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geometric approximation. The first such case might be the quartic G0 approximation.
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