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ABSTRACT. Let ¢ be a power of an odd prime. We prove that the mod-2 coho-
mologies of BGLy(F,)5, BSL3(F,)5, and BGL3(F,)5, as algebras over the mod-2
Steenrod algebra, together with the associated Bockstein spectral sequence, deter-
mine the homotopy types of respectively BGL2(Fy)%, BSL3(F,)5, and BGLs(F,)5.
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1. INTRODUCTION

Let G and H be finite groups which have the same mod-p cohomology as algebras
over the mod-p Steenrod algebra A,. The question whether the p-completions BG;,\
and BHpA are homotopy equivalent, has a negative answer in general. For example, all
cyclic groups Z/p™ for n > 2 have the same mod-p cohomology but their classifying
spaces BZ/p™, the lens spaces L%, are not homotopy equivalent. The cohomology of
the group Z/p is different from that of the group Z/p™ for n > 2, since in the case
Z/p the Bockstein homomorphism maps the generator of cohomology in dimension
2k — 1 to the generator in dimension 2k for all £k € N. The homotopy type of
the space BZ/p is determined up to p-completion by H*(BZ/p;F,) considered as
an algebra over A,. In the case Z/p", n > 2, the higher Bockstein operator [,
connects generators in dimensions 2k — 1 and 2k. One might thus wonder if mod-
p cohomology of a finite group G as an algebra over A, together with the higher
Bockstein operators, determines the homotopy type of BG). So the cohomology
of a space is considered as an object in the category Kz of unstable algebras over
A, together with higher Bockstein homomorphisms (see section 2). We say that
spaces X and Y are comparable if H*(X;F,) and H*(Y;F,) are isomorphic objects
in K. We say that the homotopy type of a p-complete space X is determined by
its mod-p cohomology if any p-complete space Y, comparable to X, is homotopy
equivalent to X. There are some finite groups G for which the p-completions of their
classifying space BG), are determined by their mod-p cohomology: finite abelian
groups, SLy(F,) and PSLy(F,) at prime p = 2 for an odd prime power ¢ (see [6]), the
dihedral groups D, the extra special groups ([7]), and the generalized quaternion
groups (on ([7], [8]). In this paper we prove the following theorem.
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Theorem 1.1. Let q be a power of an odd prime. The spaces BGLs(F,)5, BSL3(F,)%,
and BGL3(F,)5 are determined by their mod-2 cohomology.

2. CONVENTIONS AND TERMINOLOGY

All spaces considered are assumed to have the homotopy type of a C'W complex.
For a given space X we write H*(X) for its mod-2 cohomology H*(X;F,), and X2
denotes Faox-completion or 2-completion of the space X in the sense of Bousfield and
Kan [4]. As in the previous section Ay denotes the mod-2 Steenrod algebra, and K,
denotes the category of unstable algebras over A;. A Bockstein spectral sequence
attached to an arbitrary unstable algebra is not widely used, hence we will recall the
definition.

Definition 2.1. [7] Let K be an unstable algebra over A;. A Bockstein spectral
sequence for K is a spectral sequence {E,,(K), £,}22, of differential graded algebras,
where the differentials have degree one, and such that

(1) Ey(K) = K and 3; = Sq' is the primary Bockstein operator,

(2) if x € K" and 2% # 0 in Ey(K), then (y(2?) = 25¢'z + Sql"1Sq'z,

(3) if z € E,(K)®*" and z*> # 0 in E,11(K), n > 2 then (3,,1(2?) = 20,(z).

Let ICs be the category whose objects are pairs Kz = (K;{E,(K), 8,}32,), where
K is an unstable algebra over Ay and { E,,(K), 8, }°, an associated Bockstein spectral
sequence. A morphism f: K — Kj in Kp is a family of morphisms { f,, };2,, where
fi: K —— K’ is a morphism in Ky, and for each n > 2, f,,: E,(K) — E,(K’)
is a morphism of differential graded algebras, which is induced by f,_;. The mod-2
cohomology of a space X together with its natural Bockstein spectral sequence as an
object in Kz will be denoted by Hj(.X).

3. THE HoMoTOPY TYPE OF BGLy(F,)%

In this section we will prove that BG Lo(F,)5 is determined by its mod-2 cohomol-
ogy. The group GLs(F,) has order ¢(¢ — 1)*(¢ + 1) and the mod-2 cohomology of
BGLy(F,) depends on ¢. If ¢ =1 (mod 4), then

(1) H*(BGLQ(]FQ)) = ]FQ[CLQ, a4] X E(bl, bg)

and the action of the Steenrod algebra is defined as follows:

bl a9 b3 ay

S¢10]0 0 0

Sq2 0 &% CL2b3 + bla4 Aoy
and [4(b1) = ag, where 2°||(¢ — 1) (the symbol 2°||n means that 2° is the highest
power of 2 dividing n) ([13, IV Theorem 8.1], [17, Theorem 1.3]). By [17, Theorem
2.3], HY(BGLy(F,); Z[%]) =7/(¢* —1) x Z/(q — 1), where ¢ is a power of the prime
p. Hence f41(b3) = ay.

If ¢ =3 (mod 4), then

(2) H*(BGLy(F,)) = Fa[by, by, ag) /(85 + b3 + ayb?)
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and the action of the Steenrod algebra is defined as follows:

b1 bg Qy
Sq' | b7 bi 0
Sq2 0 b%bg + b1a4 b%a4

([13, Theorem 8.2], [17, Theorem 1.3]) and [sy1(b3 + b3) = a4 where 2°||(¢ + 1) [17,
Theorem 2.3].

Let g be any odd prime power and let X be a 2-complete space such that H E(X ) &
H3(BGLy(F,)). Let 2°|[(¢—1) and let g: X —— BZ/2° be a map such that g* maps
the generator of H'(BZ/2°) to the generator of H'(X). Let Y be the homotopy fiber
of the map ¢. Using the Eilenberg-Moore spectral sequence we see that H ;(Y) =
Hj3(BSLy(Fy)). Because Y is 2-complete and BSLy(F,); is determined by its mod-2
cohomology [6], Y is homotopy equivalent to BSLy(F,)5.

Homotopy classes of fibrations with base space BZ/2° and fiber BSLs(F,)5 are in
bijection with group extensions of the form SLy(F;0) —— - —— Z/2° for some t
such that SLy(F,) and SLy(F,. ) have Sylow 2-subgroups of the same order if ¢ = +1
(mod 8) and ¢ = 0 otherwise [8, Corollary 6.5].

The group Out(SLy(F,.¢)) is isomorphic to Z/2 x Z/2" for ¢ > 1 and to Z/2
for t = 0 [14, Theorem 2.5.12]. The generator of the factor Z/2 corresponds to
conjugation by a matrix in GLy(F,) and the elements in Z/2" correspond to the
Frobenius homomorphisms; i.e. the generator of Z/2' maps a matrix A to the matrix
where all entries of A are replaced by their cubes. The group Z/2° acts on the center
Z(SLy(Faer)) = Z/2 trivially. Because H*(Z/2%; Z(SLy(Fa2t))) = Z/2, for each action
Y Z)2° —— Out(SLy(F,)) there are two extensions of group Z/2° by SLy(F,.t),
inducing the action ¢ [5, Theorem 6.6]. The two extensions H, and K, have the
same elements as SLo(F,xr) x Z/2° and the operations are defined as

(A,¢")(B,¢") = (Ad(B), "),
(A,¢)(B,¢") = (AY(B) f(¢*, ¢"). ¢,

where 1) € Aut(SLy(F5)) is any representative of ¢, ¢ is a generator of the group
Z]2° < Ty, and f: Z)2° x Z/2° —— Z(SLo(F,)) = {I,—1} is a factor set defined as

. s+1 s
F(co.ch) = {I] , a+b (mod 25+1) < 28,
—I ;a+b (mod 25t > 25,
We will show that only one extension has the mod-2 cohomology isomorphic to the
mod-2 cohomology of the group GLa(F,r). This shows that BGL(IF,. )5 is deter-
mined by its mod-2 cohomology.

Let SLy(F,5) — L —— Z/2° be an extension that induces an action 1, which
is neither the trivial action nor conjugation by an element in G'Ly(F;). This implies
that ¢t > 1, because for ¢ = 0 the group Out(SLy(Fs)) = Z/2. Since 2072||3% — 1, s =
t+2. Because HY(BSLy(Fyu ); Z[3]) = 0 for ¢ = 1,2,3 [17, Theorem 2.3], the elements
E59 of the Serre spectral sequence of the fibration BSLy(F;t) — BL — BZ/2°
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vanish for ¢ = 1,2,3. And also E;° = H%(BZ/2% H(BSLy(Fy); Z[3])) = 0, hence
H'BLZI]) = B{" o £y =
= HY(Z/2°; H'(BSLy(Fyat ); Z[3])) © H(Z/2° H(BSLa(Fyat ); Z[3])) =
= Z/2° ® H*(BSLy(Fya ); Z[3)) "%,

3
where H*(BSLy(Fa); Z[3])%/* is the fixed-point set of the action induced by 1.
Let © € HYBSLy(Fyx);Z[3]) = Z/2"3 [17, Theorem 2.3] be a generator. Let
i /212 SLy(F,) be inclusion defined as i(¢*) = Diag(¢*, (7). Because i
induces an isomorphism from H*(BSLy(F,s)) to H*(BZ/2'*?), the element i*(x) is
a generator of H*(BZ/2"% Z[3]) = Z/2"*%. The restriction of the action ¢ on the
subgroup Z/2*?% is powering by 3% for some r € {1,...,t — 1}. Then i*(z) is not
fixed by this action, therefore H*(BSLy(Fau); Z[5])%/* # 7Z/2'%3. We see that the
mod-2 cohomology of BL/ differs from the mod-2 cohomology of BG Ly (F,.t).

Let 1) be the trivial action or conjugation by an element in G Ly(F,¢ ). The maximal
elementary 2-subgroup of K, has rank 1, and because the maximal elementary 2-
subgroup of GLy(F,»¢) has rank 2, the mod-2 cohomology of BK,, differs from the
mod-2 cohomology of BGLs(F,) [12]. Also if ¢ is trivial, the mod-2 cohomology of
Hy = SLy(F,) x Z/2° differs from the mod-2 cohomology of BG'Ly(F,). Therefore X
is homotopy equivalent to BGLy(F,)5.

Wl

4. THE HoMOTOPY TYPE OF BSL3(F,)%

The group SL3(F,) has order ¢*(¢ — 1)?(¢* + ¢+ 1)(¢ + 1). If ¢ = 3 (mod 4), the
mod-2 cohomology of BSLs(F,) is

(3) H*(BSL3(F,)) = Fa[vs, vy, vs]/ (v3vg + v3),

and the action of the Steenrod algebra is defined as follows:

Us | V4 Us
S¢gt100 v3
Sq® | vs | v3 0
Sq* | 0 [ v} vl + vgvs

and [si1(v3) = vy, where 2°||(¢ + 1) ([13, IV, Theorem 8.2] and [17, Theorem 1.3,
Theorem 2.3]). If g =1 (mod 4) then

(4) H*(BSL3(F,)) = Fafvy, v6) ® E(vs, v5),

and the action of the Steenrod algebra is defined as follows:

U3 | U4 Us Vs
S¢g'1 0] 0 0 0
Sq? | vs | vg 0 0 [
Sq* | 0 [ v? | v3vg + vavs | v4vg

Bst1(vs) = vy and Bg(vs) = wve, where 2°||(¢ — 1) ([13, IV, Theorem 8.1] and [17,
Theorem 1.3, Theorem 2.3]).
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To prove homotopy uniqueness of BSL3(F,)4 we will use its centralizer homology
decomposition. Let Ay(SLs3(FF,)) be the Quillen category of the group BSLs(F,).
This is the category with objects nontrivial elementary abelian 2-subgroups of SL;(F,),
and a morphism ¢,: 'y —— Ej5 is a homomorphism which is the restriction of an
inner automorphism of SL3(F,); i.e. ¢,(x) = gzg™' for some q € SL3(F,). Let C be
a full subcategory of Ay(SLs(FF,)). The centralizer diagram

a: C —— Spaces

is the functor which sends every object U to a model of the classifying space

ESLg(Fq) XSLg(IFq) (SLg(Fq)/OSL3(Fq)(U)) ~ BCSL3(FQ)(U)

of its centralizer. We say that C is an ample collection if the natural map

hocglim a — BSL3(F,)

is a mod-2 homology isomorphism.

Let A = Diag(—1,—1,1) and B = Diag(—1, 1, —1) be diagonal matrices in SL3(F,).
Consider the following elementary abelian 2-subgroups of SL3(F,), generated by A,
and by A and B: V = (A), W = (A, B). Let A be the full subcategory of the Quillen
category As(SL3(F,))” which has objects &€ = {V,W}. Because every elementary
abelian 2-subgroup of SL3(F,) is isomorphic to one of the elements in &£, the category
A is an ample collection of elementary abelian 2-subgroups of SL3(F,) [16, Theorem
7.7].

The centralizers of the objects in £ are Csp,w,)(V) = GLy(Fy) and Csp,w,) (W) =
(Z/(g—1))? (the subgroup of all diagonal matrices). The normalizers are Ny, @, (V) =
GLy(F,) and Ngp,w,) (W) = (Z/(q — 1))* x X3, where the action of the permutation
group Y3 on (Z/(q — 1))? is defined as follows: we look at the group (Z/(q — 1))?
as a subgroup of (Z/(q — 1))? of those triples (t1,t,t3) for which t; + ¢, +t3 = 0
(mod (¢ — 1)), and the action of the group X3 on (Z/(q — 1))* by permutation in-
duces the action of X3 on (Z/(q — 1))%. So the morphisms in A are Mor(V,V) =
NSLS(Fq)(V)/CSL3(Fq)(V) = 17 MOI‘(VV, W) = NSLs(Fq)(W)/CSL3(Fq)(W) = 23’ and
Mor(V, W) = Ngr,w,) (V. W)/Csryw,) (V) = ¥3/E2. We can picture the category A
as

Y3 /32

The 2-completion of the diagram a: A —— Spaces is

BGLy(Fy)y :i=— (B(Z/q —1)*)5 O Zs.
33 /%2

By [16, Theorem 7.7], the natural map
hocglim ag — BSL3(F,)

is a mod-2 cohomology isomorphism, hence (hocolimy ag)y = BSL3(FF,)5.
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Now we will prove that BSLs(F,)5 is determined by its mod-2 cohomology. Let X
be a 2-complete space such that Hj(X) = Hj(BSL3(F,)). From the above dis-
cussion we see that to construct a map BSL3(F,) —— X it is enough to de-
fine a family of maps BCgp,r,)(U) —— X, U € &, which with some compat-
ibility assumption will define a map (hocolimy ag) —— X. Hence we need to
define two maps fy: BGLy(F,) —— X and fy: BW —— X. By Lannes’ the-
ory [19], there is a map fW BW —— X such that (f{;,)* equals the composite
H*(X) = H*(BSLs(F )) —% H*(BW). Define fy as the composite B(Z/(q —
1)) — (B(Z/(q —1))?)% = BW — X. For U = V we use the following proposi-
tion.

Proposition 4.1. Let X be a 2-complete space and Hj3(X) = H3(BSL3(F,)). Then
there exists a map fy: BV —— X, such that Map(BYV, X)7, is homotopy equivalent

to BGLQ(Fq)é\
Proof. By Lannes’ theory [19], there exists a map fv: BV —— X such that f

equals the composite H*(X) = H*(BSLs(F,)) —> H*(BV). We will prove that the
cohomology of Map(BV, X )z, is isomorphic to Hj(BGLy(F,)) as an object in Kpg.
By [19, Proposition 3.4.6.],

Tpis H(BSL3(F,)) = H*(BCsryr,) (V) = H (BGLy(F,)),
where T’ ]‘3/1»; is the Lannes’ functor. If ¢ =3 (mod 4) then
Ty H*(X) = Tp;, H(BSLy(F,)) = H'(BGLy(F,))
is free in degrees < 2, which means that the map
(H'(BGLy(Fy)) ® H'(BGLy(F,)))s, — H*(BGLa(F,))
induced by the product on H*(BGLy(F,)) is injective, hence, by [19, Théoreme 3.2.4],
H*(Map(BV, X)z,) 2 T}, H'(X) = H'(BGL(F,)
and the evaluation map e: Map(BV, X)j, — X induces the map on the mod-2 co-
Biy
homology which equals the composite H*(X) = H*(BSL3(F,)) el H*(BGLy(F,)).
If g=1 (mod 4), then Tgi;H*(BSLg(IFq)) & H*(BCsr,r,)(V)) = H*(BGLy(F,))
is not free in degrees < 2, hence Lannes’ theory does not guarantee that T}/* H*(X)
Vv

is isomorphic H*(Map(BV, X)y,). By [1, Theorem 3|, we can use the Lannes’ T
functor if Y is of finite type such that H'(Y) = 0 and fy: BV —— Y is finitely
T-representable; i.e. there exists an increasing sequence a(s) and a map of towers

g: {Map(BV, Py)Ys") s, } — {K(Gs, 1)}, where

(1) PuyeY is the a(s)" Postnikov stage and f, the map induced by fy,

(2) T}, H*( ) is of finite type,

(3) G a finite 2-group for all s,

(4) Goo = lim G, is a finite 2—group or H*(G) is of finite type and Tor}}. o )(TV H*(Y))

is ﬁmte—dimensional in each total degree,
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(5) the map g induces a pro-isomorhism in H; and a pro-epimorphism in Hs, and
(6) H*(lim Gy) = lim H*(G), induced by the natural map.

We will show that fy is finitely T-representable.

An n-approximation for a connected algebra A over the Steenrod algebra is a
sequence C' —— B —— A of connected algebras over the Steenrod algebra for which
the composite is trivial in positive degrees and the induced map B//C —— A is a
bijection in degrees less then n and an injection in degrees bigger than or equal to n.
The sequence

Fylag] —— Fy[b] — ng H*(X)

is a 2-approximation of T}/* H*(X) = H*(BGy(F,)) = Fslag, as] ® E(by,b3). If this
4 —
sequence were actually a 3-approximation of T }/ H*(X), then fi, would be finitely T-
1%

representable [1, Theorem 6], but this is not the case here. But Fa[as]//Fa[bi] = E(b)
is an exterior algebra with one generator in dimension 1, so by [1, Example 12 and
Theorem 16], fy is finitely T-representable. Hence by [1, Theorem 3],

H' (Map(BV. X)) = T}, H'(X) = H'(BGLu(F,)
and the evaluation map e: Map(BV, X)5, — X induces the map which equals the

composite H*(X) = H*(BSL;(F,)) H*(BGLy(F,)).

To finish the proof, we have to show that Hj(Map(BV, X)) and H3(BGLy(F,))
are isomorphic as objects in Kg.

Let ¢ =3 (mod 4). In the diagram

BiGLy )

e 1
GLQ(]FQ> - SL?»(Fq) - GL3(]Fq)
ig i3
J
(2/2)? == (Z/2)" = (Z/2)’
both vertical arrows are maps to diagonal matrices and j(t1,ts) = (t1,t2,t1t2). By
[13, IV Theorem 8.2], the map
BZ; Fg[bl, bg, a4]/(b(f + bg + (146%) _— FQ[I’l, ZEQ]
is defined by Bijy(b1) = 1 + xa, Bij(bs) = 23 + 23, and Bij(as) = 2323 and the map
Bij: Falvy, v3, va, vs]/ (V105 + 0904 + v304 + v2) — Faly1, ya, y3]

is defined by Bi3(v1) = y1+ya+ys, Bij(vs) = v +ys+v3, Bij(va) = yiv3 +yivs +v503
and Bi}(vs) = v} + y5 + v5. Because the map Bi* is surjective [17, Theorem 1.3] and
the map Bj*: Fa[y1, ya, y3] —— Fa[z1, 7o) is defined by Bj*(y1) = 1, Bj*(y2) = 22
and Bj*(y3) = x1 -+, the map e* = Beé* is defined by e*(v3) = b3+b3, €*(vy) = as+b7,
and e*(vs) = b2b3 + byay + b3. Hence at the (s + 1) stage of the Bockstein spectral
sequence, we get

as = €"(v4) = € (Bor1(v3)) = Ber1(e”(v3)) = Boralbs + 7).
Therefore Hj(Map(BV, X)y,) is isomorphic Hj(BG Ly (F,)).
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If g =1 (mod 4), then in a similar way as above we calculate that the map e* is
defined by e*(vs3) = b, e*(v4) = a3 + aq, €*(vs) = biayg + bzas, and e*(vg) = asay.
Hence, at the s** stage of Bockstein spectral sequence, we get

0= e"(Bs(vs)) = Bse™(v3) = Bs(bs)
and then the equation

A2Gy = 6*(U6) = 6*(55(715)) = 556*(U5) = 55(51&1 + b3a2) =
= Bs(b1)as + b1Bs(as) + Bs(bs)az + bzfBs(az).

implies 3,(b1) = as. At the (s + 1) stage, we get
a3+ ay = € (vg) = € (Bes1(v3)) = Bora(€7(v3)) = Basa (bs).

Therefore (,y1(b3) = as. Also in this case it follows that Hj(Map(BV, X)) =
H3(BGLy(F,)). By Section 3, the space Map(BV, X)y, is homotopy equivalent to
BGL,(F,)5. O

Let us define f{,: Map(BV, X)j, — X to be the evaluation map, where fv is the
map defined in the previous proposition, and let fy, be the composite of 2-completion
BGLy(F,) — BGLsy(F,), and the map f{,. By the above proposition f;; equals the

Bi}
composite H3(X) = H3(BSL3(F,)) o) H3(BGLy(F,)). We obtain the following
diagram
X3/%
BGLy(Fy) —— (B(Z/q—1)") O 5y

N
X

The diagram commutes on the level of mod-2 cohomology and therefore, by Lannes’
theory, it commutes up to homotopy. Hence the diagram is a natural transforma-

tion f: a —— X, defined only up to homotopy, from the category « to the constant

category X. The diagram induces a map from the 1-skeleton of hocolimy « to X. Ob-
structions for extending this map to the whole hocolimy o lie in lim’,™ 7;(Map(a, X))
for j > 1 [22]. By lemma 4.2 below, the obstruction groups vanish, hence there exists
a map f: hocolimy @« — X. By construction of the map f, the diagram

BGLy(F,)3

N

BSLs(F,)} Jox

commutes up to homotopy. Because f}; is a monomorphism, the same is true for the
map f*, and therefore f* is an isomorphism. This shows that f3': BSL3(F,)) — X
is a homotopy equivalence.
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Lemma 4.2. For j > 1, define a functor 11;: A —— Ab as
IL;(U) = m;j(Map(BCsryw,)(U), X))
Then limf;“l IT; =0 for all j > 1.
Proof. By [6, Proposition 10.3], there is a long exact sequence
0 —— Hm) IT; —— TL;(V) — TL;(W)>2/TL;(W)** —— lim 11, ——
— H'(Zg1G(W)) — H' (S I;(W)) — limj Il — H* (S5 IG(W)) — -+

By the Shapiro lemma [5, Ch. III, Proposition 6.2], H*(3y; (Z/2)?) = H*(1;Z/2).
By a transfer argument, H*(X3;(Z/2)?) is a subgroup in H*(Xs; (Z/2)%). Tt follows
that

H" (853 (Z/2)°) = H"(S;(Z/2)*) = H"(1;2/2) = 0
for n > 1. If we insert this in the above long exact sequence we get lim} II; = 0 for
n > 2. O

5. OUTHER AUTOMORPHISM GROUP Out(BSL;(F,)%)

In the next section we will prove homotopy uniqueness of BGL3(F,)} with the
strategy that we used for the proof of mod-2 determinism of BGLy(F,) in Section 3.
We will investigate all possible fibrations of the form BSL;(F,)} — X — BZ/2°,
where 2°||¢ — 1, and prove that only one X in such a fibration has the same mod-2
cohomology as BGL3(F,). In order to do that we need to determine all possible
actions Z/2° —— Out(BSL3(F,)5). In this section we will calculate the group
Out(BSLs(F,)5).

Let G be a finite group. A p-subgroup P of G is p-centric if its center Z(P)
is a p-Sylow subgroup of the centralizer C(P). Furthermore P is p-radical if the
quotient group Ng(P)/P is p-reduced, which means that it does not have nontrivial
normal p-subgroups. Let S be a p-Sylow subgroup of G. Then S is a p-centric
p-radical subgroup. Let S = Py, P,,..., P, denote a choice of G-conjugacy class
representatives for all p-centric p-radical subgroups of G' contained in S. We write
N'(P)) = Ng(P,)/CL(P;), where C/(P;) is the p/-torsion in the centralizer Cq(F;).
Let X(G) be the set of all (m + 1)-tuples (6;04,...,6,,) such that

0: N'(S) —— N'(S)  and  6;: N'(P) — N'(0(P))

are isomorphisms, and such that 6; and 6 restricted to the image of Ng(S) N Ng(P)
in N'(P;) are equal for all i. The group N’(S) acts on X(G) by

x-(0;61,...,00) = (c,ob;c,00,...,¢,00p),

where ¢, is conjugation by the element x. If there are no 4, j with 1 <4,5 < m such
that P, is conjugate to a proper subgroup of P;, then X (G)/N’(S) is isomorphic to
Out(BG)) [9, Proposition 6.3 and Theorem B].

Theorem 5.1. If ¢ =1 (mod 4) let s be such that 2°||g — 1, and if ¢ = 3 (mod 4)
let s be such that 2°||qg + 1. Then Out(BSL3(F,)%) is isomorphic to Z,/257 1.
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Proof. Let ¢ =1 (mod 4). Let £’ be a generator of F;. Then § = (f’)%1 is a generator
of Z/2° < IF;. Define the following matrices in SL3(IF,):

¢ 0 0 €0 0 01 0
Z =10 ¢ o0 |,A=]01 o|,B=|10 0],
0 0 (&)2 00 &t 00 —1

and Z = (Z’)q2;31. Then S = (A, B) is a 2-Sylow subgroup of SLs(F,). Let P < S
be a 2-centric 2-radical subgroup of SL3(F,). Because P is 2-centric, the center (Z)
of S is a subgroup of P. If P is a subgroup of the group T' = (Z, A) of the diagonal
matrices of S, then P = T is the only candidate to be a 2-centric 2-radical subgroup
of SL3(F,). The normalizer N(T') equals (A, Z’, D), where D is the permutation
matrix that corresponds to the permutation (1,2,3). Hence N(T')/T is 2-reduced,
and therefore T' is 2-radical.

Every element in S — T is conjugate to Z'B or Z'AB for some i. Hence, if P is
not a subgroup of 7' (and contains (Z)), then P is conjugate to one of the groups
P, =(Z,A% B)or Q; = (Z,A* , AB) for 0 <i < s. The groups P, and Qg equal the
2-Sylow group S. The group P; is subconjugate to the group 7', so it is not 2-centric.
It is easy to see that

) = (
N(Q)) = (7', A*" AB) for 0 < i < s,
N(P,_y) = (Z' ,A¥* " B,C),
N(QS) = <D7 A2571>>

where
(—14&7 )27 (-1-¢¥ )2t
C=] =gt (m1-¢
0 0

and D is a generator of the centralizer Csr,p,)(Qs) = Z/(¢> — 1). So if P equals P,
or Q; for i > 1, then N'(P)/P = 7Z/2 except for the groups P;_; and (). Because

2
N(Po_1)/Pomy 2 Z)(52) x £3 and N(Qy)/Qs = (z,y | 25 = o2 zyx = 29), there
are exactly four 2-centric 2-radical subgroups of SL3(FF,), namely S, T', P,_;, and Q.

Because N(S) = (A, B,Z'), N'(S) =2 S = (a,b,c | a* =V = ¢* = 1,ab =
ba,cac = b). Every automorphism N’(S) —— N’(S) is of the form a + a®b® and
c¢+— a’b7c for a +  an odd number. Denote this automorphism by 0(«, 3, 7).

The normalizer N(T') equals (A, Z’, D), hence

N'(T) = {a,b,c,d | a* =b* =c* =d®> =1,ab = ba, cac = b,
dad ' =b7",d tad = ba™ ", cdc = d?).

We can extend 6(a, 5,7) to an automorphism N'(T)) —— N'(T") only if « = 0 or
B = 0. In case § = 0, an automorphism O7(«,v): N'(T) —— N'(T) maps d to
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a"’b~7d and in case a = 0 an automorphism 07(3,v): N'(T) —— N'(T) maps d to
a'bd?.

Since cgapy 060(1,0,0) = (1,0, 2 — y) and cgepve. 0 0(1,0,0) = 6(0,1, 2 — y), only ele-
ments of the center of SL;3(IF,) fix the automorphism 6(1,0,0). Every 6(a, 3, ) which
has an extension to an automorphism of N’(7") has the form 6(«, 0,0)0¢,0(1,0,0) for
some « and g. Hence we may take care only of the automorphisms 6(c«, 0,0) where «
is an odd number.

Because

N'(P,_y) = {a,b,c,e|a* =b*=c?=¢e* =1

the intersection N'(S) N N'(P,_;) is generated by @, b, and c¢. There is only one

extension fp(cr) of the morphism (e, 0, 1)|n/(s)nn(p,_,) to a morphism of N'(Ps_y).

In case @« =1 (mod 4), the morphism 6(«,0,0) maps a to a, so fp(«) maps e to e. If

a =3 (mod 4), the morphism 6(a, 0,0) maps @ to a®, hence #p(a) maps e to a*b3ce.
Because N'(Qs) < N'(S), we can omit the group @, hence

X (SLs(F,))/N'(S) = {O(«a) :== (6(,0,0); 07(x,0),0p(cx)) | v is odd}
and O(«)O(8) = O(a - 3), so Out(BSL;(F,)5) =2 Z/2°71, .

Let ¢ = 3 (mod 4). Let & be a generator of F?,. Then § = (f’)gsﬁ is a generator
of Z/2°*1 <!y, and ¢ = (§')"*! is a generator of . Let

11 0 0 &2 0
P = f _é_l 0 ) B: 52 0 0 )
0 0 (==& 0 0 -1

A = Diag(¢,—€71, —1), and Z = Diag(¢&’, (€)4,(¢/)~%"1). Then the matrices A =
PAP~' and B = PBP~! generate a 2-Sylow subgroup S of SL3(F,) [10, Lemma 1]
and the (q + 1) power of Z = PZ P~ is a generator of the center Z(SL3(F,)). Let
P < S be a 2-centric 2-radical subgroup of SL3(F,). If P is a subgroup of T' = (A),
then P =T is the only candidate for a 2-centric 2-radical subgroup of SL;3(FF,). The

21
normalizer N(T) equals (B, Z), hence N(T)/T = (z,y | 27 =y = 1, yzy = 29) is
2-reduced if and only if ([B]) is normal subgroup of N(T")/T', and this is true if and
only if ¢ + 1 = 2°.
Every element in S — T is conjugate to B, AB, I'B or I'AB, where I' = A% =
Diag(—1,—1,1). Because I’ is in the center of S, it follows that I’ is in every 2-centric
subgroup P of S. Hence, if P is not a subgroup of 7', then P is conjugate to one of
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the groups P, = (A% B) or Q; = (A* AB) for 0 <i < s. Then

)=
N(Q;) = (271, A" AB) for 0 < s — 1,
N(P,) = (A", C,, Cy, D),
N(Qs—l) - <A2s_27 AB7 E>7
where
(¢ (C—1)(E-¢h2t 0 1 (1-¢E—-¢h27t o
Ci =10 1 0, Cy=10 ¢ 01,
0 0 ¢ 0 0 -
[0 1 (1 —¢)27! R S O S T
D= 10 0 1 , E= (14 1-¢2 0
1 (=&t 0 I 0 0 4!

The groups Py and @y equal S, the group Qs = Z/4 is not 2-centric and the group
QQs—1 is isomorphic to the quaternion group Q(8). Hence 2-centric 2-radical subgroups
of SLs(F,) are S, Ps, and Q,_1, and if ¢ + 1 is a power of 2 then also T'.

Because N'(S) = S = (a,b | ¢ = b* = 1,bab = —a™'), every automorphism
N'(S) —— N'(9) is of the form a — a® and b — a”b for a an odd number and 3 an
even number. Denote this automorphism by 6(«, [3).

Since cq2e 0 6(1,0) = 0(1,4x), cy2e+1 0 6(1,0) = O(1,4x + 2 + 2°), cu20 0 0(1,0) =
0(2° — 1,4x), and cy2e+1,00(1,0) = 6(2° — 1,42 + 2+ 2°), only elements of the center
of S fix the automorphism 6(1,0). Because every 6(«, 5) equals 6(c/,0) - ¢,0(1,0),
for some x and some o = 1 (mod 4), we may take care only of the automorphisms
0(a,0) where =1 (mod 4).

Because Cqu = ['B and C’;T = B, it follows that N'(S)NN'(P,) = (B, I', A* ™).
The morphism (e, 0)|n/(s)nnv(p,) has two extensions to an automorhism of N'(F).
Let d and i’ be the images of D and I’ in N'(P;). If @ = 1 (mod 4) then the first
extension 6L(a) maps d to d and the second one 6%(«) maps d to i'bd. If « = 3
(mod 4) then 6%(«) maps d to 7/d and 6%(«) maps d to bd. The extensions are
connected by conjugation by the element i = a®" ', i.e. ¢y 0 85 = 6%. Note that the
conjugation ¢y fixes any morphism 6(«, (3).

The morphism (o, 0)|n/(s)nn7(g._,) has only one extension to an automorphism of
N'(Qs-1). Let e be the image of F in N'(Qs_1). If @ =1 (mod 4) then the extension
0o () maps e to e and if & = 3 (mod 4) then 6 () maps e to a2 d. The morphism
0o(w) is fixed by conjugation by the element 4.

Because N(T') = N(S5), we can omit this group even if g 4+ 1 is a power of 2. So

X(SLs(Fy))/N'(S) = {8(a) := (0(cr, 0);0p(ex,0),0(a)) [ =1  (mod 4)},
O(«)O(B) = O(« - B), and therefore Out(BSL3(F,)y) = Z/251. O

The following technical lemma will be used in the next section.
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Lemma 5.2. Let ) € Out(BSL3(Fyn)3) be a nontrivial automorphism and let 2t||p*™ —
1. Then 2" does not divide the order of the fized-point set H*(BSLs(Fpn); Z[1])".

Proof. We define inclusion i: Z/2""! —— SL3(F,») depending upon p as follows:
i(¢*) = (Diag(&,1,€71)", if p" = 1 (mod 4) and & is a generator of Z/2""" < Fr,,
and i(C*) = P(Diag(&, P, &P )EP~L if p» = 3 (mod 4), £ is a generator of
72t < ]F;% and P the matrix defined in the proof of the previous theorem. Let
r € Z/2' considered as a subgroup of H*(BSL3(F,n);Z[%]) [17, Theorem 2.3] be a

1
p

generator. Then ¢*(x) is a generator of H4(BZ/2“1;Z[%]) = 7Z/2'"'. By the proof

of the previous theorem ¢ = ©(«a) and because 9 is a nontrivial automorphism, it

follows that o # 1. So the restriction of ©(a) to the subgroup Z/2~1 is nontrivial,

hence i*(x) is not fixed by the restriction map, so also z is not fixed by ©(«), which

means that 2~" does not divide the order of H*(BSLy(Fyn); Z[3])". O

6. THE HoMOTOPY TYPE OF BGL3(F,))

The group GL3(F,) has order ¢*(¢ — 1)3(¢* + ¢+ 1)(¢ + 1). If ¢ = 3 (mod 4), the
cohomology of BGL3(F,) is

(5) H*(BGL3(F,)) = Fa[by, by, ag, bs] /(b1b3 + bSay + biay + b2),
and the action of the Steenrod algebra is defined as follows:
bl b3 ay b5
St o3 ol] 0 b3
Sq? | 0 [bs|bY+03 0
St 0] 0] af |[b) 408003+ bjas + bibs + bib3 + b3 + asbs

and (,41(b3 + b3) = a4, where 25||(¢ + 1) ([13, IV, Theorem 8.2] and [17, Theorem
1.3, Theorem 2.3]). If we change the generators b3 and bs by respectively bs + b3 and
bs+b7, we see that Hj3(BGLs(F,)) and Hj3(BSLs(F,))® Hj(BZ/q—1) are isomorphic
as objects in the category Kpg.

If g=1 (mod 4) then
(6) H*(BGLg(Fq)) :Fg[ag,a4,a6} ®E(b1,b3,b5),

and the action of the Steenrod algebra is defined as follows:

bl (05} b3 ay b5 ag
S¢Tol0 0 0 0 0
Sq¢®| 0 a% bias + bzas + b5 | asas + ag | biag + bsag | aszag
Sq4 0 0 0 CLZ b3CL6 + b5a4 a4Qg

and [s(b1) = ag, Bs11(b3) = a4 and (s(bs) = ag, where 2°||(¢ — 1) ([13, IV Theorem
8.1] and [17, Theorem 1.3, Theorem 2.3]). If we change the generators a4, ag, and bs
by respectively a4 + a3, asay + ag, and biay + bzas + bs, we see that HE(BGLg(Fq>> is
isomorphic to H5(BSL3(F,)) ® H3(BZ/q — 1) as an object in Kg.

Let X be a 2-complete space and H3(X) = Hj;(BGL3(F,)). Let 2°[|(¢ — 1) and
let g: X —— BZ/2° be a map such that ¢g* maps the generator of H'(BZ/2°%) to
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the generator of H'(X). Let Y be the homotopy fiber of the map g. Using the
Eilenberg-Mooer spectral sequence, we see that H3(Y) = Hj(BSL3(F,)). Hence YV
is homotopy equivalent to BSL3(F,)5 (Section 4).

Let a: BZ/2® —— B Out(BSL3(F,)}) be the action induced by the fibration
BSL3(F,)y — Y — BZ/2°. Let Oo(SL3(F,)) be the maximal normal subgroup
of SL3(FF,) of order prime to 2. Then O« (SLs(F,)) is the subgroup of diagonal
matrices. Fibrations of the form BSL;(F,)) — Y —— BZ/2° with the specified
action are in bijection with H?(BZ/2%; Z(SL3(F,) /O« (SL3(F,)))) (see [8]). Because
the center Z(SL3(F,)/O(SL3(F,))) is trivial, there exists exactly one such fibration.
We will show that the total space Y has the mod-2 cohomology isomorphic to that
of BGL3(F,) only if Y induces the trivial action BZ/2° — B Out(BSLs3(F,)5). To
do this we employ similar methods as in the Section 3.

Let ¢ = p". Because H/(BSL3(F,n);Z[}]) = 0 for j = 1,2,3 [17, Theorem 2.3], the

1
.. p
elements F5” of the Serre spectral sequence of the fibration BSL3(Fyn)5 — Y —— BZ/2°
vanish for j = 1,2,3. And also By = H*(BZ/2%; H'(BSLs(F,n); Z[%])) = 0, hence
HAYV:ZY) = B3 @ B =
= HY(Z/2*; H*(BSLy(Fye ); Z[}])) & H(Z/2%; HY(BSLs(Fy); Z[;])) =
= Z/2° ® H*(BSLy(Fyn); Z[2])) "%,
where H*(BSLs(Fyn); Z[1])**" is the fixed-point set of the action a. By lemma 5.2,
if 2t]|p*™ — 1 then 2! does not divide the order of H*(BSL3(Fn); Z[%])Z/QS, so there

are no elements in H*(Y;Fy) which are maped nontrivally by 3;. This implies that
the mod-2 cohomology of Y differs from the mod-2 cohomology of BGL3(F,») if the
fibration BSL3(F,); — Y —— BZ/2° induces a nontrivial action.

Corollary 6.1. Let q be a power of an odd prime. The space BGL3(F,)5 is homotopy
equivalent to the product BSLs(F,)3 x (BZ/q — 1)}

7. THE MATHIEU GROUP M,

The Mathieu group M;; has the same cohomology as the group SL3(F3) as an
object in g [2, Section 12]. Hence by theorem 1.1, we recover the following result,
which is due to J. Martino and S. Priddy [20, Theorem 4].

Corollary 7.1. The 2-completions of the classifying spaces (BM1)5 and BSLs(F3)5
are homotopy equivalent.

This result allows us to prove the following theorem.

Theorem 7.2. There ezists a map f: BMyy —— BSU(3) inducing an injective
map f*: H*(BSU(3)) — H*(BMji1). The mod-2 cohomology of BMyy is a finitely
generated free module over the image of f*.

Let us look at the tower
Biy Bio Bin,

BSLg(]Fg) - BSLg(FgQ) _— BSL3(]:F322)

BSLy(Fyen) — -
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where the maps B, are induced by inclusions 4, : F -1 Faon. For n > 2 the
cohomology is H*(BSLg(Fyn1)) = B[yl y$] @ E(2y”, 2{") and the map Bi is
defined by Bi* (y") = "V, Bix(y") = 4"V, Biz(2{") = 0, and Bi*(z{") = 0.
Then the cohomology of the colimit of the tower is

H*(lim BSL3(Fyor ) = lim H*(BSLy(Fyen)) = Falys, ysl,

and this is isomorphic to the cohomology H*(BSU(3)). Because BSU(3)3 is deter-
mined by cohomology [21], (lim BSL3(Fsen))y ~ BSU(3)3. Hence there exists a map
(BMiy)y ~ BSL3(F3)y —— BSU(3)% and by the theorem of W. Dwyer and C.
Wilkerson [11, Proposition 3.1], there exists a map f: BM;; — BSU(3).

The cohomology of the first space in the tower is

H*<BSL3(F3)) = FQ[’Ug, V4, '1)5]/(1}%1)4 + ’052))

and the map Bi} is defined as Bz’“{(yf)) = g, Bz”{(yéQ)) = v3, Bi’{(azgf)) = 0, and
Bit(z?) = 0, therefore

frr H(BSU(3)) = Falys, ys| — H*(BM1) = Falvs, va,v5]/ (v5v4 + v5)

is given by f*(y4) = vy and f*(ys) = v3, hence H*(BMj;) is a finitely generated
H*(BSU(3)) module.

Acknowledgment. The author thanks Carles Broto for many comments and
suggestions.
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