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Abstract. Let q be a power of an odd prime. We prove that the mod-2 coho-
mologies of BGL2(Fq)∧2 , BSL3(Fq)∧2 , and BGL3(Fq)∧2 , as algebras over the mod-2
Steenrod algebra, together with the associated Bockstein spectral sequence, deter-
mine the homotopy types of respectively BGL2(Fq)∧2 , BSL3(Fq)∧2 , and BGL3(Fq)∧2 .
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1. Introduction

Let G and H be finite groups which have the same mod-p cohomology as algebras
over the mod-p Steenrod algebra Ap. The question whether the p-completions BG∧

p

and BH∧
p are homotopy equivalent, has a negative answer in general. For example, all

cyclic groups Z/pn for n ≥ 2 have the same mod-p cohomology but their classifying
spaces BZ/pn, the lens spaces L∞pn , are not homotopy equivalent. The cohomology of
the group Z/p is different from that of the group Z/pn for n ≥ 2, since in the case
Z/p the Bockstein homomorphism maps the generator of cohomology in dimension
2k − 1 to the generator in dimension 2k for all k ∈ N. The homotopy type of
the space BZ/p is determined up to p-completion by H∗(BZ/p; Fp) considered as
an algebra over Ap. In the case Z/pn, n ≥ 2, the higher Bockstein operator βn
connects generators in dimensions 2k − 1 and 2k. One might thus wonder if mod-
p cohomology of a finite group G as an algebra over Ap, together with the higher
Bockstein operators, determines the homotopy type of BG∧

p . So the cohomology
of a space is considered as an object in the category Kβ of unstable algebras over
Ap together with higher Bockstein homomorphisms (see section 2). We say that
spaces X and Y are comparable if H∗(X; Fp) and H∗(Y ; Fp) are isomorphic objects
in Kβ. We say that the homotopy type of a p-complete space X is determined by
its mod-p cohomology if any p-complete space Y , comparable to X, is homotopy
equivalent to X. There are some finite groups G for which the p-completions of their
classifying space BG∧

p , are determined by their mod-p cohomology: finite abelian
groups, SL2(Fq) and PSL2(Fq) at prime p = 2 for an odd prime power q (see [6]), the
dihedral groups D2n , the extra special groups ([7]), and the generalized quaternion
groups Q2n ([7], [8]). In this paper we prove the following theorem.
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Theorem 1.1. Let q be a power of an odd prime. The spaces BGL2(Fq)∧2 , BSL3(Fq)∧2 ,
and BGL3(Fq)∧2 are determined by their mod-2 cohomology.

2. Conventions and Terminology

All spaces considered are assumed to have the homotopy type of a CW complex.
For a given space X we write H∗(X) for its mod-2 cohomology H∗(X; F2), and X∧

2

denotes F2∞-completion or 2-completion of the space X in the sense of Bousfield and
Kan [4]. As in the previous section A2 denotes the mod-2 Steenrod algebra, and K2

denotes the category of unstable algebras over A2. A Bockstein spectral sequence
attached to an arbitrary unstable algebra is not widely used, hence we will recall the
definition.

Definition 2.1. [7] Let K be an unstable algebra over A2. A Bockstein spectral
sequence for K is a spectral sequence {En(K), βn}∞n=1 of differential graded algebras,
where the differentials have degree one, and such that

(1) E1(K) = K and β1 = Sq1 is the primary Bockstein operator,
(2) if x ∈ Keven and x2 6= 0 in E2(K), then β2(x

2) = xSq1x+ Sq|x|Sq1x,
(3) if x ∈ En(K)even and x2 6= 0 in En+1(K), n ≥ 2 then βn+1(x

2) = xβn(x).

Let Kβ be the category whose objects are pairs Kβ = (K; {En(K), βn}∞n=1), where
K is an unstable algebra overA2 and {En(K), βn}∞n=1 an associated Bockstein spectral
sequence. A morphism f : Kβ

- K ′
β in Kβ is a family of morphisms {fn}∞n=1, where

f1 : K - K ′ is a morphism in K2, and for each n ≥ 2, fn : En(K) - En(K
′)

is a morphism of differential graded algebras, which is induced by fn−1. The mod-2
cohomology of a space X together with its natural Bockstein spectral sequence as an
object in Kβ will be denoted by H∗

β(X).

3. The Homotopy type of BGL2(Fq)∧2
In this section we will prove that BGL2(Fq)∧2 is determined by its mod-2 cohomol-

ogy. The group GL2(Fq) has order q(q − 1)2(q + 1) and the mod-2 cohomology of
BGL2(Fq) depends on q. If q ≡ 1 (mod 4), then

(1) H∗(BGL2(Fq)) = F2[a2, a4]⊗ E(b1, b3)

and the action of the Steenrod algebra is defined as follows:

b1 a2 b3 a4

Sq1 0 0 0 0
Sq2 0 a2

2 a2b3 + b1a4 a2a4

and βs(b1) = a2, where 2s‖(q − 1) (the symbol 2s‖n means that 2s is the highest
power of 2 dividing n) ([13, IV Theorem 8.1], [17, Theorem 1.3]). By [17, Theorem
2.3], H4(BGL2(Fq); Z[1

p
]) = Z/(q2 − 1)× Z/(q − 1), where q is a power of the prime

p. Hence βs+1(b3) = a4.
If q ≡ 3 (mod 4), then

(2) H∗(BGL2(Fq)) = F2[b1, b3, a4]/(b
6
1 + b23 + a4b

2
1)
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and the action of the Steenrod algebra is defined as follows:

b1 b3 a4

Sq1 b21 b41 0
Sq2 0 b21b3 + b1a4 b21a4

([13, Theorem 8.2], [17, Theorem 1.3]) and βs+1(b
3
1 + b3) = a4 where 2s‖(q + 1) [17,

Theorem 2.3].
Let q be any odd prime power and let X be a 2-complete space such that H∗

β(X) ∼=
H∗
β(BGL2(Fq)). Let 2s||(q−1) and let g : X - BZ/2s be a map such that g∗ maps

the generator of H1(BZ/2s) to the generator of H1(X). Let Y be the homotopy fiber
of the map g. Using the Eilenberg-Moore spectral sequence we see that H∗

β(Y ) ∼=
H∗
β(BSL2(Fq)). Because Y is 2-complete and BSL2(Fq)∧2 is determined by its mod-2

cohomology [6], Y is homotopy equivalent to BSL2(Fq)∧2 .
Homotopy classes of fibrations with base space BZ/2s and fiber BSL2(Fq)∧2 are in

bijection with group extensions of the form SL2(F32t ) - · - Z/2s for some t
such that SL2(Fq) and SL2(F32t ) have Sylow 2-subgroups of the same order if q ≡ ±1
(mod 8) and t = 0 otherwise [8, Corollary 6.5].

The group Out(SL2(F32t )) is isomorphic to Z/2 × Z/2t for t ≥ 1 and to Z/2
for t = 0 [14, Theorem 2.5.12]. The generator of the factor Z/2 corresponds to
conjugation by a matrix in GL2(F32t ) and the elements in Z/2t correspond to the
Frobenius homomorphisms; i.e. the generator of Z/2t maps a matrix A to the matrix
where all entries of A are replaced by their cubes. The group Z/2s acts on the center
Z(SL2(F32t )) = Z/2 trivially. BecauseH2(Z/2s;Z(SL2(F32t ))) = Z/2, for each action
ψ : Z/2s - Out(SL2(Fq)) there are two extensions of group Z/2s by SL2(F32t ),
inducing the action ψ [5, Theorem 6.6]. The two extensions Hψ and Kψ have the
same elements as SL2(F32t )× Z/2s and the operations are defined as

(A, ζa)(B, ζb) := (Aψ̂(B), ζa+b),

(A, ζa)(B, ζb) := (Aψ̂(B)f(ζa, ζb), ζa+b),

where ψ̂ ∈ Aut(SL2(F32t )) is any representative of ψ, ζ is a generator of the group
Z/2s < F∗q, and f : Z/2s × Z/2s - Z(SL2(Fq)) = {I,−I} is a factor set defined as

f(ζa, ζb) =

{
I ; a+ b (mod 2s+1) < 2s,

−I ; a+ b (mod 2s+1) ≥ 2s.

We will show that only one extension has the mod-2 cohomology isomorphic to the
mod-2 cohomology of the group GL2(F32t ). This shows that BGL(F32t )∧2 is deter-
mined by its mod-2 cohomology.

Let SL2(F32t ) - L - Z/2s be an extension that induces an action ψ, which
is neither the trivial action nor conjugation by an element in GL2(F32t ). This implies

that t ≥ 1, because for t = 0 the group Out(SL2(F3)) = Z/2. Since 2t+2‖32t − 1, s =
t+2. BecauseHq(BSL2(F32t ); Z[1

3
]) = 0 for q = 1, 2, 3 [17, Theorem 2.3], the elements

Ep,q
2 of the Serre spectral sequence of the fibration BSL2(F32t ) - BL - BZ/2s
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vanish for q = 1, 2, 3. And also E5,0
2 = H5(BZ/2s;H0(BSL2(F32t ); Z[1

3
])) = 0, hence

H4(BL; Z[1
3
]) = E4,0

2 ⊕ E
0,4
2 =

= H4(Z/2s;H0(BSL2(F32t ); Z[1
3
]))⊕H0(Z/2s;H4(BSL2(F32t ); Z[1

3
])) =

= Z/2s ⊕H4(BSL2(F32t ); Z[1
3
])Z/2s

,

where H4(BSL2(F32t ); Z[1
3
])Z/2s

is the fixed-point set of the action induced by ψ.

Let x ∈ H4(BSL2(F32t ); Z[1
3
]) = Z/2t+3 [17, Theorem 2.3] be a generator. Let

i : Z/2t+2 - SL2(F32t ) be inclusion defined as i(ζk) = Diag(ζk, ζ−k). Because i
induces an isomorphism from H4(BSL2(F32t )) to H4(BZ/2t+2), the element i∗(x) is
a generator of H4(BZ/2t+2; Z[1

3
]) = Z/2t+2. The restriction of the action ψ on the

subgroup Z/2t+2 is powering by 32r
for some r ∈ {1, . . . , t − 1}. Then i∗(x) is not

fixed by this action, therefore H4(BSL2(F32t ); Z[1
3
])Z/2s 6= Z/2t+3. We see that the

mod-2 cohomology of BL∧2 differs from the mod-2 cohomology of BGL2(F32t ).
Let ψ be the trivial action or conjugation by an element in GL2(F32t ). The maximal

elementary 2-subgroup of Kψ has rank 1, and because the maximal elementary 2-
subgroup of GL2(F32t ) has rank 2, the mod-2 cohomology of BKψ differs from the
mod-2 cohomology of BGL2(Fq) [12]. Also if ψ is trivial, the mod-2 cohomology of
Hψ = SL2(Fq)×Z/2s differs from the mod-2 cohomology of BGL2(Fq). Therefore X
is homotopy equivalent to BGL2(Fq)∧2 .

4. The Homotopy type of BSL3(Fq)∧2
The group SL3(Fq) has order q3(q − 1)2(q2 + q + 1)(q + 1). If q ≡ 3 (mod 4), the

mod-2 cohomology of BSL3(Fq) is

(3) H∗(BSL3(Fq)) = F2[v3, v4, v5]/(v
2
3v4 + v2

5),

and the action of the Steenrod algebra is defined as follows:

v3 v4 v5

Sq1 0 0 v2
3

Sq2 v5 v2
3 0

Sq4 0 v2
4 v3

3 + v4v5

and βs+1(v3) = v4, where 2s||(q + 1) ([13, IV, Theorem 8.2] and [17, Theorem 1.3,
Theorem 2.3]). If q ≡ 1 (mod 4) then

(4) H∗(BSL3(Fq)) = F2[v4, v6]⊗ E(v3, v5),

and the action of the Steenrod algebra is defined as follows:

v3 v4 v5 v6

Sq1 0 0 0 0
Sq2 v5 v6 0 0
Sq4 0 v2

4 v3v6 + v4v5 v4v6

,

βs+1(v3) = v4 and βs(v5) = v6, where 2s||(q − 1) ([13, IV, Theorem 8.1] and [17,
Theorem 1.3, Theorem 2.3]).



THE HOMOTOPY TYPE OF BG∧
2 FOR SOME SMALL MATRIX GROUPS G 5

To prove homotopy uniqueness of BSL3(Fq)∧2 we will use its centralizer homology
decomposition. Let A2(SL3(Fq))op be the Quillen category of the group BSL3(Fq).
This is the category with objects nontrivial elementary abelian 2-subgroups of SL3(Fq),
and a morphism cg : E1

- E2 is a homomorphism which is the restriction of an
inner automorphism of SL3(Fq); i.e. cg(x) = gxg−1 for some q ∈ SL3(Fq). Let C be
a full subcategory of A2(SL3(Fq))op. The centralizer diagram

α : C - Spaces

is the functor which sends every object U to a model of the classifying space

ESL3(Fq)×SL3(Fq) (SL3(Fq)/CSL3(Fq)(U)) ' BCSL3(Fq)(U)

of its centralizer. We say that C is an ample collection if the natural map

hocolim
C

α - BSL3(Fq)

is a mod-2 homology isomorphism.
Let A = Diag(−1,−1, 1) and B = Diag(−1, 1,−1) be diagonal matrices in SL3(Fq).

Consider the following elementary abelian 2-subgroups of SL3(Fq), generated by A,
and by A and B: V = 〈A〉,W = 〈A,B〉. Let A be the full subcategory of the Quillen
category A2(SL3(Fq))op which has objects E = {V,W}. Because every elementary
abelian 2-subgroup of SL3(Fq) is isomorphic to one of the elements in E , the category
A is an ample collection of elementary abelian 2-subgroups of SL3(Fq) [16, Theorem
7.7].

The centralizers of the objects in E are CSL3(Fq)(V ) = GL2(Fq) and CSL3(Fq)(W ) =
(Z/(q−1))2 (the subgroup of all diagonal matrices). The normalizers areNSL3(Fq)(V ) =
GL2(Fq) and NSL3(Fq)(W ) = (Z/(q − 1))2 o Σ3, where the action of the permutation
group Σ3 on (Z/(q − 1))2 is defined as follows: we look at the group (Z/(q − 1))2

as a subgroup of (Z/(q − 1))3 of those triples (t1, t2, t3) for which t1 + t2 + t3 ≡ 0
(mod (q − 1)), and the action of the group Σ3 on (Z/(q − 1))3 by permutation in-
duces the action of Σ3 on (Z/(q − 1))2. So the morphisms in A are Mor(V, V ) =
NSL3(Fq)(V )/CSL3(Fq)(V ) = 1, Mor(W,W ) = NSL3(Fq)(W )/CSL3(Fq)(W ) = Σ3, and
Mor(V,W ) = NSL3(Fq)(V,W )/CSL3(Fq)(V ) = Σ3/Σ2. We can picture the category A
as

V
--

Σ3/Σ2

- W 	 Σ3.

The 2-completion of the diagram α : A - Spaces is

BGL2(Fq)∧2
�
��
Σ3/Σ2

(B(Z/q − 1)2)∧2 	 Σ3.

By [16, Theorem 7.7], the natural map

hocolim
A

αE - BSL3(Fq)

is a mod-2 cohomology isomorphism, hence (hocolimA αE)
∧
2
∼= BSL3(Fq)∧2 .
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Now we will prove that BSL3(Fq)∧2 is determined by its mod-2 cohomology. Let X
be a 2-complete space such that H∗

β(X) ∼= H∗
β(BSL3(Fq)). From the above dis-

cussion we see that to construct a map BSL3(Fq)∧2 - X it is enough to de-
fine a family of maps BCSL3(Fq)(U) - X, U ∈ E , which with some compat-
ibility assumption will define a map (hocolimA αE) - X. Hence we need to
define two maps fV : BGL2(Fq) - X and fW : BW - X. By Lannes’ the-
ory [19], there is a map f ′W : BW - X such that (f ′W )∗ equals the composite

H∗(X) ∼= H∗(BSL3(Fq))
Bi∗W- H∗(BW ). Define fW as the composite B(Z/(q −

1))2 - (B(Z/(q− 1))2)∧2 = BW - X. For U = V we use the following proposi-
tion.

Proposition 4.1. Let X be a 2-complete space and H∗
β(X) ∼= H∗

β(BSL3(Fq)). Then

there exists a map f̄V : BV - X, such that Map(BV,X)f̄V
is homotopy equivalent

to BGL2(Fq)∧2 .

Proof. By Lannes’ theory [19], there exists a map f̄V : BV - X such that f̄ ∗V

equals the composite H∗(X) ∼= H∗(BSL3(Fq))
Bi∗V- H∗(BV ). We will prove that the

cohomology of Map(BV,X)f̄V
is isomorphic to H∗

β(BGL2(Fq)) as an object in Kβ.
By [19, Proposition 3.4.6.],

T VBi∗V H
∗(BSL3(Fq)) ∼= H∗(BCSL3(Fq)(V )) = H∗(BGL2(Fq)),

where T VBi∗V is the Lannes’ functor. If q ≡ 3 (mod 4) then

T Vf̄∗V
H∗(X) ∼= T VBi∗V H

∗(BSL3(Fq)) ∼= H∗(BGL2(Fq))

is free in degrees ≤ 2, which means that the map

(H1(BGL2(Fq))⊗H1(BGL2(Fq)))Σ2
- H2(BGL2(Fq))

induced by the product on H∗(BGL2(Fq)) is injective, hence, by [19, Théorème 3.2.4],

H∗(Map(BV,X)f̄V
) ∼= T Vf̄∗V

H∗(X) ∼= H∗(BGL2(Fq))

and the evaluation map e : Map(BV,X)f̄V
- X induces the map on the mod-2 co-

homology which equals the compositeH∗(X) ∼= H∗(BSL3(Fq))
Bi∗

GL2(Fq)- H∗(BGL2(Fq)).
If q ≡ 1 (mod 4), then T VBi∗V H

∗(BSL3(Fq)) ∼= H∗(BCSL3(Fq)(V )) = H∗(BGL2(Fq))
is not free in degrees ≤ 2, hence Lannes’ theory does not guarantee that T V

f̄∗V
H∗(X)

is isomorphic H∗(Map(BV,X)f̄V
). By [1, Theorem 3], we can use the Lannes’ T

functor if Y is of finite type such that H1(Y ) = 0 and f̄V : BV - Y is finitely
T -representable; i.e. there exists an increasing sequence α(s) and a map of towers
g : {Map(BV, Pα(s)Y

∧
2 )fs} - {K(Gs, 1)}, where

(1) Pα(s)Y is the α(s)th Postnikov stage and fs the map induced by f̄V ,
(2) T V

f̄∗V
H∗(Y ) is of finite type,

(3) Gs a finite 2-group for all s,
(4) G∞ = lim←−Gs is a finite 2-group orH∗(G∞) is of finite type and Tor∗,∗H∗(G∞)(T

V
f̄∗V
H∗(Y ))

is finite-dimensional in each total degree,
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(5) the map g induces a pro-isomorhism in H1 and a pro-epimorphism in H2, and
(6) H∗(lim←−Gs) ∼= lim−→H∗(Gs), induced by the natural map.

We will show that f̄V is finitely T -representable.
An n-approximation for a connected algebra A over the Steenrod algebra is a

sequence C - B - A of connected algebras over the Steenrod algebra for which
the composite is trivial in positive degrees and the induced map B//C - A is a
bijection in degrees less then n and an injection in degrees bigger than or equal to n.
The sequence

F2[a2] - F2[b1] - T Vf̄∗V
H∗(X)

is a 2-approximation of T V
f̄∗V
H∗(X) = H∗(BG2(Fq)) = F2[a2, a4] ⊗ E(b1, b3). If this

sequence were actually a 3-approximation of T V
f̄∗V
H∗(X), then f̄V would be finitely T -

representable [1, Theorem 6], but this is not the case here. But F2[a2]//F2[b1] ∼= E(b1)
is an exterior algebra with one generator in dimension 1, so by [1, Example 12 and
Theorem 16], f̄V is finitely T -representable. Hence by [1, Theorem 3],

H∗(Map(BV,X)f̄V
) ∼= T Vf̄∗V

H∗(X) ∼= H∗(BGL2(Fq))

and the evaluation map e : Map(BV,X)f̄V
- X induces the map which equals the

composite H∗(X) ∼= H∗(BSL3(Fq))
Bi∗

GL2(Fq)- H∗(BGL2(Fq)).
To finish the proof, we have to show that H∗

β(Map(BV,X)f̄V
) and H∗

β(BGL2(Fq))
are isomorphic as objects in Kβ.

Let q ≡ 3 (mod 4). In the diagram

GL2(Fq)
ē
- SL3(Fq)

i
- GL3(Fq)

(Z/2)2

i2
6

==== (Z/2)2 j
- (Z/2)3

i3
6

both vertical arrows are maps to diagonal matrices and j(t1, t2) = (t1, t2, t1t2). By
[13, IV Theorem 8.2], the map

Bi∗2 : F2[b1, b3, a4]/(b
6
1 + b23 + a4b

2
1) - F2[x1, x2]

is defined by Bi∗2(b1) = x1 + x2, Bi
∗
2(b3) = x3

1 + x3
2, and Bi∗2(a4) = x2

1x
2
2 and the map

Bi∗3 : F2[v1, v3, v4, v5]/(v
4
1v

2
3 + v6

1v4 + v2
3v4 + v2

5) - F2[y1, y2, y3]

is defined by Bi∗3(v1) = y1+y2+y3, Bi
∗
3(v3) = y3

1 +y3
2 +y3

3, Bi
∗
3(v4) = y2

1y
2
2 +y2

1y
2
3 +y2

2y
2
3

and Bi∗3(v5) = y5
1 + y5

2 + y5
3. Because the map Bi∗ is surjective [17, Theorem 1.3] and

the map Bj∗ : F2[y1, y2, y3] - F2[x1, x2] is defined by Bj∗(y1) = x1, Bj
∗(y2) = x2

and Bj∗(y3) = x1+x2, the map e∗ = Bē∗ is defined by e∗(v3) = b3+b
3
1, e

∗(v4) = a4+b
4
1,

and e∗(v5) = b21b3 + b1a4 + b51. Hence at the (s + 1)st stage of the Bockstein spectral
sequence, we get

a4 = e∗(v4) = e∗(βs+1(v3)) = βs+1(e
∗(v3)) = βs+2(b3 + b31).

Therefore H∗
β(Map(BV,X)f̄V

) is isomorphic H∗
β(BGL2(Fq)).
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If q ≡ 1 (mod 4), then in a similar way as above we calculate that the map e∗ is
defined by e∗(v3) = b3, e

∗(v4) = a2
2 + a4, e

∗(v5) = b1a4 + b3a2, and e∗(v6) = a2a4.
Hence, at the sth stage of Bockstein spectral sequence, we get

0 = e∗(βs(v3)) = βse
∗(v3) = βs(b3)

and then the equation

a2a4 = e∗(v6) = e∗(βs(v5)) = βse
∗(v5) = βs(b1a4 + b3a2) =

= βs(b1)a4 + b1βs(a4) + βs(b3)a2 + b3βs(a2).

implies βs(b1) = a2. At the (s+ 1)th stage, we get

a2
2 + a4 = e∗(v4) = e∗(βs+1(v3)) = βs+1(e

∗(v3)) = βs+1(b3).

Therefore βs+1(b3) = a4. Also in this case it follows that H∗
β(Map(BV,X)f̄V

) ∼=
H∗
β(BGL2(Fq)). By Section 3, the space Map(BV,X)f̄V

is homotopy equivalent to
BGL2(Fq)∧2 . �

Let us define f ′V : Map(BV,X)f̄V
- X to be the evaluation map, where f̄V is the

map defined in the previous proposition, and let fV be the composite of 2-completion
BGL2(Fq) - BGL2(Fq)∧2 and the map f ′V . By the above proposition f ∗V equals the

compositeH∗
β(X) ∼= H∗

β(BSL3(Fq))
Bi∗

GL2(Fq)- H∗
β(BGL2(Fq)). We obtain the following

diagram

BGL2(Fq)
�
Σ3/Σ2

�� (B(Z/q − 1)2) 	 Σ3

@
@

@fV R 	�
�

�

fW
X

The diagram commutes on the level of mod-2 cohomology and therefore, by Lannes’
theory, it commutes up to homotopy. Hence the diagram is a natural transforma-

tion f : α - X , defined only up to homotopy, from the category α to the constant

category X . The diagram induces a map from the 1-skeleton of hocolimA α to X. Ob-
structions for extending this map to the whole hocolimA α lie in limj+1

A πj(Map(α,X)f )
for j ≥ 1 [22]. By lemma 4.2 below, the obstruction groups vanish, hence there exists
a map f : hocolimA α - X. By construction of the map f , the diagram

BGL2(Fq)∧2
@

@
@

fV
R

BSL3(Fq)∧2
? f

- X

commutes up to homotopy. Because f ∗V is a monomorphism, the same is true for the
map f ∗, and therefore f ∗ is an isomorphism. This shows that f∧2 : BSL3(Fq)∧2 - X
is a homotopy equivalence.
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Lemma 4.2. For j ≥ 1, define a functor Πj : Aop - Ab as

Πj(U) = πj(Map(BCSL3(Fq)(U), X)fU
).

Then limj+1
A Πj = 0 for all j ≥ 1.

Proof. By [6, Proposition 10.3], there is a long exact sequence

0 - lim0
A Πj

- Πj(V ) - Πj(W )Σ2/Πj(W )Σ3 - lim1
A Πj

-

- H1(Σ3; Πj(W )) - H1(Σ2; Πj(W )) - lim2
A Πj

- H2(Σ3; Πj(W )) - · · ·

By the Shapiro lemma [5, Ch. III, Proposition 6.2], H∗(Σ2; (Z/2)2) = H∗(1; Z/2).
By a transfer argument, H∗(Σ3; (Z/2)2) is a subgroup in H∗(Σ2; (Z/2)2). It follows
that

Hn(Σ3; (Z/2)2) = Hn(Σ2; (Z/2)2) = Hn(1; Z/2) = 0

for n ≥ 1. If we insert this in the above long exact sequence we get limn
A Πj = 0 for

n ≥ 2. �

5. Outher automorphism group Out(BSL3(Fq)∧2 )

In the next section we will prove homotopy uniqueness of BGL3(Fq)∧2 with the
strategy that we used for the proof of mod-2 determinism of BGL2(Fq) in Section 3.
We will investigate all possible fibrations of the form BSL3(Fq)∧2 - X - BZ/2s,
where 2s‖q − 1, and prove that only one X in such a fibration has the same mod-2
cohomology as BGL3(Fq). In order to do that we need to determine all possible
actions Z/2s - Out(BSL3(Fq)∧2 ). In this section we will calculate the group
Out(BSL3(Fq)∧2 ).

Let G be a finite group. A p-subgroup P of G is p-centric if its center Z(P )
is a p-Sylow subgroup of the centralizer CG(P ). Furthermore P is p-radical if the
quotient group NG(P )/P is p-reduced, which means that it does not have nontrivial
normal p-subgroups. Let S be a p-Sylow subgroup of G. Then S is a p-centric
p-radical subgroup. Let S = P0, P1, . . . , Pm denote a choice of G-conjugacy class
representatives for all p-centric p-radical subgroups of G contained in S. We write
N ′(Pi) = NG(Pi)/C

′
G(Pi), where C ′

G(Pi) is the p′-torsion in the centralizer CG(Pi).
Let X(G) be the set of all (m+ 1)-tuples (θ; θ1, . . . , θm) such that

θ : N ′(S)
∼=- N ′(S) and θi : N

′(Pi)
∼=- N ′(θ(Pi))

are isomorphisms, and such that θi and θ restricted to the image of NG(S) ∩NG(Pi)
in N ′(Pi) are equal for all i. The group N ′(S) acts on X(G) by

x · (θ; θ1, . . . , θm) = (cx ◦ θ; cx ◦ θ1, . . . , cx ◦ θm),

where cx is conjugation by the element x. If there are no i, j with 1 ≤ i, j ≤ m such
that Pi is conjugate to a proper subgroup of Pj, then X(G)/N ′(S) is isomorphic to
Out(BG∧

p ) [9, Proposition 6.3 and Theorem B].

Theorem 5.1. If q ≡ 1 (mod 4) let s be such that 2s‖q − 1, and if q ≡ 3 (mod 4)
let s be such that 2s‖q + 1. Then Out(BSL3(Fq)∧2 ) is isomorphic to Z/2s−1.
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Proof. Let q ≡ 1 (mod 4). Let ξ′ be a generator of F∗q. Then ξ = (ξ′)
q−1
2s is a generator

of Z/2s < F∗q. Define the following matrices in SL3(Fq):

Z ′ =

ξ′ 0 0
0 ξ′ 0
0 0 (ξ′)−2

 , A =

ξ 0 0
0 1 0
0 0 ξ−1

 , B =

0 1 0
1 0 0
0 0 −1

 ,
and Z = (Z ′)

q−1
2s . Then S = 〈A,B〉 is a 2-Sylow subgroup of SL3(Fq). Let P < S

be a 2-centric 2-radical subgroup of SL3(Fq). Because P is 2-centric, the center 〈Z〉
of S is a subgroup of P . If P is a subgroup of the group T = 〈Z,A〉 of the diagonal
matrices of S, then P = T is the only candidate to be a 2-centric 2-radical subgroup
of SL3(Fq). The normalizer N(T ) equals 〈A,Z ′, D〉, where D is the permutation
matrix that corresponds to the permutation (1, 2, 3). Hence N(T )/T is 2-reduced,
and therefore T is 2-radical.

Every element in S − T is conjugate to ZiB or ZiAB for some i. Hence, if P is
not a subgroup of T (and contains 〈Z〉), then P is conjugate to one of the groups

Pi = 〈Z,A2i
, B〉 or Qi = 〈Z,A2i

, AB〉 for 0 ≤ i ≤ s. The groups P0 and Q0 equal the
2-Sylow group S. The group Ps is subconjugate to the group T , so it is not 2-centric.
It is easy to see that

N(Pi) = 〈Z ′, A2i−1

, B〉 for 0 < i < s− 1,

N(Qi) = 〈Z ′, A2i−1

, AB〉 for 0 < i < s,

N(Ps−1) = 〈Z ′, A2s−2

, B, C〉,

N(Qs) = 〈D,A2s−1〉,

where

C =

(−1 + ξ2s−2
)2−1 (−1− ξ2s−2

)2−1 0

(1− ξ2s−2
)2−1 (−1− ξ2s−2

)2−1 0
0 0 1

 ,
and D is a generator of the centralizer CSL3(Fq)(Qs) = Z/(q2 − 1). So if P equals Pi
or Qi for i > 1, then N ′(P )/P ∼= Z/2 except for the groups Ps−1 and Qs. Because

N(Ps−1)/Ps−1
∼= Z/( q−1

2s ) × Σ3 and N(Qs)/Qs
∼= 〈x, y | x

q2−1

2s+1 = y2, xyx = xq〉, there
are exactly four 2-centric 2-radical subgroups of SL3(Fq), namely S, T , Ps−1, and Qs.

Because N(S) = 〈A,B,Z ′〉, N ′(S) ∼= S = 〈a, b, c | a2s
= b2

s
= c2 = 1, ab =

ba, cac = b〉. Every automorphism N ′(S) - N ′(S) is of the form a 7→ aαbβ and
c 7→ aγb−γc for α+ β an odd number. Denote this automorphism by θ(α, β, γ).

The normalizer N(T ) equals 〈A,Z ′, D〉, hence

N ′(T ) = 〈a, b, c, d | a2s

= b2
s

= c2 = d3 = 1, ab = ba, cac = b,

dad−1 = b−1, d−1ad = ba−1, cdc = d2〉.

We can extend θ(α, β, γ) to an automorphism N ′(T ) - N ′(T ) only if α = 0 or
β = 0. In case β = 0, an automorphism θT (α, γ) : N ′(T ) - N ′(T ) maps d to
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aγb−γd and in case α = 0 an automorphism θT (β, γ) : N ′(T ) - N ′(T ) maps d to
aγb−γd2.

Since caxby ◦ θ(1, 0, 0) = θ(1, 0, x− y) and caxbyc ◦ θ(1, 0, 0) = θ(0, 1, x− y), only ele-
ments of the center of SL3(Fq) fix the automorphism θ(1, 0, 0). Every θ(α, β, γ) which
has an extension to an automorphism of N ′(T ) has the form θ(α, 0, 0)◦ cgθ(1, 0, 0) for
some α and g. Hence we may take care only of the automorphisms θ(α, 0, 0) where α
is an odd number.

Because

N ′(Ps−1) = 〈ā, b̄, c, e | ā4 = b̄4 = c2 = e3 = 1,

āb̄ = b̄ā, cāc = b̄, āeā−1 = ā3b̄e2, cdc = āb̄3e〉,

the intersection N ′(S) ∩ N ′(Ps−1) is generated by ā, b̄, and c. There is only one
extension θP (α) of the morphism θ(α, 0, 1)|N ′(S)∩N ′(Ps−1) to a morphism of N ′(Ps−1).
In case α ≡ 1 (mod 4), the morphism θ(α, 0, 0) maps ā to ā, so θP (α) maps e to e. If
α ≡ 3 (mod 4), the morphism θ(α, 0, 0) maps ā to ā3, hence θP (α) maps e to ā3b̄3ce.

Because N ′(Qs) < N ′(S), we can omit the group Qs, hence

X(SL3(Fq))/N ′(S) = {Θ(α) := (θ(α, 0, 0); θT (α, 0), θP (α)) | α is odd}

and Θ(α)Θ(β) = Θ(α · β), so Out(BSL3(Fq)∧2 ) ∼= Z/2s−1.

Let q ≡ 3 (mod 4). Let ξ′ be a generator of F∗q2 . Then ξ = (ξ′)
q2−1

2s+1 is a generator

of Z/2s+1 < F∗q2 , and ζ = (ξ′)q+1 is a generator of F∗q. Let

P =

1 1 0
ξ −ξ−1 0
0 0 (−ξ − ξ−1)−1

 , B̄ =

 0 ξ−2 0
ξ2 0 0
0 0 −1

 ,
Ā = Diag(ξ,−ξ−1,−1), and Z̄ = Diag(ξ′, (ξ′)q, (ξ′)−q−1). Then the matrices A =
PĀP−1 and B = PB̄P−1 generate a 2-Sylow subgroup S of SL3(Fq) [10, Lemma 1]
and the (q + 1)th power of Z = PZ̄P−1 is a generator of the center Z(SL3(Fq)). Let
P < S be a 2-centric 2-radical subgroup of SL3(Fq). If P is a subgroup of T = 〈A〉,
then P = T is the only candidate for a 2-centric 2-radical subgroup of SL3(Fq). The

normalizer N(T ) equals 〈B,Z〉, hence N(T )/T = 〈x, y | x
q2−1

2s+1 = y2 = 1, yxy = xq〉 is
2-reduced if and only if 〈[B]〉 is normal subgroup of N(T )/T , and this is true if and
only if q + 1 = 2s.

Every element in S − T is conjugate to B, AB, I ′B or I ′AB, where I ′ = A2s
=

Diag(−1,−1, 1). Because I ′ is in the center of S, it follows that I ′ is in every 2-centric
subgroup P of S. Hence, if P is not a subgroup of T , then P is conjugate to one of
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the groups Pi = 〈A2i
, B〉 or Qi = 〈A2i

, AB〉 for 0 ≤ i ≤ s. Then

N(Pi) = 〈Zq+1, A2i−1

, B〉 for 0 < i < s,

N(Qi) = 〈Zq+1, A2i−1

, AB〉 for 0 < s− 1,

N(Ps) = 〈A2s−1

, C1, C2, D〉,

N(Qs−1) = 〈A2s−2

, AB,E〉,

where

C1 =

ζ (ζ − 1)(ξ − ξ−1)2−1 0
0 1 0
0 0 ζ−1

 , C2 =

1 (1− ζ)(ξ − ξ−1)2−1 0
0 ζ 0
0 0 ζ−1

 ,
D =

0 1 (ξ−1 − ξ)2−1

0 0 1
1 (ξ − ξ−1)2−1 0

 , E =

 1 + ξ22−1
(1 + ξ22−1

)ξ−1 0

(−1 + ξ22−1
)ξ 1− ξ22−1

0
0 0 4−1

 .
The groups P0 and Q0 equal S, the group Qs

∼= Z/4 is not 2-centric and the group
Qs−1 is isomorphic to the quaternion group Q(8). Hence 2-centric 2-radical subgroups
of SL3(Fq) are S, Ps, and Qs−1, and if q + 1 is a power of 2 then also T .

Because N ′(S) ∼= S = 〈a, b | a2s+1
= b2 = 1, bab = −a−1〉, every automorphism

N ′(S) - N ′(S) is of the form a 7→ aα and b 7→ aβb for α an odd number and β an
even number. Denote this automorphism by θ(α, β).

Since ca2x ◦ θ(1, 0) = θ(1, 4x), ca2x+1 ◦ θ(1, 0) = θ(1, 4x + 2 + 2s), ca2xb ◦ θ(1, 0) =
θ(2s − 1, 4x), and ca2x+1b ◦ θ(1, 0) = θ(2s − 1, 4x+ 2 + 2s), only elements of the center
of S fix the automorphism θ(1, 0). Because every θ(α, β) equals θ(α′, 0) · cxθ(1, 0),
for some x and some α′ ≡ 1 (mod 4), we may take care only of the automorphisms
θ(α, 0) where α ≡ 1 (mod 4).

Because C
q−1
2

1 = I ′B and C
q−1
2

2 = B, it follows that N ′(S)∩N ′(Ps) = 〈B, I ′, A2s−1〉.
The morphism θ(α, 0)|N ′(S)∩N ′(Ps) has two extensions to an automorhism of N ′(Ps).
Let d and i′ be the images of D and I ′ in N ′(Ps). If α ≡ 1 (mod 4) then the first
extension θ1

P (α) maps d to d and the second one θ2
P (α) maps d to i′bd. If α ≡ 3

(mod 4) then θ1
P (α) maps d to i′d and θ2

P (α) maps d to bd. The extensions are

connected by conjugation by the element i′ = a2s−1
, i.e. ci′ ◦ θ1

P = θ2
P . Note that the

conjugation ci′ fixes any morphism θ(α, β).
The morphism θ(α, 0)|N ′(S)∩N ′(Qs−1) has only one extension to an automorphism of

N ′(Qs−1). Let e be the image of E in N ′(Qs−1). If α ≡ 1 (mod 4) then the extension

θQ(α) maps e to e and if α ≡ 3 (mod 4) then θQ(α) maps e to a−2s−1
d. The morphism

θQ(α) is fixed by conjugation by the element i′.
Because N(T ) = N(S), we can omit this group even if q + 1 is a power of 2. So

X(SL3(Fq))/N ′(S) = {Θ(α) := (θ(α, 0); θ1
P (α, 0), θQ(α)) | α ≡ 1 (mod 4)},

Θ(α)Θ(β) = Θ(α · β), and therefore Out(BSL3(Fq)∧2 ) ∼= Z/2s−1. �

The following technical lemma will be used in the next section.
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Lemma 5.2. Let ψ ∈ Out(BSL3(Fpn)∧2 ) be a nontrivial automorphism and let 2t‖p2n−
1. Then 2t does not divide the order of the fixed-point set H4(BSL3(Fpn); Z[1

p
])ψ.

Proof. We define inclusion i : Z/2t−1 - SL3(Fpn) depending upon p as follows:
i(ζk) = (Diag(ξ, 1, ξ−1))k, if pn ≡ 1 (mod 4) and ξ is a generator of Z/2t−1 < F∗pn ,

and i(ζk) = P (Diag(ξ, ξp
n
, ξ−1−pn

))kP−1, if pn ≡ 3 (mod 4), ξ is a generator of
Z/2t < F∗p2n and P the matrix defined in the proof of the previous theorem. Let

x ∈ Z/2t considered as a subgroup of H4(BSL3(Fpn); Z[1
p
]) [17, Theorem 2.3] be a

generator. Then i∗(x) is a generator of H4(BZ/2t−1; Z[1
p
]) = Z/2t−1. By the proof

of the previous theorem ψ = Θ(α) and because ψ is a nontrivial automorphism, it
follows that α 6= 1. So the restriction of Θ(α) to the subgroup Z/2t−1 is nontrivial,
hence i∗(x) is not fixed by the restriction map, so also x is not fixed by Θ(α), which
means that 2t−1 does not divide the order of H4(BSL3(Fpn); Z[1

p
])ψ. �

6. The Homotopy type of BGL3(Fq)∧2
The group GL3(Fq) has order q3(q − 1)3(q2 + q + 1)(q + 1). If q ≡ 3 (mod 4), the

cohomology of BGL3(Fq) is

(5) H∗(BGL3(Fq)) = F2[b1, b3, a4, b5]/(b
4
1b

2
3 + b61a4 + b23a4 + b25),

and the action of the Steenrod algebra is defined as follows:

b1 b3 a4 b5
Sq1 b21 b41 0 b23
Sq2 0 b5 b61 + b23 0
Sq4 0 0 a2

4 b91 + b61b3 + b51a4 + b41b5 + b31b
2
3 + b33 + a4b5

and βs+1(b
3
1 + b3) = a4, where 2s||(q + 1) ([13, IV, Theorem 8.2] and [17, Theorem

1.3, Theorem 2.3]). If we change the generators b3 and b5 by respectively b3 + b31 and
b5+b51, we see that H∗

β(BGL3(Fq)) and H∗
β(BSL3(Fq))⊗H∗

β(BZ/q−1) are isomorphic
as objects in the category Kβ.

If q ≡ 1 (mod 4) then

(6) H∗(BGL3(Fq)) = F2[a2, a4, a6]⊗ E(b1, b3, b5),

and the action of the Steenrod algebra is defined as follows:

b1 a2 b3 a4 b5 a6

Sq1 0 0 0 0 0 0
Sq2 0 a2

2 b1a4 + b3a2 + b5 a2a4 + a6 b1a6 + b5a2 a2a6

Sq4 0 0 0 a2
4 b3a6 + b5a4 a4a6

and βs(b1) = a2, βs+1(b3) = a4 and βs(b5) = a6, where 2s||(q − 1) ([13, IV Theorem
8.1] and [17, Theorem 1.3, Theorem 2.3]). If we change the generators a4, a6, and b5
by respectively a4 + a2

2, a2a4 + a6, and b1a4 + b3a2 + b5, we see that H∗
β(BGL3(Fq)) is

isomorphic to H∗
β(BSL3(Fq))⊗H∗

β(BZ/q − 1) as an object in Kβ.
Let X be a 2-complete space and H∗

β(X) ∼= H∗
β(BGL3(Fq)). Let 2s||(q − 1) and

let g : X - BZ/2s be a map such that g∗ maps the generator of H1(BZ/2s) to
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the generator of H1(X). Let Y be the homotopy fiber of the map g. Using the
Eilenberg-Mooer spectral sequence, we see that H∗

β(Y ) ∼= H∗
β(BSL3(Fq)). Hence Y

is homotopy equivalent to BSL3(Fq)∧2 (Section 4).
Let α : BZ/2s - BOut(BSL3(Fq)∧2 ) be the action induced by the fibration

BSL3(Fq)∧2 - Y - BZ/2s. Let O2′(SL3(Fq)) be the maximal normal subgroup
of SL3(Fq) of order prime to 2. Then O2′(SL3(Fq)) is the subgroup of diagonal
matrices. Fibrations of the form BSL3(Fq)∧2 - Y - BZ/2s with the specified
action are in bijection with H2(BZ/2s;Z(SL3(Fq)/O2′(SL3(Fq)))) (see [8]). Because
the center Z(SL3(Fq)/O2′(SL3(Fq))) is trivial, there exists exactly one such fibration.
We will show that the total space Y has the mod-2 cohomology isomorphic to that
of BGL3(Fq) only if Y induces the trivial action BZ/2s - BOut(BSL3(Fq)∧2 ). To
do this we employ similar methods as in the Section 3.

Let q = pn. Because Hj(BSL3(Fpn); Z[1
p
]) = 0 for j = 1, 2, 3 [17, Theorem 2.3], the

elements Ei,j
2 of the Serre spectral sequence of the fibrationBSL3(Fpn)∧2 - Y - BZ/2s

vanish for j = 1, 2, 3. And also E5,0
2 = H5(BZ/2s;H0(BSL3(Fpn); Z[1

p
])) = 0, hence

H4(Y ; Z[1
p
]) = E4,0

2 ⊕ E
0,4
2 =

= H4(Z/2s;H0(BSL3(Fpn); Z[1
p
]))⊕H0(Z/2s;H4(BSL3(Fpn); Z[1

p
])) =

= Z/2s ⊕H4(BSL3(Fpn); Z[1
p
])Z/2s

,

where H4(BSL3(Fpn); Z[1
p
])Z/2s

is the fixed-point set of the action α. By lemma 5.2,

if 2t‖p2n− 1 then 2t+1 does not divide the order of H4(BSL3(Fpn); Z[1
p
])Z/2s

, so there

are no elements in H4(Y ; F2) which are maped nontrivally by βt. This implies that
the mod-2 cohomology of Y differs from the mod-2 cohomology of BGL3(Fpn) if the
fibration BSL3(Fq)∧2 - Y - BZ/2s induces a nontrivial action.

Corollary 6.1. Let q be a power of an odd prime. The space BGL3(Fq)∧2 is homotopy
equivalent to the product BSL3(Fq)∧2 × (BZ/q − 1)∧2 .

7. The Mathieu group M11

The Mathieu group M11 has the same cohomology as the group SL3(F3) as an
object in Kβ [2, Section 12]. Hence by theorem 1.1, we recover the following result,
which is due to J. Martino and S. Priddy [20, Theorem 4].

Corollary 7.1. The 2-completions of the classifying spaces (BM11)
∧
2 and BSL3(F3)

∧
2

are homotopy equivalent.

This result allows us to prove the following theorem.

Theorem 7.2. There exists a map f : BM11
- BSU(3) inducing an injective

map f ∗ : H∗(BSU(3)) - H∗(BM11). The mod-2 cohomology of BM11 is a finitely
generated free module over the image of f ∗.

Let us look at the tower

BSL3(F3)
Bi1- BSL3(F32)

Bi2- BSL3(F322 ) - · · · Bin- BSL3(F32n ) - · · ·
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where the maps Bin are induced by inclusions in : F32n−1 - F32n . For n ≥ 2 the

cohomology is H∗(BSL3(F32n−1 )) = F2[y
(n)
4 , y

(n)
6 ] ⊗ E(x

(n)
3 , x

(n)
5 ) and the map Bi∗n is

defined by Bi∗n(y
(n)
4 ) = y

(n−1)
4 , Bi∗n(y

(n)
6 ) = y

(n−1)
6 , Bi∗n(x

(n)
3 ) = 0, and Bi∗n(x

(n)
5 ) = 0.

Then the cohomology of the colimit of the tower is

H∗(lim−→BSL3(F32n )) = lim←−H
∗(BSL3(F32n )) = F2[y4, y6],

and this is isomorphic to the cohomology H∗(BSU(3)). Because BSU(3)∧2 is deter-
mined by cohomology [21], (lim−→BSL3(F32n ))∧2 ' BSU(3)∧2 . Hence there exists a map
(BM11)

∧
2 ' BSL3(F3)

∧
2

- BSU(3)∧2 and by the theorem of W. Dwyer and C.
Wilkerson [11, Proposition 3.1], there exists a map f : BM11

- BSU(3).
The cohomology of the first space in the tower is

H∗(BSL3(F3)) = F2[v3, v4, v5]/(v
2
3v4 + v2

5)

and the map Bi∗1 is defined as Bi∗1(y
(2)
4 ) = v4, Bi

∗
1(y

(2)
6 ) = v2

3, Bi
∗
1(x

(2)
3 ) = 0, and

Bi∗1(x
(2)
5 ) = 0, therefore

f ∗ : H∗(BSU(3)) = F2[y4, y6] - H∗(BM11) = F2[v3, v4, v5]/(v
2
3v4 + v2

5)

is given by f ∗(y4) = v4 and f ∗(y6) = v2
3, hence H∗(BM11) is a finitely generated

H∗(BSU(3)) module.
Acknowledgment. The author thanks Carles Broto for many comments and

suggestions.
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[12] W.G. Dwyer, C.W. Wilkerson, A cohomology decomposition theorem, Topology 31 (1992),
433–443.

[13] Z. Fiedorowicz, S. Priddy, Homology of classical groups over finite fields and their associated
infinite loop spaces, Lecture Notes in Mathematics, 674, Springer Verlag (1982).

[14] D. Gorenstein, R. Lyons, R. Solomon, The classification of the Finite Simple Groups,
Number 3. American Mathematical Society, Providence, RI, 1998.

[15] K. Ireland, M. Rosen, A classical introduction to modern number theory, Springer Verlag,
(1982).

[16] S. Jackowski, J. McClure, Homotopy decompositions of classifying spaces via elementary
abelian subgroups, Topology (1992), 113–132.

[17] D. Jeandupeux, Integral cohomology of classical groups over a finite field, Journal of Pure
and Applied Algebra 84 (1993) 43–58.

[18] R. Kane, The homology of Hopf spaces, North-Holland Publishing Co., Amsterdam-New
York, (1988).

[19] J. Lannes, Sur les espaces fonctionelles dont la source est la classifiant d’un p-groupe abélien
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