THE HOMOTOPY TYPE OF $B G_{2}^{\wedge}$ FOR SOME SMALL MATRIX GROUPS G

ALEŠ VAVPETIČ

10.6.2004

Abstract

Let q be a power of an odd prime. We prove that the mod- 2 cohomologies of $B G L_{2}\left(\mathbb{F}_{q}\right) \hat{2}, B S L_{3}\left(\mathbb{F}_{q}\right)_{2}$, and $B G L_{3}\left(\mathbb{F}_{q}\right)_{2}$, as algebras over the mod-2 Steenrod algebra, together with the associated Bockstein spectral sequence, determine the homotopy types of respectively $B G L_{2}\left(\mathbb{F}_{q}\right) \hat{2}, B S L_{3}\left(\mathbb{F}_{q}\right)_{2}$, and $B G L_{3}\left(\mathbb{F}_{q}\right)_{2}$.

2000 Mathematics Subject Classification: 55R35, 55R37, 55R40.

1. Introduction

Let G and H be finite groups which have the same mod- p cohomology as algebras over the mod- p Steenrod algebra \mathcal{A}_{p}. The question whether the p-completions $B G_{p}^{\wedge}$ and $B H_{p}^{\wedge}$ are homotopy equivalent, has a negative answer in general. For example, all cyclic groups \mathbb{Z} / p^{n} for $n \geq 2$ have the same mod- p cohomology but their classifying spaces $B \mathbb{Z} / p^{n}$, the lens spaces $L_{p^{n}}^{\infty}$, are not homotopy equivalent. The cohomology of the group \mathbb{Z} / p is different from that of the group \mathbb{Z} / p^{n} for $n \geq 2$, since in the case \mathbb{Z} / p the Bockstein homomorphism maps the generator of cohomology in dimension $2 k-1$ to the generator in dimension $2 k$ for all $k \in \mathbb{N}$. The homotopy type of the space $B \mathbb{Z} / p$ is determined up to p-completion by $H^{*}\left(B \mathbb{Z} / p ; \mathbb{F}_{p}\right)$ considered as an algebra over \mathcal{A}_{p}. In the case $\mathbb{Z} / p^{n}, n \geq 2$, the higher Bockstein operator β_{n} connects generators in dimensions $2 k-1$ and $2 k$. One might thus wonder if modp cohomology of a finite group G as an algebra over \mathcal{A}_{p}, together with the higher Bockstein operators, determines the homotopy type of $B G_{p}^{\wedge}$. So the cohomology of a space is considered as an object in the category \mathcal{K}_{β} of unstable algebras over \mathcal{A}_{p} together with higher Bockstein homomorphisms (see section 2). We say that spaces X and Y are comparable if $H^{*}\left(X ; \mathbb{F}_{p}\right)$ and $H^{*}\left(Y ; \mathbb{F}_{p}\right)$ are isomorphic objects in \mathcal{K}_{β}. We say that the homotopy type of a p-complete space X is determined by its mod- p cohomology if any p-complete space Y, comparable to X, is homotopy equivalent to X. There are some finite groups G for which the p-completions of their classifying space $B G_{p}^{\wedge}$, are determined by their mod- p cohomology: finite abelian groups, $S L_{2}\left(\mathbb{F}_{q}\right)$ and $P S L_{2}\left(F_{q}\right)$ at prime $p=2$ for an odd prime power q (see [6]), the dihedral groups $D_{2^{n}}$, the extra special groups ([7]), and the generalized quaternion groups $Q_{2^{n}}([7],[8])$. In this paper we prove the following theorem.

[^0]Theorem 1.1. Let q be a power of an odd prime. The spaces $B G L_{2}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}, B S L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}$, and $B G L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}$ are determined by their mod-2 cohomology.

2. Conventions and Terminology

All spaces considered are assumed to have the homotopy type of a $C W$ complex. For a given space X we write $H^{*}(X)$ for its mod-2 cohomology $H^{*}\left(X ; \mathbb{F}_{2}\right)$, and X_{2}^{\wedge} denotes $\mathbb{F}_{2 \infty}$-completion or 2-completion of the space X in the sense of Bousfield and Kan [4]. As in the previous section \mathcal{A}_{2} denotes the mod-2 Steenrod algebra, and \mathcal{K}_{2} denotes the category of unstable algebras over \mathcal{A}_{2}. A Bockstein spectral sequence attached to an arbitrary unstable algebra is not widely used, hence we will recall the definition.

Definition 2.1. [7] Let K be an unstable algebra over \mathcal{A}_{2}. A Bockstein spectral sequence for K is a spectral sequence $\left\{E_{n}(K), \beta_{n}\right\}_{n=1}^{\infty}$ of differential graded algebras, where the differentials have degree one, and such that
(1) $E_{1}(K)=K$ and $\beta_{1}=S q^{1}$ is the primary Bockstein operator,
(2) if $x \in K^{\text {even }}$ and $x^{2} \neq 0$ in $E_{2}(K)$, then $\beta_{2}\left(x^{2}\right)=x S q^{1} x+S q^{|x|} S q^{1} x$,
(3) if $x \in E_{n}(K)^{\text {even }}$ and $x^{2} \neq 0$ in $E_{n+1}(K), n \geq 2$ then $\beta_{n+1}\left(x^{2}\right)=x \beta_{n}(x)$.

Let \mathcal{K}_{β} be the category whose objects are pairs $K_{\beta}=\left(K ;\left\{E_{n}(K), \beta_{n}\right\}_{n=1}^{\infty}\right)$, where K is an unstable algebra over \mathcal{A}_{2} and $\left\{E_{n}(K), \beta_{n}\right\}_{n=1}^{\infty}$ an associated Bockstein spectral sequence. A morphism $f: K_{\beta} \longrightarrow K_{\beta}^{\prime}$ in \mathcal{K}_{β} is a family of morphisms $\left\{f_{n}\right\}_{n=1}^{\infty}$, where $f_{1}: K \longrightarrow K^{\prime}$ is a morphism in \mathcal{K}_{2}, and for each $n \geq 2, f_{n}: E_{n}(K) \longrightarrow E_{n}\left(K^{\prime}\right)$ is a morphism of differential graded algebras, which is induced by f_{n-1}. The mod-2 cohomology of a space X together with its natural Bockstein spectral sequence as an object in \mathcal{K}_{β} will be denoted by $H_{\beta}^{*}(X)$.

3. The Номоtopy type of $B G L_{2}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}$

In this section we will prove that $B G L_{2}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}$ is determined by its mod-2 cohomology. The group $G L_{2}\left(\mathbb{F}_{q}\right)$ has order $q(q-1)^{2}(q+1)$ and the mod- 2 cohomology of $B G L_{2}\left(\mathbb{F}_{q}\right)$ depends on q. If $q \equiv 1(\bmod 4)$, then

$$
\begin{equation*}
H^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)=\mathbb{F}_{2}\left[a_{2}, a_{4}\right] \otimes E\left(b_{1}, b_{3}\right) \tag{1}
\end{equation*}
$$

and the action of the Steenrod algebra is defined as follows:

	b_{1}	a_{2}	b_{3}	a_{4}
$S q^{1}$	0	0	0	0
$S q^{2}$	0	a_{2}^{2}	$a_{2} b_{3}+b_{1} a_{4}$	$a_{2} a_{4}$

and $\beta_{s}\left(b_{1}\right)=a_{2}$, where $2^{s} \|(q-1)$ (the symbol $2^{s} \| n$ means that 2^{s} is the highest power of 2 dividing n) ([13, IV Theorem 8.1], [17, Theorem 1.3]). By [17, Theorem 2.3], $H^{4}\left(B G L_{2}\left(\mathbb{F}_{q}\right) ; \mathbb{Z}\left[\frac{1}{p}\right]\right)=\mathbb{Z} /\left(q^{2}-1\right) \times \mathbb{Z} /(q-1)$, where q is a power of the prime p. Hence $\beta_{s+1}\left(b_{3}\right)=a_{4}$.

If $q \equiv 3(\bmod 4)$, then

$$
\begin{equation*}
H^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)=\mathbb{F}_{2}\left[b_{1}, b_{3}, a_{4}\right] /\left(b_{1}^{6}+b_{3}^{2}+a_{4} b_{1}^{2}\right) \tag{2}
\end{equation*}
$$

and the action of the Steenrod algebra is defined as follows:

	b_{1}	b_{3}	a_{4}
$S q^{1}$	b_{1}^{2}	b_{1}^{4}	0
$S q^{2}$	0	$b_{1}^{2} b_{3}+b_{1} a_{4}$	$b_{1}^{2} a_{4}$

([13, Theorem 8.2], [17, Theorem 1.3]) and $\beta_{s+1}\left(b_{1}^{3}+b_{3}\right)=a_{4}$ where $2^{s} \|(q+1)[17$, Theorem 2.3].

Let q be any odd prime power and let X be a 2-complete space such that $H_{\beta}^{*}(X) \cong$ $H_{\beta}^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)$. Let $2^{s} \|(q-1)$ and let $g: X \longrightarrow B \mathbb{Z} / 2^{s}$ be a map such that g^{*} maps the generator of $H^{1}\left(B \mathbb{Z} / 2^{s}\right)$ to the generator of $H^{1}(X)$. Let Y be the homotopy fiber of the map g. Using the Eilenberg-Moore spectral sequence we see that $H_{\beta}^{*}(Y) \cong$ $H_{\beta}^{*}\left(B S L_{2}\left(\mathbb{F}_{q}\right)\right)$. Because Y is 2 -complete and $B S L_{2}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}$ is determined by its mod-2 cohomology [6], Y is homotopy equivalent to $B S L_{2}\left(\mathbb{F}_{q}\right)_{2}$.

Homotopy classes of fibrations with base space $B \mathbb{Z} / 2^{s}$ and fiber $B S L_{2}\left(\mathbb{F}_{q}\right)_{2}$ are in bijection with group extensions of the form $S L_{2}\left(\mathbb{F}_{3^{2}}\right) \longrightarrow \cdots \longrightarrow \mathbb{Z} / 2^{s}$ for some t such that $S L_{2}\left(\mathbb{F}_{q}\right)$ and $S L_{2}\left(\mathbb{F}_{3^{2}}\right)$ have Sylow 2-subgroups of the same order if $q \equiv \pm 1$ $(\bmod 8)$ and $t=0$ otherwise [8, Corollary 6.5].

The group $\operatorname{Out}\left(S L_{2}\left(\mathbb{F}_{3^{2}}\right)\right)$ is isomorphic to $\mathbb{Z} / 2 \times \mathbb{Z} / 2^{t}$ for $t \geq 1$ and to $\mathbb{Z} / 2$ for $t=0$ [14, Theorem 2.5.12]. The generator of the factor $\mathbb{Z} / 2$ corresponds to conjugation by a matrix in $G L_{2}\left(\mathbb{F}_{3^{2^{t}}}\right)$ and the elements in $\mathbb{Z} / 2^{t}$ correspond to the Frobenius homomorphisms; i.e. the generator of $\mathbb{Z} / 2^{t}$ maps a matrix A to the matrix where all entries of A are replaced by their cubes. The group $\mathbb{Z} / 2^{s}$ acts on the center $Z\left(S L_{2}\left(\mathbb{F}_{3^{2}}\right)\right)=\mathbb{Z} / 2$ trivially. Because $H^{2}\left(\mathbb{Z} / 2^{s} ; Z\left(S L_{2}\left(\mathbb{F}_{3^{2}}\right)\right)\right)=\mathbb{Z} / 2$, for each action $\psi: \mathbb{Z} / 2^{s} \longrightarrow \operatorname{Out}\left(S L_{2}\left(\mathbb{F}_{q}\right)\right)$ there are two extensions of group $\mathbb{Z} / 2^{s}$ by $S L_{2}\left(\mathbb{F}_{3^{2}}\right)$, inducing the action ψ [5, Theorem 6.6]. The two extensions H_{ψ} and K_{ψ} have the same elements as $S L_{2}\left(\mathbb{F}_{3^{2}}\right) \times \mathbb{Z} / 2^{s}$ and the operations are defined as

$$
\begin{aligned}
& \left(A, \zeta^{a}\right)\left(B, \zeta^{b}\right):=\left(A \hat{\psi}(B), \zeta^{a+b}\right), \\
& \left(A, \zeta^{a}\right)\left(B, \zeta^{b}\right):=\left(A \hat{\psi}(B) f\left(\zeta^{a}, \zeta^{b}\right), \zeta^{a+b}\right),
\end{aligned}
$$

where $\hat{\psi} \in \operatorname{Aut}\left(S L_{2}\left(\mathbb{F}_{3^{2}}\right)\right)$ is any representative of ψ, ζ is a generator of the group $\mathbb{Z} / 2^{s}<\mathbb{F}_{q}^{*}$, and $f: \mathbb{Z} / 2^{s} \times \mathbb{Z} / 2^{s} \longrightarrow Z\left(S L_{2}\left(\mathbb{F}_{q}\right)\right)=\{I,-I\}$ is a factor set defined as

$$
f\left(\zeta^{a}, \zeta^{b}\right)=\left\{\begin{array}{lll}
I & ; a+b \quad\left(\bmod 2^{s+1}\right)<2^{s} \\
-I & ; a+b \quad\left(\bmod 2^{s+1}\right) \geq 2^{s}
\end{array}\right.
$$

We will show that only one extension has the mod-2 cohomology isomorphic to the mod- 2 cohomology of the group $G L_{2}\left(\mathbb{F}_{3^{2}}\right)$. This shows that $B G L\left(\mathbb{F}_{3^{2}}\right)_{2}^{\wedge}$ is determined by its mod-2 cohomology.

Let $S L_{2}\left(\mathbb{F}_{3^{2}}\right) \longrightarrow L \longrightarrow \mathbb{Z} / 2^{s}$ be an extension that induces an action ψ, which is neither the trivial action nor conjugation by an element in $G L_{2}\left(\mathbb{F}_{3^{2}}\right)$. This implies that $t \geq 1$, because for $t=0$ the group $\operatorname{Out}\left(S L_{2}\left(\mathbb{F}_{3}\right)\right)=\mathbb{Z} / 2$. Since $2^{t+2} \| 3^{2^{t}}-1, s=$ $t+2$. Because $H^{q}\left(B S L_{2}\left(\mathbb{F}_{3^{2}}\right) ; \mathbb{Z}\left[\frac{1}{3}\right]\right)=0$ for $q=1,2,3[17$, Theorem 2.3], the elements $E_{2}^{p, q}$ of the Serre spectral sequence of the fibration $B S L_{2}\left(\mathbb{F}_{3^{2}}\right) \longrightarrow B L \longrightarrow B \mathbb{Z} / 2^{s}$
vanish for $q=1,2,3$. And also $E_{2}^{5,0}=H^{5}\left(B \mathbb{Z} / 2^{s} ; H^{0}\left(B S L_{2}\left(\mathbb{F}_{3^{2}}\right) ; \mathbb{Z}\left[\frac{1}{3}\right]\right)\right)=0$, hence

$$
\begin{aligned}
H^{4}\left(B L ; \mathbb{Z}\left[\frac{1}{3}\right]\right) & =E_{2}^{4,0} \oplus E_{2}^{0,4}= \\
& =H^{4}\left(\mathbb{Z} / 2^{s} ; H^{0}\left(B S L_{2}\left(\mathbb{F}_{3^{2}}\right) ; \mathbb{Z}\left[\frac{1}{3}\right]\right)\right) \oplus H^{0}\left(\mathbb{Z} / 2^{s} ; H^{4}\left(B S L_{2}\left(\mathbb{F}_{3^{2}}\right) ; \mathbb{Z}\left[\frac{1}{3}\right]\right)\right)= \\
& =\mathbb{Z} / 2^{s} \oplus H^{4}\left(B S L_{2}\left(\mathbb{F}_{3^{2}}\right) ; \mathbb{Z}\left[\frac{1}{3}\right]\right)^{\mathbb{Z} / 2^{s}},
\end{aligned}
$$

where $H^{4}\left(B S L_{2}\left(\mathbb{F}_{3^{2}}\right) ; \mathbb{Z}\left[\frac{1}{3}\right]\right)^{\mathbb{Z} / 2^{s}}$ is the fixed-point set of the action induced by ψ. Let $x \in H^{4}\left(B S L_{2}\left(\mathbb{F}_{3^{2}}\right) ; \mathbb{Z}\left[\frac{1}{3}\right]\right)=\mathbb{Z} / 2^{t+3}[17$, Theorem 2.3] be a generator. Let $i: \mathbb{Z} / 2^{t+2} \longrightarrow S L_{2}\left(\mathbb{F}_{3^{2}}\right)$ be inclusion defined as $i\left(\zeta^{k}\right)=\operatorname{Diag}\left(\zeta^{k}, \zeta^{-k}\right)$. Because i induces an isomorphism from $H^{4}\left(B S L_{2}\left(\mathbb{F}_{3^{2}}\right)\right)$ to $H^{4}\left(B \mathbb{Z} / 2^{t+2}\right)$, the element $i^{*}(x)$ is a generator of $H^{4}\left(B \mathbb{Z} / 2^{t+2} ; \mathbb{Z}\left[\frac{1}{3}\right]\right)=\mathbb{Z} / 2^{t+2}$. The restriction of the action ψ on the subgroup $\mathbb{Z} / 2^{t+2}$ is powering by $3^{2^{r}}$ for some $r \in\{1, \ldots, t-1\}$. Then $i^{*}(x)$ is not fixed by this action, therefore $H^{4}\left(B S L_{2}\left(\mathbb{F}_{3^{2}}\right) ; \mathbb{Z}\left[\frac{1}{3}\right]\right)^{\mathbb{Z} / 2^{s}} \neq \mathbb{Z} / 2^{t+3}$. We see that the mod-2 cohomology of $B L_{2}^{\wedge}$ differs from the mod-2 cohomology of $B G L_{2}\left(\mathbb{F}_{3^{2}}\right)$.

Let ψ be the trivial action or conjugation by an element in $G L_{2}\left(\mathbb{F}_{3^{2}}\right)$. The maximal elementary 2-subgroup of K_{ψ} has rank 1, and because the maximal elementary 2subgroup of $G L_{2}\left(\mathbb{F}_{3^{2}}\right)$ has rank 2, the mod- 2 cohomology of $B K_{\psi}$ differs from the mod-2 cohomology of $B G L_{2}\left(\mathbb{F}_{q}\right)$ [12]. Also if ψ is trivial, the mod-2 cohomology of $H_{\psi}=\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right) \times \mathbb{Z} / 2^{s}$ differs from the mod-2 cohomology of $B G L_{2}\left(\mathbb{F}_{q}\right)$. Therefore X is homotopy equivalent to $B G L_{2}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}$.

4. The Homotopy type of $B S L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}$

The group $S L_{3}\left(\mathbb{F}_{q}\right)$ has order $q^{3}(q-1)^{2}\left(q^{2}+q+1\right)(q+1)$. If $q \equiv 3(\bmod 4)$, the mod-2 cohomology of $B S L_{3}\left(\mathbb{F}_{q}\right)$ is

$$
\begin{equation*}
H^{*}\left(B S L_{3}\left(\mathbb{F}_{q}\right)\right)=\mathbb{F}_{2}\left[v_{3}, v_{4}, v_{5}\right] /\left(v_{3}^{2} v_{4}+v_{5}^{2}\right), \tag{3}
\end{equation*}
$$

and the action of the Steenrod algebra is defined as follows:

	v_{3}	v_{4}	v_{5}
$S q^{1}$	0	0	v_{3}^{2}
$S q^{2}$	v_{5}	v_{3}^{2}	0
$S q^{4}$	0	v_{4}^{2}	$v_{3}^{3}+v_{4} v_{5}$

and $\beta_{s+1}\left(v_{3}\right)=v_{4}$, where $2^{s} \|(q+1)([13$, IV, Theorem 8.2] and [17, Theorem 1.3, Theorem 2.3]). If $q \equiv 1(\bmod 4)$ then

$$
\begin{equation*}
H^{*}\left(B S L_{3}\left(\mathbb{F}_{q}\right)\right)=\mathbb{F}_{2}\left[v_{4}, v_{6}\right] \otimes E\left(v_{3}, v_{5}\right), \tag{4}
\end{equation*}
$$

and the action of the Steenrod algebra is defined as follows:

	v_{3}	v_{4}	v_{5}	v_{6}
$S q^{1}$	0	0	0	0
$S q^{2}$	v_{5}	v_{6}	0	0
$S q^{4}$	0	v_{4}^{2}	$v_{3} v_{6}+v_{4} v_{5}$	$v_{4} v_{6}$

$\beta_{s+1}\left(v_{3}\right)=v_{4}$ and $\beta_{s}\left(v_{5}\right)=v_{6}$, where $2^{s}| |(q-1)([13$, IV, Theorem 8.1] and [17, Theorem 1.3, Theorem 2.3]).

To prove homotopy uniqueness of $B S L_{3}\left(\mathbb{F}_{q}\right)_{2}$ we will use its centralizer homology decomposition. Let $\mathcal{A}_{2}\left(S L_{3}\left(\mathbb{F}_{q}\right)\right)^{o p}$ be the Quillen category of the group $B S L_{3}\left(\mathbb{F}_{q}\right)$. This is the category with objects nontrivial elementary abelian 2-subgroups of $S L_{3}\left(\mathbb{F}_{q}\right)$, and a morphism $c_{g}: E_{1} \longrightarrow E_{2}$ is a homomorphism which is the restriction of an inner automorphism of $S L_{3}\left(\mathbb{F}_{q}\right)$; i.e. $c_{g}(x)=g x g^{-1}$ for some $q \in S L_{3}\left(\mathbb{F}_{q}\right)$. Let \mathcal{C} be a full subcategory of $\mathcal{A}_{2}\left(S L_{3}\left(\mathbb{F}_{q}\right)\right)^{o p}$. The centralizer diagram

$$
\alpha: \mathcal{C} \longrightarrow \text { Spaces }
$$

is the functor which sends every object U to a model of the classifying space

$$
E S L_{3}\left(\mathbb{F}_{q}\right) \times_{S L_{3}\left(\mathbb{F}_{q}\right)}\left(S L_{3}\left(\mathbb{F}_{q}\right) / C_{S L_{3}\left(\mathbb{F}_{q}\right)}(U)\right) \simeq B C_{S L_{3}\left(\mathbb{F}_{q}\right)}(U)
$$

of its centralizer. We say that \mathcal{C} is an ample collection if the natural map

$$
\underset{C}{\operatorname{aocolim}} \alpha \longrightarrow B S L_{3}\left(\mathbb{F}_{q}\right)
$$

is a mod-2 homology isomorphism.
Let $A=\operatorname{Diag}(-1,-1,1)$ and $B=\operatorname{Diag}(-1,1,-1)$ be diagonal matrices in $S L_{3}\left(\mathbb{F}_{q}\right)$. Consider the following elementary abelian 2-subgroups of $S L_{3}\left(\mathbb{F}_{q}\right)$, generated by A, and by A and $B: V=\langle A\rangle, W=\langle A, B\rangle$. Let \mathbb{A} be the full subcategory of the Quillen category $\mathcal{A}_{2}\left(S L_{3}\left(\mathbb{F}_{q}\right)\right)^{o p}$ which has objects $\mathcal{E}=\{V, W\}$. Because every elementary abelian 2-subgroup of $S L_{3}\left(\mathbb{F}_{q}\right)$ is isomorphic to one of the elements in \mathcal{E}, the category \mathbb{A} is an ample collection of elementary abelian 2-subgroups of $S L_{3}\left(\mathbb{F}_{q}\right)$ [16, Theorem 7.7].

The centralizers of the objects in \mathcal{E} are $C_{S L_{3}\left(\mathbb{F}_{q}\right)}(V)=G L_{2}\left(\mathbb{F}_{q}\right)$ and $C_{S L_{3}\left(\mathbb{F}_{q}\right)}(W)=$ $(\mathbb{Z} /(q-1))^{2}$ (the subgroup of all diagonal matrices). The normalizers are $N_{S L_{3}\left(\mathbb{F}_{q}\right)}(V)=$ $G L_{2}\left(\mathbb{F}_{q}\right)$ and $N_{S L_{3}\left(\mathbb{F}_{q}\right)}(W)=(\mathbb{Z} /(q-1))^{2} \rtimes \Sigma_{3}$, where the action of the permutation group Σ_{3} on $(\mathbb{Z} /(q-1))^{2}$ is defined as follows: we look at the group $(\mathbb{Z} /(q-1))^{2}$ as a subgroup of $(\mathbb{Z} /(q-1))^{3}$ of those triples $\left(t_{1}, t_{2}, t_{3}\right)$ for which $t_{1}+t_{2}+t_{3} \equiv 0$ $(\bmod (q-1))$, and the action of the group Σ_{3} on $(\mathbb{Z} /(q-1))^{3}$ by permutation induces the action of Σ_{3} on $(\mathbb{Z} /(q-1))^{2}$. So the morphisms in \mathbb{A} are $\operatorname{Mor}(V, V)=$ $N_{S L_{3}\left(\mathbb{F}_{q}\right)}(V) / C_{S L_{3}\left(\mathbb{F}_{q}\right)}(V)=1, \operatorname{Mor}(W, W)=N_{S L_{3}\left(\mathbb{F}_{q}\right)}(W) / C_{S L_{3}\left(\mathbb{F}_{q}\right)}(W)=\Sigma_{3}$, and $\operatorname{Mor}(V, W)=N_{S L_{3}\left(\mathbb{F}_{q}\right)}(V, W) / C_{S L_{3}\left(\mathbb{F}_{q}\right)}(V)=\Sigma_{3} / \Sigma_{2}$. We can picture the category \mathbb{A} as

$$
V \underset{\overline{\Sigma_{3} / \Sigma_{2}}}{\Longrightarrow} W \circlearrowleft \Sigma_{3} .
$$

The 2-completion of the diagram $\alpha: \mathbb{A} \longrightarrow$ Spaces is

$$
B G L_{2}\left(\mathbb{F}_{q}\right)_{2}^{\wedge} \underset{\Sigma_{3} / \Sigma_{2}}{\vdots}\left(B(\mathbb{Z} / q-1)^{2}\right)_{2}^{\wedge} \circlearrowleft \Sigma_{3} .
$$

By [16, Theorem 7.7], the natural map

$$
\underset{\mathbb{A}}{\operatorname{hocolim}} \alpha_{\mathcal{E}} \longrightarrow B S L_{3}\left(\mathbb{F}_{q}\right)
$$

is a mod-2 cohomology isomorphism, hence $\left(\operatorname{hocolim}_{\mathbb{A}} \alpha_{\mathcal{E}}\right)_{2}^{\wedge} \cong B S L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}$.

Now we will prove that $B S L_{3}\left(\mathbb{F}_{q}\right)_{2}$ is determined by its mod- 2 cohomology. Let X be a 2-complete space such that $H_{\beta}^{*}(X) \cong H_{\beta}^{*}\left(B S L_{3}\left(\mathbb{F}_{q}\right)\right)$. From the above discussion we see that to construct a map $B S L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge} \longrightarrow X$ it is enough to define a family of maps $B C_{S L_{3}\left(\mathbb{F}_{q}\right)}(U) \longrightarrow X, U \in \mathcal{E}$, which with some compatibility assumption will define a map $\left(\operatorname{hocolim}_{\mathbb{A}} \alpha_{\mathcal{E}}\right) \longrightarrow X$. Hence we need to define two maps $f_{V}: B G L_{2}\left(\mathbb{F}_{q}\right) \longrightarrow X$ and $f_{W}: B W \longrightarrow X$. By Lannes' theory [19], there is a map $f_{W}^{\prime}: B W \longrightarrow X$ such that $\left(f_{W}^{\prime}\right)^{*}$ equals the composite $H^{*}(X) \cong H^{*}\left(B S L_{3}\left(\mathbb{F}_{q}\right)\right) \xrightarrow{B i_{W}^{*}} H^{*}(B W)$. Define f_{W} as the composite $B(\mathbb{Z} /(q-$ $1))^{2} \longrightarrow\left(B(\mathbb{Z} /(q-1))^{2}\right)_{2}^{\wedge}=B W \longrightarrow X$. For $U=V$ we use the following proposition.

Proposition 4.1. Let X be a 2 -complete space and $H_{\beta}^{*}(X) \cong H_{\beta}^{*}\left(B S L_{3}\left(\mathbb{F}_{q}\right)\right)$. Then there exists a map $\bar{f}_{V}: B V \longrightarrow X$, such that $\operatorname{Map}(B V, X)_{\bar{f}_{V}}$ is homotopy equivalent to $B G L_{2}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}$.
Proof. By Lannes' theory [19], there exists a map $\bar{f}_{V}: B V \longrightarrow X$ such that \bar{f}_{V}^{*} equals the composite $H^{*}(X) \cong H^{*}\left(B S L_{3}\left(\mathbb{F}_{q}\right)\right) \xrightarrow{B i_{V}^{*}} H^{*}(B V)$. We will prove that the cohomology of $\operatorname{Map}(B V, X)_{\bar{f}_{V}}$ is isomorphic to $H_{\beta}^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)$ as an object in \mathcal{K}_{β}.

By [19, Proposition 3.4.6.],

$$
T_{B i_{V}^{*}}^{V} H^{*}\left(B S L_{3}\left(\mathbb{F}_{q}\right)\right) \cong H^{*}\left(B C_{S L_{3}\left(\mathbb{F}_{q}\right)}(V)\right)=H^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)
$$

where $T_{B i_{V}^{*}}^{V}$ is the Lannes' functor. If $q \equiv 3(\bmod 4)$ then

$$
T_{f_{V}^{*}}^{V} H^{*}(X) \cong T_{B i_{V}^{*}}^{V} H^{*}\left(B S L_{3}\left(\mathbb{F}_{q}\right)\right) \cong H^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)
$$

is free in degrees ≤ 2, which means that the map

$$
\left(H^{1}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right) \otimes H^{1}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)\right)_{\Sigma_{2}} \longrightarrow H^{2}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)
$$

induced by the product on $H^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)$ is injective, hence, by [19, Théorème 3.2.4],

$$
H^{*}\left(\operatorname{Map}(B V, X)_{\bar{f}_{V}}\right) \cong T_{f_{V}^{*}}^{V} H^{*}(X) \cong H^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)
$$

and the evaluation map $e: \operatorname{Map}(B V, X)_{\bar{f}_{V}} \longrightarrow X$ induces the map on the mod-2 cohomology which equals the composite $H^{*}(X) \cong H^{*}\left(B S L_{3}\left(\mathbb{F}_{q}\right)\right) \xrightarrow{B i_{G L_{2}\left(\mathbb{F}_{q}\right)}^{*}} H^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)$.

If $q \equiv 1(\bmod 4)$, then $T_{B i_{V}^{*}}^{V} H^{*}\left(B S L_{3}\left(\mathbb{F}_{q}\right)\right) \cong H^{*}\left(B C_{S L_{3}\left(\mathbb{F}_{q}\right)}(V)\right)=H^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)$ is not free in degrees ≤ 2, hence Lannes' theory does not guarantee that $T_{f_{V}^{*}}^{V} H^{*}(X)$ is isomorphic $H^{*}\left(\operatorname{Map}(B V, X)_{\bar{f}_{V}}\right)$. By [1, Theorem 3], we can use the Lannes' T functor if Y is of finite type such that $H^{1}(Y)=0$ and $\bar{f}_{V}: B V \longrightarrow Y$ is finitely T-representable; i.e. there exists an increasing sequence $\alpha(s)$ and a map of towers $g:\left\{\operatorname{Map}\left(B V, P_{\alpha(s)} Y_{2}^{\wedge}\right)_{f_{s}}\right\} \longrightarrow\left\{K\left(G_{s}, 1\right)\right\}$, where
(1) $P_{\alpha(s)} Y$ is the $\alpha(s)^{t h}$ Postnikov stage and f_{s} the map induced by \bar{f}_{V},
(2) $T_{f_{V}^{*}}^{V} H^{*}(Y)$ is of finite type,
(3) G_{s} a finite 2 -group for all s,
(4) $G_{\infty}=\lim _{\longleftarrow} G_{s}$ is a finite 2-group or $H^{*}\left(G_{\infty}\right)$ is of finite type and $\operatorname{Tor}_{H^{*}\left(G_{\infty}\right)}^{*, *}\left(T_{f_{V}^{*}}^{V} H^{*}(Y)\right)$ is finite-dimensional in each total degree,
(5) the map g induces a pro-isomorhism in H_{1} and a pro-epimorphism in H_{2}, and
(6) $H^{*}\left(\lim G_{s}\right) \cong \underset{\longrightarrow}{\lim } H^{*}\left(G_{s}\right)$, induced by the natural map.

We will show that \bar{f}_{V} is finitely T-representable.
An n-approximation for a connected algebra A over the Steenrod algebra is a sequence $C \longrightarrow B \longrightarrow A$ of connected algebras over the Steenrod algebra for which the composite is trivial in positive degrees and the induced map $B / / C \longrightarrow A$ is a bijection in degrees less then n and an injection in degrees bigger than or equal to n. The sequence

$$
\mathbb{F}_{2}\left[a_{2}\right] \longrightarrow \mathbb{F}_{2}\left[b_{1}\right] \longrightarrow T_{\hat{f}_{V}^{*}}^{V} H^{*}(X)
$$

is a 2-approximation of $T_{f_{V}^{*}}^{V} H^{*}(X)=H^{*}\left(B G_{2}\left(\mathbb{F}_{q}\right)\right)=\mathbb{F}_{2}\left[a_{2}, a_{4}\right] \otimes E\left(b_{1}, b_{3}\right)$. If this sequence were actually a 3 -approximation of $T_{f_{V}^{*}}^{V} H^{*}(X)$, then \bar{f}_{V} would be finitely T representable [1, Theorem 6], but this is not the case here. But $\mathbb{F}_{2}\left[a_{2}\right] / / \mathbb{F}_{2}\left[b_{1}\right] \cong E\left(b_{1}\right)$ is an exterior algebra with one generator in dimension 1, so by [1, Example 12 and Theorem 16], \bar{f}_{V} is finitely T-representable. Hence by [1, Theorem 3],

$$
H^{*}\left(\operatorname{Map}(B V, X)_{\bar{f}_{V}}\right) \cong T_{\bar{f}_{V}^{*}}^{V} H^{*}(X) \cong H^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)
$$

and the evaluation map $e: \operatorname{Map}(B V, X)_{\bar{f}_{V}} \longrightarrow X$ induces the map which equals the composite $H^{*}(X) \cong H^{*}\left(B S L_{3}\left(\mathbb{F}_{q}\right)\right) \xrightarrow{B i_{G}^{*} L_{2}\left(\mathbb{F}_{q}\right)} H^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)$.

To finish the proof, we have to show that $H_{\beta}^{*}\left(\operatorname{Map}(B V, X)_{\bar{f}_{V}}\right)$ and $H_{\beta}^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)$ are isomorphic as objects in \mathcal{K}_{β}.

Let $q \equiv 3(\bmod 4)$. In the diagram

both vertical arrows are maps to diagonal matrices and $j\left(t_{1}, t_{2}\right)=\left(t_{1}, t_{2}, t_{1} t_{2}\right)$. By [13, IV Theorem 8.2], the map

$$
B i_{2}^{*}: \mathbb{F}_{2}\left[b_{1}, b_{3}, a_{4}\right] /\left(b_{1}^{6}+b_{3}^{2}+a_{4} b_{1}^{2}\right) \longrightarrow \mathbb{F}_{2}\left[x_{1}, x_{2}\right]
$$

is defined by $B i_{2}^{*}\left(b_{1}\right)=x_{1}+x_{2}, B i_{2}^{*}\left(b_{3}\right)=x_{1}^{3}+x_{2}^{3}$, and $B i_{2}^{*}\left(a_{4}\right)=x_{1}^{2} x_{2}^{2}$ and the map

$$
B i_{3}^{*}: \mathbb{F}_{2}\left[v_{1}, v_{3}, v_{4}, v_{5}\right] /\left(v_{1}^{4} v_{3}^{2}+v_{1}^{6} v_{4}+v_{3}^{2} v_{4}+v_{5}^{2}\right) \longrightarrow \mathbb{F}_{2}\left[y_{1}, y_{2}, y_{3}\right]
$$

is defined by $B i_{3}^{*}\left(v_{1}\right)=y_{1}+y_{2}+y_{3}, B i_{3}^{*}\left(v_{3}\right)=y_{1}^{3}+y_{2}^{3}+y_{3}^{3}, B i_{3}^{*}\left(v_{4}\right)=y_{1}^{2} y_{2}^{2}+y_{1}^{2} y_{3}^{2}+y_{2}^{2} y_{3}^{2}$ and $B i_{3}^{*}\left(v_{5}\right)=y_{1}^{5}+y_{2}^{5}+y_{3}^{5}$. Because the map $B i^{*}$ is surjective [17, Theorem 1.3] and the map $B j^{*}: \mathbb{F}_{2}\left[y_{1}, y_{2}, y_{3}\right] \longrightarrow \mathbb{F}_{2}\left[x_{1}, x_{2}\right]$ is defined by $B j^{*}\left(y_{1}\right)=x_{1}, B j^{*}\left(y_{2}\right)=x_{2}$ and $B j^{*}\left(y_{3}\right)=x_{1}+x_{2}$, the map $e^{*}=B \bar{e}^{*}$ is defined by $e^{*}\left(v_{3}\right)=b_{3}+b_{1}^{3}, e^{*}\left(v_{4}\right)=a_{4}+b_{1}^{4}$, and $e^{*}\left(v_{5}\right)=b_{1}^{2} b_{3}+b_{1} a_{4}+b_{1}^{5}$. Hence at the $(s+1)^{s t}$ stage of the Bockstein spectral sequence, we get

$$
a_{4}=e^{*}\left(v_{4}\right)=e^{*}\left(\beta_{s+1}\left(v_{3}\right)\right)=\beta_{s+1}\left(e^{*}\left(v_{3}\right)\right)=\beta_{s+2}\left(b_{3}+b_{1}^{3}\right) .
$$

Therefore $H_{\beta}^{*}\left(\operatorname{Map}(B V, X)_{\bar{f}_{V}}\right)$ is isomorphic $H_{\beta}^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)$.

If $q \equiv 1(\bmod 4)$, then in a similar way as above we calculate that the map e^{*} is defined by $e^{*}\left(v_{3}\right)=b_{3}, e^{*}\left(v_{4}\right)=a_{2}^{2}+a_{4}, e^{*}\left(v_{5}\right)=b_{1} a_{4}+b_{3} a_{2}$, and $e^{*}\left(v_{6}\right)=a_{2} a_{4}$. Hence, at the $s^{t h}$ stage of Bockstein spectral sequence, we get

$$
0=e^{*}\left(\beta_{s}\left(v_{3}\right)\right)=\beta_{s} e^{*}\left(v_{3}\right)=\beta_{s}\left(b_{3}\right)
$$

and then the equation

$$
\begin{aligned}
a_{2} a_{4}=e^{*}\left(v_{6}\right) & =e^{*}\left(\beta_{s}\left(v_{5}\right)\right)=\beta_{s} e^{*}\left(v_{5}\right)=\beta_{s}\left(b_{1} a_{4}+b_{3} a_{2}\right)= \\
& =\beta_{s}\left(b_{1}\right) a_{4}+b_{1} \beta_{s}\left(a_{4}\right)+\beta_{s}\left(b_{3}\right) a_{2}+b_{3} \beta_{s}\left(a_{2}\right) .
\end{aligned}
$$

implies $\beta_{s}\left(b_{1}\right)=a_{2}$. At the $(s+1)^{t h}$ stage, we get

$$
a_{2}^{2}+a_{4}=e^{*}\left(v_{4}\right)=e^{*}\left(\beta_{s+1}\left(v_{3}\right)\right)=\beta_{s+1}\left(e^{*}\left(v_{3}\right)\right)=\beta_{s+1}\left(b_{3}\right) .
$$

Therefore $\beta_{s+1}\left(b_{3}\right)=a_{4}$. Also in this case it follows that $H_{\beta}^{*}\left(\operatorname{Map}(B V, X)_{\bar{f}_{V}}\right) \cong$ $H_{\beta}^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)$. By Section 3, the space $\operatorname{Map}(B V, X)_{\bar{f}_{V}}$ is homotopy equivalent to $B G L_{2}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}$.

Let us define $f_{V}^{\prime}: \operatorname{Map}(B V, X)_{\bar{f}_{V}} \longrightarrow X$ to be the evaluation map, where \bar{f}_{V} is the map defined in the previous proposition, and let f_{V} be the composite of 2-completion $B G L_{2}\left(\mathbb{F}_{q}\right) \longrightarrow B G L_{2}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}$ and the map f_{V}^{\prime}. By the above proposition f_{V}^{*} equals the composite $H_{\beta}^{*}(X) \cong H_{\beta}^{*}\left(B S L_{3}\left(\mathbb{F}_{q}\right)\right) \xrightarrow{B i_{G L_{2}\left(\mathbb{F}_{q}\right)}^{*}} H_{\beta}^{*}\left(B G L_{2}\left(\mathbb{F}_{q}\right)\right)$. We obtain the following diagram

The diagram commutes on the level of mod-2 cohomology and therefore, by Lannes' theory, it commutes up to homotopy. Hence the diagram is a natural transformation $f: \alpha \longrightarrow \mathcal{X}$, defined only up to homotopy, from the category α to the constant category \mathcal{X}. The diagram induces a map from the 1 -skeleton of hocolim $_{\mathbb{A}} \alpha$ to X. Obstructions for extending this map to the whole hocolim $\mathbb{A} \alpha$ lie in $\lim _{\mathbb{A}}^{j+1} \pi_{j}\left(\operatorname{Map}(\alpha, X)_{f}\right)$ for $j \geq 1$ [22]. By lemma 4.2 below, the obstruction groups vanish, hence there exists a map $f:$ hocolim $_{\mathbb{A}} \alpha \longrightarrow X$. By construction of the map f, the diagram

commutes up to homotopy. Because f_{V}^{*} is a monomorphism, the same is true for the $\operatorname{map} f^{*}$, and therefore f^{*} is an isomorphism. This shows that $f_{2}^{\wedge}: B S L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge} \longrightarrow X$ is a homotopy equivalence.

Lemma 4.2. For $j \geq 1$, define a functor $\Pi_{j}: \mathbb{A}^{o p} \longrightarrow A b$ as

$$
\Pi_{j}(U)=\pi_{j}\left(\operatorname{Map}\left(B C_{S L_{3}\left(\mathbb{F}_{q}\right)}(U), X\right)_{f_{U}}\right)
$$

Then $\lim _{\mathbb{A}}^{j+1} \Pi_{j}=0$ for all $j \geq 1$.
Proof. By [6, Proposition 10.3], there is a long exact sequence

$$
\begin{aligned}
& 0 \longrightarrow \lim _{\mathbb{A}}^{0} \Pi_{j} \longrightarrow \Pi_{j}(V) \longrightarrow \Pi_{j}(W)^{\Sigma_{2}} / \Pi_{j}(W)^{\Sigma_{3}} \longrightarrow \lim _{\mathbb{A}}^{1} \Pi_{j} \longrightarrow \\
& \longrightarrow H^{1}\left(\Sigma_{3} ; \Pi_{j}(W)\right) \longrightarrow H^{1}\left(\Sigma_{2} ; \Pi_{j}(W)\right) \longrightarrow \lim _{\mathbb{A}}^{2} \Pi_{j} \longrightarrow H^{2}\left(\Sigma_{3} ; \Pi_{j}(W)\right) \longrightarrow \cdots
\end{aligned}
$$

By the Shapiro lemma [5, Ch. III, Proposition 6.2], $H^{*}\left(\Sigma_{2} ;(\mathbb{Z} / 2)^{2}\right)=H^{*}(1 ; \mathbb{Z} / 2)$. By a transfer argument, $H^{*}\left(\Sigma_{3} ;(\mathbb{Z} / 2)^{2}\right)$ is a subgroup in $H^{*}\left(\Sigma_{2} ;(\mathbb{Z} / 2)^{2}\right)$. It follows that

$$
H^{n}\left(\Sigma_{3} ;(\mathbb{Z} / 2)^{2}\right)=H^{n}\left(\Sigma_{2} ;(\mathbb{Z} / 2)^{2}\right)=H^{n}(1 ; \mathbb{Z} / 2)=0
$$

for $n \geq 1$. If we insert this in the above long exact sequence we get $\lim _{\mathbb{A}}^{n} \Pi_{j}=0$ for $n \geq 2$.

5. Outher automorphism group $\operatorname{Out}\left(B S L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}\right)$

In the next section we will prove homotopy uniqueness of $B G L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}$ with the strategy that we used for the proof of mod-2 determinism of $B G L_{2}\left(\mathbb{F}_{q}\right)$ in Section 3. We will investigate all possible fibrations of the form $B S L_{3}\left(\mathbb{F}_{q}\right)_{2} \longrightarrow X \longrightarrow B \mathbb{Z} / 2^{s}$, where $2^{s} \| q-1$, and prove that only one X in such a fibration has the same mod-2 cohomology as $B G L_{3}\left(\mathbb{F}_{q}\right)$. In order to do that we need to determine all possible actions $\mathbb{Z} / 2^{s} \longrightarrow \operatorname{Out}\left(B S L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}\right)$. In this section we will calculate the group $\operatorname{Out}\left(B S L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}\right)$.

Let G be a finite group. A p-subgroup P of G is p-centric if its center $Z(P)$ is a p-Sylow subgroup of the centralizer $C_{G}(P)$. Furthermore P is p-radical if the quotient group $N_{G}(P) / P$ is p-reduced, which means that it does not have nontrivial normal p-subgroups. Let S be a p-Sylow subgroup of G. Then S is a p-centric p-radical subgroup. Let $S=P_{0}, P_{1}, \ldots, P_{m}$ denote a choice of G-conjugacy class representatives for all p-centric p-radical subgroups of G contained in S. We write $N^{\prime}\left(P_{i}\right)=N_{G}\left(P_{i}\right) / C_{G}^{\prime}\left(P_{i}\right)$, where $C_{G}^{\prime}\left(P_{i}\right)$ is the p^{\prime}-torsion in the centralizer $C_{G}\left(P_{i}\right)$. Let $X(G)$ be the set of all $(m+1)$-tuples $\left(\theta ; \theta_{1}, \ldots, \theta_{m}\right)$ such that

$$
\theta: N^{\prime}(S) \xrightarrow{\cong} N^{\prime}(S) \quad \text { and } \quad \theta_{i}: N^{\prime}\left(P_{i}\right) \xrightarrow{\cong} N^{\prime}\left(\theta\left(P_{i}\right)\right)
$$

are isomorphisms, and such that θ_{i} and θ restricted to the image of $N_{G}(S) \cap N_{G}\left(P_{i}\right)$ in $N^{\prime}\left(P_{i}\right)$ are equal for all i. The group $N^{\prime}(S)$ acts on $X(G)$ by

$$
x \cdot\left(\theta ; \theta_{1}, \ldots, \theta_{m}\right)=\left(c_{x} \circ \theta ; c_{x} \circ \theta_{1}, \ldots, c_{x} \circ \theta_{m}\right),
$$

where c_{x} is conjugation by the element x. If there are no i, j with $1 \leq i, j \leq m$ such that P_{i} is conjugate to a proper subgroup of P_{j}, then $X(G) / N^{\prime}(S)$ is isomorphic to $\operatorname{Out}\left(B G_{p}^{\wedge}\right)$ [9, Proposition 6.3 and Theorem B].
Theorem 5.1. If $q \equiv 1(\bmod 4)$ let s be such that $2^{s} \| q-1$, and if $q \equiv 3(\bmod 4)$ let s be such that $2^{s} \| q+1$. Then $\operatorname{Out}\left(B S L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}\right)$ is isomorphic to $\mathbb{Z} / 2^{s-1}$.

Proof. Let $q \equiv 1(\bmod 4)$. Let ξ^{\prime} be a generator of \mathbb{F}_{q}^{*}. Then $\xi=\left(\xi^{\prime}\right)^{\frac{q-1}{2^{s}}}$ is a generator of $\mathbb{Z} / 2^{s}<\mathbb{F}_{q}^{*}$. Define the following matrices in $S L_{3}\left(\mathbb{F}_{q}\right)$:

$$
Z^{\prime}=\left[\begin{array}{ccc}
\xi^{\prime} & 0 & 0 \\
0 & \xi^{\prime} & 0 \\
0 & 0 & \left(\xi^{\prime}\right)^{-2}
\end{array}\right], A=\left[\begin{array}{ccc}
\xi & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \xi^{-1}
\end{array}\right], B=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right],
$$

and $Z=\left(Z^{\prime}\right)^{\frac{q-1}{2^{s}}}$. Then $S=\langle A, B\rangle$ is a 2-Sylow subgroup of $S L_{3}\left(\mathbb{F}_{q}\right)$. Let $P<S$ be a 2-centric 2-radical subgroup of $S L_{3}\left(\mathbb{F}_{q}\right)$. Because P is 2-centric, the center $\langle Z\rangle$ of S is a subgroup of P. If P is a subgroup of the group $T=\langle Z, A\rangle$ of the diagonal matrices of S, then $P=T$ is the only candidate to be a 2-centric 2-radical subgroup of $S L_{3}\left(\mathbb{F}_{q}\right)$. The normalizer $N(T)$ equals $\left\langle A, Z^{\prime}, D\right\rangle$, where D is the permutation matrix that corresponds to the permutation $(1,2,3)$. Hence $N(T) / T$ is 2-reduced, and therefore T is 2 -radical.

Every element in $S-T$ is conjugate to $Z^{i} B$ or $Z^{i} A B$ for some i. Hence, if P is not a subgroup of T (and contains $\langle Z\rangle$), then P is conjugate to one of the groups $P_{i}=\left\langle Z, A^{2^{i}}, B\right\rangle$ or $Q_{i}=\left\langle Z, A^{2^{i}}, A B\right\rangle$ for $0 \leq i \leq s$. The groups P_{0} and Q_{0} equal the 2-Sylow group S. The group P_{s} is subconjugate to the group T, so it is not 2-centric. It is easy to see that

$$
\begin{aligned}
N\left(P_{i}\right) & =\left\langle Z^{\prime}, A^{2^{i-1}}, B\right\rangle \text { for } 0<i<s-1, \\
N\left(Q_{i}\right) & =\left\langle Z^{\prime}, A^{2^{i-1}}, A B\right\rangle \text { for } 0<i<s, \\
N\left(P_{s-1}\right) & =\left\langle Z^{\prime}, A^{2^{s-2}}, B, C\right\rangle, \\
N\left(Q_{s}\right) & =\left\langle D, A^{2^{s-1}}\right\rangle,
\end{aligned}
$$

where

$$
C=\left[\begin{array}{ccc}
\left(-1+\xi^{2^{s-2}}\right) 2^{-1} & \left(-1-\xi^{2^{s-2}}\right) 2^{-1} & 0 \\
\left(1-\xi^{2^{-2}}\right) 2^{-1} & \left(-1-\xi^{2^{s-2}}\right) 2^{-1} & 0 \\
0 & 0 & 1
\end{array}\right],
$$

and D is a generator of the centralizer $C_{S L_{3}\left(F_{q}\right)}\left(Q_{s}\right)=\mathbb{Z} /\left(q^{2}-1\right)$. So if P equals P_{i} or Q_{i} for $i>1$, then $N^{\prime}(P) / P \cong \mathbb{Z} / 2$ except for the groups P_{s-1} and Q_{s}. Because $N\left(P_{s-1}\right) / P_{s-1} \cong \mathbb{Z} /\left(\frac{q-1}{2^{s}}\right) \times \Sigma_{3}$ and $N\left(Q_{s}\right) / Q_{s} \cong\left\langle x, y \left\lvert\, x^{\frac{q^{2}-1}{2^{s+1}}}=y^{2}\right., x y x=x^{q}\right\rangle$, there are exactly four 2-centric 2-radical subgroups of $S L_{3}\left(\mathbb{F}_{q}\right)$, namely S, T, P_{s-1}, and Q_{s}.

Because $N(S)=\left\langle A, B, Z^{\prime}\right\rangle, N^{\prime}(S) \cong S=\langle a, b, c| a^{2^{s}}=b^{2^{s}}=c^{2}=1, a b=$ $b a, c a c=b\rangle$. Every automorphism $N^{\prime}(S) \longrightarrow N^{\prime}(S)$ is of the form $a \mapsto a^{\alpha} b^{\beta}$ and $c \mapsto a^{\gamma} b^{-\gamma} c$ for $\alpha+\beta$ an odd number. Denote this automorphism by $\theta(\alpha, \beta, \gamma)$.

The normalizer $N(T)$ equals $\left\langle A, Z^{\prime}, D\right\rangle$, hence

$$
\begin{aligned}
N^{\prime}(T)=\langle a, b, c, d| a^{2^{s}}=b^{2^{s}}=c^{2}=d^{3}=1 & , a b=b a, c a c=b \\
& \left.d a d^{-1}=b^{-1}, d^{-1} a d=b a^{-1}, c d c=d^{2}\right\rangle
\end{aligned}
$$

We can extend $\theta(\alpha, \beta, \gamma)$ to an automorphism $N^{\prime}(T) \longrightarrow N^{\prime}(T)$ only if $\alpha=0$ or $\beta=0$. In case $\beta=0$, an automorphism $\theta_{T}(\alpha, \gamma): N^{\prime}(T) \longrightarrow N^{\prime}(T)$ maps d to
$a^{\gamma} b^{-\gamma} d$ and in case $\alpha=0$ an automorphism $\theta_{T}(\beta, \gamma): N^{\prime}(T) \longrightarrow N^{\prime}(T)$ maps d to $a^{\gamma} b^{-\gamma} d^{2}$.

Since $c_{a^{x} b^{y}} \circ \theta(1,0,0)=\theta(1,0, x-y)$ and $c_{a^{x} b_{c}} \circ \theta(1,0,0)=\theta(0,1, x-y)$, only elements of the center of $S L_{3}\left(\mathbb{F}_{q}\right)$ fix the automorphism $\theta(1,0,0)$. Every $\theta(\alpha, \beta, \gamma)$ which has an extension to an automorphism of $N^{\prime}(T)$ has the form $\theta(\alpha, 0,0) \circ c_{g} \theta(1,0,0)$ for some α and g. Hence we may take care only of the automorphisms $\theta(\alpha, 0,0)$ where α is an odd number.

Because

$$
\begin{aligned}
N^{\prime}\left(P_{s-1}\right)=\langle\bar{a}, \bar{b}, c, e| \bar{a}^{4}=\bar{b}^{4}=c^{2}=e^{3} & =1, \\
\bar{a} \bar{b} & \left.=\bar{b} \bar{a}, c \bar{a} c=\bar{b}, \bar{a} e \bar{a}^{-1}=\bar{a}^{3} \bar{b} e^{2}, c d c=\bar{a} \bar{b}^{3} e\right\rangle,
\end{aligned}
$$

the intersection $N^{\prime}(S) \cap N^{\prime}\left(P_{s-1}\right)$ is generated by \bar{a}, \bar{b}, and c. There is only one extension $\theta_{P}(\alpha)$ of the morphism $\left.\theta(\alpha, 0,1)\right|_{N^{\prime}(S) \cap N^{\prime}\left(P_{s-1}\right)}$ to a morphism of $N^{\prime}\left(P_{s-1}\right)$. In case $\alpha \equiv 1(\bmod 4)$, the morphism $\theta(\alpha, 0,0)$ maps \bar{a} to \bar{a}, so $\theta_{P}(\alpha)$ maps e to e. If $\alpha \equiv 3(\bmod 4)$, the morphism $\theta(\alpha, 0,0)$ maps \bar{a} to \bar{a}^{3}, hence $\theta_{P}(\alpha)$ maps e to $\bar{a}^{3} \bar{b}^{3} c e$.

Because $N^{\prime}\left(Q_{s}\right)<N^{\prime}(S)$, we can omit the group Q_{s}, hence

$$
X\left(S L_{3}\left(\mathbb{F}_{q}\right)\right) / N^{\prime}(S)=\left\{\Theta(\alpha):=\left(\theta(\alpha, 0,0) ; \theta_{T}(\alpha, 0), \theta_{P}(\alpha)\right) \mid \alpha \text { is odd }\right\}
$$

and $\Theta(\alpha) \Theta(\beta)=\Theta(\alpha \cdot \beta)$, so $\operatorname{Out}\left(B S L_{3}\left(\mathbb{F}_{q}\right)_{2}\right) \cong \mathbb{Z} / 2^{s-1}$.
Let $q \equiv 3(\bmod 4)$. Let ξ^{\prime} be a generator of $\mathbb{F}_{q^{2}}^{*}$. Then $\xi=\left(\xi^{\prime}\right)^{\frac{q^{2}-1}{2^{s+1}}}$ is a generator of $\mathbb{Z} / 2^{s+1}<\mathbb{F}_{q^{2}}^{*}$, and $\zeta=\left(\xi^{\prime}\right)^{q+1}$ is a generator of \mathbb{F}_{q}^{*}. Let

$$
P=\left[\begin{array}{ccc}
1 & 1 & 0 \\
\xi & -\xi^{-1} & 0 \\
0 & 0 & \left(-\xi-\xi^{-1}\right)^{-1}
\end{array}\right], \quad \bar{B}=\left[\begin{array}{ccc}
0 & \xi^{-2} & 0 \\
\xi^{2} & 0 & 0 \\
0 & 0 & -1
\end{array}\right],
$$

$\bar{A}=\operatorname{Diag}\left(\xi,-\xi^{-1},-1\right)$, and $\bar{Z}=\operatorname{Diag}\left(\xi^{\prime},\left(\xi^{\prime}\right)^{q},\left(\xi^{\prime}\right)^{-q-1}\right)$. Then the matrices $A=$ $P \bar{A} P^{-1}$ and $B=P \bar{B} P^{-1}$ generate a 2 -Sylow subgroup S of $S L_{3}\left(\mathbb{F}_{q}\right)$ [10, Lemma 1] and the $(q+1)^{t h}$ power of $Z=P \bar{Z} P^{-1}$ is a generator of the center $Z\left(S L_{3}\left(\mathbb{F}_{q}\right)\right)$. Let $P<S$ be a 2-centric 2-radical subgroup of $S L_{3}\left(\mathbb{F}_{q}\right)$. If P is a subgroup of $T=\langle A\rangle$, then $P=T$ is the only candidate for a 2-centric 2-radical subgroup of $S L_{3}\left(\mathbb{F}_{q}\right)$. The normalizer $N(T)$ equals $\langle B, Z\rangle$, hence $N(T) / T=\left\langle x, y \left\lvert\, x^{\frac{q^{2}-1}{2 s+1}}=y^{2}=1\right., y x y=x^{q}\right\rangle$ is 2-reduced if and only if $\langle[B]\rangle$ is normal subgroup of $N(T) / T$, and this is true if and only if $q+1=2^{s}$.

Every element in $S-T$ is conjugate to $B, A B, I^{\prime} B$ or $I^{\prime} A B$, where $I^{\prime}=A^{2^{s}}=$ $\operatorname{Diag}(-1,-1,1)$. Because I^{\prime} is in the center of S, it follows that I^{\prime} is in every 2-centric subgroup P of S. Hence, if P is not a subgroup of T, then P is conjugate to one of
the groups $P_{i}=\left\langle A^{2^{i}}, B\right\rangle$ or $Q_{i}=\left\langle A^{2^{i}}, A B\right\rangle$ for $0 \leq i \leq s$. Then

$$
\begin{aligned}
N\left(P_{i}\right) & =\left\langle Z^{q+1}, A^{i^{i-1}}, B\right\rangle \text { for } 0<i<s, \\
N\left(Q_{i}\right) & =\left\langle Z^{q+1}, A^{i^{i-1}}, A B\right\rangle \text { for } 0<s-1, \\
N\left(P_{s}\right) & =\left\langle A^{2^{s-1}}, C_{1}, C_{2}, D\right\rangle, \\
N\left(Q_{s-1}\right) & =\left\langle A^{2^{s-2}}, A B, E\right\rangle,
\end{aligned}
$$

where

$$
\begin{aligned}
C_{1} & =\left[\begin{array}{ccc}
\zeta & (\zeta-1)\left(\xi-\xi^{-1}\right) 2^{-1} & 0 \\
0 & 1 & 0 \\
0 & 0 & \zeta^{-1}
\end{array}\right], & C_{2}=\left[\begin{array}{ccc}
1 & (1-\zeta)\left(\xi-\xi^{-1}\right) 2^{-1} & 0 \\
0 & \zeta & 0 \\
0 & 0 & \zeta^{-1}
\end{array}\right], \\
D & =\left[\begin{array}{ccc}
0 & 1 & \left(\xi^{-1}-\xi\right) 2^{-1} \\
0 & 0 & 1 \\
1 & \left(\xi-\xi^{-1}\right) 2^{-1} & 0
\end{array}\right], & E=\left[\begin{array}{ccc}
1+\xi^{2^{2-1}} & \left(1+\xi^{2^{2-1}}\right) \xi^{-1} & 0 \\
\left(-1+\xi^{2-1}\right) \xi & 1-\xi^{2^{2-1}} & 0 \\
0 & 0 & 4^{-1}
\end{array}\right] .
\end{aligned}
$$

The groups P_{0} and Q_{0} equal S, the group $Q_{s} \cong \mathbb{Z} / 4$ is not 2-centric and the group Q_{s-1} is isomorphic to the quaternion group $Q(8)$. Hence 2-centric 2-radical subgroups of $S L_{3}\left(\mathbb{F}_{q}\right)$ are S, P_{s}, and Q_{s-1}, and if $q+1$ is a power of 2 then also T.

Because $N^{\prime}(S) \cong S=\left\langle a, b \mid a^{2^{s+1}}=b^{2}=1, b a b=-a^{-1}\right\rangle$, every automorphism $N^{\prime}(S) \longrightarrow N^{\prime}(S)$ is of the form $a \mapsto a^{\alpha}$ and $b \mapsto a^{\beta} b$ for α an odd number and β an even number. Denote this automorphism by $\theta(\alpha, \beta)$.

Since $c_{a^{2 x}} \circ \theta(1,0)=\theta(1,4 x), c_{a^{2 x+1}} \circ \theta(1,0)=\theta\left(1,4 x+2+2^{s}\right), c_{a^{2 x} b} \circ \theta(1,0)=$ $\theta\left(2^{s}-1,4 x\right)$, and $c_{a^{2 x+1} b} \circ \theta(1,0)=\theta\left(2^{s}-1,4 x+2+2^{s}\right)$, only elements of the center of S fix the automorphism $\theta(1,0)$. Because every $\theta(\alpha, \beta)$ equals $\theta\left(\alpha^{\prime}, 0\right) \cdot c_{x} \theta(1,0)$, for some x and some $\alpha^{\prime} \equiv 1(\bmod 4)$, we may take care only of the automorphisms $\theta(\alpha, 0)$ where $\alpha \equiv 1(\bmod 4)$.

Because $C_{1}^{\frac{q-1}{2}}=I^{\prime} B$ and $C_{2}^{\frac{q-1}{2}}=B$, it follows that $N^{\prime}(S) \cap N^{\prime}\left(P_{s}\right)=\left\langle B, I^{\prime}, A^{2^{s-1}}\right\rangle$. The morphism $\left.\theta(\alpha, 0)\right|_{N^{\prime}(S) \cap N^{\prime}\left(P_{s}\right)}$ has two extensions to an automorhism of $N^{\prime}\left(P_{s}\right)$. Let d and i^{\prime} be the images of D and I^{\prime} in $N^{\prime}\left(P_{s}\right)$. If $\alpha \equiv 1(\bmod 4)$ then the first extension $\theta_{P}^{1}(\alpha)$ maps d to d and the second one $\theta_{P}^{2}(\alpha)$ maps d to $i^{\prime} b d$. If $\alpha \equiv 3$ $(\bmod 4)$ then $\theta_{P}^{1}(\alpha)$ maps d to $i^{\prime} d$ and $\theta_{P}^{2}(\alpha)$ maps d to $b d$. The extensions are connected by conjugation by the element $i^{\prime}=a^{2^{s-1}}$, i.e. $c_{i^{\prime}} \circ \theta_{P}^{1}=\theta_{P}^{2}$. Note that the conjugation $c_{i^{\prime}}$ fixes any morphism $\theta(\alpha, \beta)$.

The morphism $\left.\theta(\alpha, 0)\right|_{N^{\prime}(S) \cap N^{\prime}\left(Q_{s-1}\right)}$ has only one extension to an automorphism of $N^{\prime}\left(Q_{s-1}\right)$. Let e be the image of E in $N^{\prime}\left(Q_{s-1}\right)$. If $\alpha \equiv 1(\bmod 4)$ then the extension $\theta_{Q}(\alpha)$ maps e to e and if $\alpha \equiv 3(\bmod 4)$ then $\theta_{Q}(\alpha)$ maps e to $a^{-2^{s-1}} d$. The morphism $\theta_{Q}(\alpha)$ is fixed by conjugation by the element i^{\prime}.

Because $N(T)=N(S)$, we can omit this group even if $q+1$ is a power of 2 . So

$$
X\left(S L_{3}\left(\mathbb{F}_{q}\right)\right) / N^{\prime}(S)=\left\{\Theta(\alpha):=\left(\theta(\alpha, 0) ; \theta_{P}^{1}(\alpha, 0), \theta_{Q}(\alpha)\right) \mid \alpha \equiv 1 \quad(\bmod 4)\right\}
$$

$\Theta(\alpha) \Theta(\beta)=\Theta(\alpha \cdot \beta)$, and therefore $\operatorname{Out}\left(B S L_{3}\left(\mathbb{F}_{q}\right)_{2}\right) \cong \mathbb{Z} / 2^{s-1}$.
The following technical lemma will be used in the next section.

Lemma 5.2. Let $\psi \in \operatorname{Out}\left(B S L_{3}\left(\mathbb{F}_{p^{n}}\right)_{2}^{\wedge}\right)$ be a nontrivial automorphism and let $2^{t} \| p^{2 n}-$ 1. Then 2^{t} does not divide the order of the fixed-point set $H^{4}\left(B S L_{3}\left(\mathbb{F}_{p^{n}}\right) ; \mathbb{Z}\left[\frac{1}{p}\right]\right)^{\psi}$.

Proof. We define inclusion $i: \mathbb{Z} / 2^{t-1} \longrightarrow S L_{3}\left(\mathbb{F}_{p^{n}}\right)$ depending upon p as follows: $i\left(\zeta^{k}\right)=\left(\operatorname{Diag}\left(\xi, 1, \xi^{-1}\right)\right)^{k}$, if $p^{n} \equiv 1(\bmod 4)$ and ξ is a generator of $\mathbb{Z} / 2^{t-1}<\mathbb{F}_{p^{n}}^{*}$, and $i\left(\zeta^{k}\right)=P\left(\operatorname{Diag}\left(\xi, \xi^{p^{n}}, \xi^{-1-p^{n}}\right)\right)^{k} P^{-1}$, if $p^{n} \equiv 3(\bmod 4), \xi$ is a generator of $\mathbb{Z} / 2^{t}<\mathbb{F}_{p^{2 n}}^{*}$ and P the matrix defined in the proof of the previous theorem. Let $x \in \mathbb{Z} / 2^{t}$ considered as a subgroup of $H^{4}\left(B S L_{3}\left(\mathbb{F}_{p^{n}}\right) ; \mathbb{Z}\left[\frac{1}{p}\right]\right)$ [17, Theorem 2.3] be a generator. Then $i^{*}(x)$ is a generator of $H^{4}\left(B \mathbb{Z} / 2^{t-1} ; \mathbb{Z}\left[\frac{1}{p}\right]\right)=\mathbb{Z} / 2^{t-1}$. By the proof of the previous theorem $\psi=\Theta(\alpha)$ and because ψ is a nontrivial automorphism, it follows that $\alpha \neq 1$. So the restriction of $\Theta(\alpha)$ to the subgroup $\mathbb{Z} / 2^{t-1}$ is nontrivial, hence $i^{*}(x)$ is not fixed by the restriction map, so also x is not fixed by $\Theta(\alpha)$, which means that 2^{t-1} does not divide the order of $H^{4}\left(B S L_{3}\left(\mathbb{F}_{p^{n}}\right) ; \mathbb{Z}\left[\frac{1}{p}\right]\right)^{\psi}$.

6. The Homotopy type of $B G L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}$

The group $G L_{3}\left(\mathbb{F}_{q}\right)$ has order $q^{3}(q-1)^{3}\left(q^{2}+q+1\right)(q+1)$. If $q \equiv 3(\bmod 4)$, the cohomology of $B G L_{3}\left(\mathbb{F}_{q}\right)$ is

$$
\begin{equation*}
H^{*}\left(B G L_{3}\left(\mathbb{F}_{q}\right)\right)=\mathbb{F}_{2}\left[b_{1}, b_{3}, a_{4}, b_{5}\right] /\left(b_{1}^{4} b_{3}^{2}+b_{1}^{6} a_{4}+b_{3}^{2} a_{4}+b_{5}^{2}\right), \tag{5}
\end{equation*}
$$

and the action of the Steenrod algebra is defined as follows:

	b_{1}	b_{3}	a_{4}	b_{5}
$S q^{1}$	b_{1}^{2}	b_{1}^{4}	0	b_{3}^{2}
$S q^{2}$	0	b_{5}	$b_{1}^{6}+b_{3}^{2}$	0
$S q^{4}$	0	0	a_{4}^{2}	$b_{1}^{9}+b_{1}^{6} b_{3}+b_{1}^{5} a_{4}+b_{1}^{4} b_{5}+b_{1}^{3} b_{3}^{2}+b_{3}^{3}+a_{4} b_{5}$

and $\beta_{s+1}\left(b_{1}^{3}+b_{3}\right)=a_{4}$, where $2^{s} \|(q+1)$ ([13, IV, Theorem 8.2] and [17, Theorem 1.3, Theorem 2.3]). If we change the generators b_{3} and b_{5} by respectively $b_{3}+b_{1}^{3}$ and $b_{5}+b_{1}^{5}$, we see that $H_{\beta}^{*}\left(B G L_{3}\left(\mathbb{F}_{q}\right)\right)$ and $H_{\beta}^{*}\left(B S L_{3}\left(\mathbb{F}_{q}\right)\right) \otimes H_{\beta}^{*}(B \mathbb{Z} / q-1)$ are isomorphic as objects in the category \mathcal{K}_{β}.

If $q \equiv 1(\bmod 4)$ then

$$
\begin{equation*}
H^{*}\left(B G L_{3}\left(\mathbb{F}_{q}\right)\right)=\mathbb{F}_{2}\left[a_{2}, a_{4}, a_{6}\right] \otimes E\left(b_{1}, b_{3}, b_{5}\right) \tag{6}
\end{equation*}
$$

and the action of the Steenrod algebra is defined as follows:

	b_{1}	a_{2}	b_{3}	a_{4}	b_{5}	a_{6}
$S q^{1}$	0	0	0	0	0	0
$S q^{2}$	0	a_{2}^{2}	$b_{1} a_{4}+b_{3} a_{2}+b_{5}$	$a_{2} a_{4}+a_{6}$	$b_{1} a_{6}+b_{5} a_{2}$	$a_{2} a_{6}$
$S q^{4}$	0	0	0	a_{4}^{2}	$b_{3} a_{6}+b_{5} a_{4}$	$a_{4} a_{6}$

and $\beta_{s}\left(b_{1}\right)=a_{2}, \beta_{s+1}\left(b_{3}\right)=a_{4}$ and $\beta_{s}\left(b_{5}\right)=a_{6}$, where $2^{s}| |(q-1)$ ([13, IV Theorem 8.1] and [17, Theorem 1.3, Theorem 2.3]). If we change the generators a_{4}, a_{6}, and b_{5} by respectively $a_{4}+a_{2}^{2}, a_{2} a_{4}+a_{6}$, and $b_{1} a_{4}+b_{3} a_{2}+b_{5}$, we see that $H_{\beta}^{*}\left(B G L_{3}\left(\mathbb{F}_{q}\right)\right)$ is isomorphic to $H_{\beta}^{*}\left(B S L_{3}\left(\mathbb{F}_{q}\right)\right) \otimes H_{\beta}^{*}(B \mathbb{Z} / q-1)$ as an object in \mathcal{K}_{β}.

Let X be a 2 -complete space and $H_{\beta}^{*}(X) \cong H_{\beta}^{*}\left(B G L_{3}\left(\mathbb{F}_{q}\right)\right)$. Let $2^{s} \|(q-1)$ and let $g: X \longrightarrow B \mathbb{Z} / 2^{s}$ be a map such that g^{*} maps the generator of $H^{1}\left(B \mathbb{Z} / 2^{s}\right)$ to
the generator of $H^{1}(X)$. Let Y be the homotopy fiber of the map g. Using the Eilenberg-Mooer spectral sequence, we see that $H_{\beta}^{*}(Y) \cong H_{\beta}^{*}\left(B S L_{3}\left(\mathbb{F}_{q}\right)\right)$. Hence Y is homotopy equivalent to $B S L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}$ (Section 4).

Let $\alpha: B \mathbb{Z} / 2^{s} \longrightarrow B \operatorname{Out}\left(B S L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}\right)$ be the action induced by the fibration $B S L_{3}\left(\mathbb{F}_{q}\right)_{2} \longrightarrow Y \longrightarrow B \mathbb{Z} / 2^{s}$. Let $O_{2^{\prime}}\left(S L_{3}\left(\mathbb{F}_{q}\right)\right)$ be the maximal normal subgroup of $S L_{3}\left(\mathbb{F}_{q}\right)$ of order prime to 2 . Then $O_{2^{\prime}}\left(S L_{3}\left(\mathbb{F}_{q}\right)\right)$ is the subgroup of diagonal matrices. Fibrations of the form $B S L_{3}\left(\mathbb{F}_{q}\right)_{2} \longrightarrow Y \longrightarrow B \mathbb{Z} / 2^{s}$ with the specified action are in bijection with $H^{2}\left(B \mathbb{Z} / 2^{s} ; Z\left(S L_{3}\left(\mathbb{F}_{q}\right) / O_{2^{\prime}}\left(S L_{3}\left(\mathbb{F}_{q}\right)\right)\right)\right.$) (see [8]). Because the center $Z\left(S L_{3}\left(\mathbb{F}_{q}\right) / O_{2^{\prime}}\left(S L_{3}\left(\mathbb{F}_{q}\right)\right)\right)$ is trivial, there exists exactly one such fibration. We will show that the total space Y has the mod-2 cohomology isomorphic to that of $B G L_{3}\left(\mathbb{F}_{q}\right)$ only if Y induces the trivial action $B \mathbb{Z} / 2^{s} \longrightarrow B \operatorname{Out}\left(B S L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}\right)$. To do this we employ similar methods as in the Section 3.

Let $q=p^{n}$. Because $H^{j}\left(B S L_{3}\left(F_{p^{n}}\right) ; \mathbb{Z}\left[\frac{1}{p}\right]\right)=0$ for $j=1,2,3[17$, Theorem 2.3], the elements $E_{2}^{i, j}$ of the Serre spectral sequence of the fibration $B S L_{3}\left(\mathbb{F}_{p^{n}}\right)_{2}^{\wedge} \longrightarrow Y \longrightarrow B \mathbb{Z} / 2^{s}$ vanish for $j=1,2,3$. And also $E_{2}^{5,0}=H^{5}\left(B \mathbb{Z} / 2^{s} ; H^{0}\left(B S L_{3}\left(\mathbb{F}_{p^{n}}\right) ; \mathbb{Z}\left[\frac{1}{p}\right]\right)\right)=0$, hence

$$
\begin{aligned}
H^{4}\left(Y ; \mathbb{Z}\left[\frac{1}{p}\right]\right) & =E_{2}^{4,0} \oplus E_{2}^{0,4}= \\
& =H^{4}\left(\mathbb{Z} / 2^{s} ; H^{0}\left(B S L_{3}\left(\mathbb{F}_{p^{n}}\right) ; \mathbb{Z}\left[\frac{1}{p}\right]\right)\right) \oplus H^{0}\left(\mathbb{Z} / 2^{s} ; H^{4}\left(B S L_{3}\left(\mathbb{F}_{p^{n}}\right) ; \mathbb{Z}\left[\frac{1}{p}\right]\right)\right)= \\
& =\mathbb{Z} / 2^{s} \oplus H^{4}\left(B S L_{3}\left(\mathbb{F}_{p^{n}}\right) ; \mathbb{Z}\left[\frac{1}{p}\right]\right)^{\mathbb{Z}} 2^{s}
\end{aligned}
$$

where $H^{4}\left(B S L_{3}\left(\mathbb{F}_{p^{n}}\right) ; \mathbb{Z}\left[\frac{1}{p}\right]\right)^{\mathbb{Z}} 2^{s}$ is the fixed-point set of the action α. By lemma 5.2, if $2^{t} \| p^{2 n}-1$ then 2^{t+1} does not divide the order of $H^{4}\left(B S L_{3}\left(\mathbb{F}_{p^{n}}\right) ; \mathbb{Z}\left[\frac{1}{p}\right]\right)^{\mathbb{Z} / 2^{s}}$, so there are no elements in $H^{4}\left(Y ; \mathbb{F}_{2}\right)$ which are maped nontrivally by β_{t}. This implies that the mod-2 cohomology of Y differs from the mod-2 cohomology of $B G L_{3}\left(\mathbb{F}_{p^{n}}\right)$ if the fibration $B S L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge} \longrightarrow Y \longrightarrow B \mathbb{Z} / 2^{s}$ induces a nontrivial action.
Corollary 6.1. Let q be a power of an odd prime. The space $B G L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge}$ is homotopy equivalent to the product $B S L_{3}\left(\mathbb{F}_{q}\right)_{2}^{\wedge} \times(B \mathbb{Z} / q-1)_{2}^{\wedge}$.

7. The Mathieu group M_{11}

The Mathieu group M_{11} has the same cohomology as the group $S L_{3}\left(\mathbb{F}_{3}\right)$ as an object in \mathcal{K}_{β} [2, Section 12]. Hence by theorem 1.1, we recover the following result, which is due to J. Martino and S. Priddy [20, Theorem 4].

Corollary 7.1. The 2 -completions of the classifying spaces $\left(B M_{11}\right)_{2}^{\wedge}$ and $B S L_{3}\left(\mathbb{F}_{3}\right)_{2}^{\wedge}$ are homotopy equivalent.

This result allows us to prove the following theorem.
Theorem 7.2. There exists a map $f: B M_{11} \longrightarrow B S U(3)$ inducing an injective map $f^{*}: H^{*}(B S U(3)) \longrightarrow H^{*}\left(B M_{11}\right)$. The mod-2 cohomology of $B M_{11}$ is a finitely generated free module over the image of f^{*}.

Let us look at the tower

where the maps $B i_{n}$ are induced by inclusions $i_{n}: \mathbb{F}_{3^{2 n-1}} \longrightarrow \mathbb{F}_{3^{2^{n}}}$. For $n \geq 2$ the cohomology is $H^{*}\left(B S L_{3}\left(\mathbb{F}_{3^{n-1}}\right)\right)=\mathbb{F}_{2}\left[y_{4}^{(n)}, y_{6}^{(n)}\right] \otimes E\left(x_{3}^{(n)}, x_{5}^{(n)}\right)$ and the map $B i_{n}^{*}$ is defined by $B i_{n}^{*}\left(y_{4}^{(n)}\right)=y_{4}^{(n-1)}, B i_{n}^{*}\left(y_{6}^{(n)}\right)=y_{6}^{(n-1)}, B i_{n}^{*}\left(x_{3}^{(n)}\right)=0$, and $B i_{n}^{*}\left(x_{5}^{(n)}\right)=0$. Then the cohomology of the colimit of the tower is

$$
H^{*}\left(\underset{\longrightarrow}{\lim } B S L_{3}\left(\mathbb{F}_{3^{2 n}}\right)\right)=\lim _{\rightleftarrows} H^{*}\left(B S L_{3}\left(\mathbb{F}_{3^{2^{n}}}\right)\right)=\mathbb{F}_{2}\left[y_{4}, y_{6}\right],
$$

and this is isomorphic to the cohomology $H^{*}(B S U(3))$. Because $B S U(3)_{2}^{\wedge}$ is determined by cohomology $[21],\left(\underset{\longrightarrow}{\lim } B S L_{3}\left(\mathbb{F}_{3^{2 n}}\right)\right)_{2}^{\wedge} \simeq B S U(3)_{2}^{\wedge}$. Hence there exists a map $\left(B M_{11}\right)_{2}^{\wedge} \simeq B S L_{3}\left(\mathbb{F}_{3}\right)_{2}^{\wedge} \longrightarrow B S U(3)_{2}^{\wedge}$ and by the theorem of W. Dwyer and C. Wilkerson [11, Proposition 3.1], there exists a map $f: B M_{11} \longrightarrow B S U(3)$.

The cohomology of the first space in the tower is

$$
H^{*}\left(B S L_{3}\left(\mathbb{F}_{3}\right)\right)=\mathbb{F}_{2}\left[v_{3}, v_{4}, v_{5}\right] /\left(v_{3}^{2} v_{4}+v_{5}^{2}\right)
$$

and the map $B i_{1}^{*}$ is defined as $B i_{1}^{*}\left(y_{4}^{(2)}\right)=v_{4}, B i_{1}^{*}\left(y_{6}^{(2)}\right)=v_{3}^{2}, B i_{1}^{*}\left(x_{3}^{(2)}\right)=0$, and $B i_{1}^{*}\left(x_{5}^{(2)}\right)=0$, therefore

$$
f^{*}: H^{*}(B S U(3))=\mathbb{F}_{2}\left[y_{4}, y_{6}\right] \longrightarrow H^{*}\left(B M_{11}\right)=\mathbb{F}_{2}\left[v_{3}, v_{4}, v_{5}\right] /\left(v_{3}^{2} v_{4}+v_{5}^{2}\right)
$$

is given by $f^{*}\left(y_{4}\right)=v_{4}$ and $f^{*}\left(y_{6}\right)=v_{3}^{2}$, hence $H^{*}\left(B M_{11}\right)$ is a finitely generated $H^{*}(B S U(3))$ module.

Acknowledgment. The author thanks Carles Broto for many comments and suggestions.

References

[1] J. Aguadé, C. Broto, L. Saumell, T and the cohomology of mapping spaces, preprint.
[2] D.J. Benson, J.F. Carlson, Diagrammatic methods for modular representations and cohomology, Comm. Algebra 15 (1987), no. 1-2, 53-121.
[3] D.J. Benson, C.W. Wilkerson, Finite simple groups and Dickson invariants, Homotopy theory and its applications (Cocoyoc, 1993), Contemp. Math., 188, Amer. Math. Soc., Providence, RI, 1995, 39-50.
[4] A. Bousfield, D. Kan, Homotopy limits, completion and localisation, SLNM 304, Springer Verlag (1972).
[5] K.S. Brown, Cohomology of groups, Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest (1994).
[6] C. Broto, R. Levi, Loop structures on homotopy fibres of self maps of a sphere, Amer. J. Math. 122 (2000), no. 3, 547-580.
[7] C. Broto, R. Levi, On the homotopy type of BG for certain finite 2-groups G, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1487-1502.
[8] C. Broto, R. Levi, On spaces of self-homotopy equivalences of p-completed classifying spaces of finite groups and homotopy group extensions, Topology 41 (2002), 229-255.
[9] C. Broto, R. Levi, B. Oliver Homotopy Equivalences of p-completed classifying spaces of finite groups, Invent. Math. 151 (2003), no. 3, 611-664.
[10] R. Carter, P. Fong, The Sylow 2-Subgroup of the Finite Classical Groups, J. Algebra, 1 (1964) 139-151.
[11] W.G. Dwyer, C.W. Wilkerson, Maps of $B Z / p Z$ to $B G$ Algebraic topology—rational homotopy (Louvain-la-Neuve, 1986), 92-98, Lecture Notes in Math., 1318, Springer, Berlin, 1988.
[12] W.G. Dwyer, C.W. Wilkerson, A cohomology decomposition theorem, Topology 31 (1992), 433-443.
[13] Z. Fiedorowicz, S. Priddy, Homology of classical groups over finite fields and their associated infinite loop spaces, Lecture Notes in Mathematics, 674, Springer Verlag (1982).
[14] D. Gorenstein, R. Lyons, R. Solomon, The classification of the Finite Simple Groups, Number 3. American Mathematical Society, Providence, RI, 1998.
[15] K. Ireland, M. Rosen, A classical introduction to modern number theory, Springer Verlag, (1982).
[16] S. Jackowski, J. McClure, Homotopy decompositions of classifying spaces via elementary abelian subgroups, Topology (1992), 113-132.
[17] D. Jeandupeux, Integral cohomology of classical groups over a finite field, Journal of Pure and Applied Algebra 84 (1993) 43-58.
[18] R. Kane, The homology of Hopf spaces, North-Holland Publishing Co., Amsterdam-New York, (1988).
[19] J. Lannes, Sur les espaces fonctionelles dont la source est la classifiant d'un p-groupe abélien éleméntaries, Publicationes, Mathématiques de l'Institut des Hautes Études Scientifiques 75 (1992), 135-244.
[20] J. Martino, S. Priddy, Classification of BG for groups with dihedral or quarternion Sylow 2-subgroups, J. Pure Appl. Algebra 73 (1991), no. 1, 13-21.
[21] D. Notbohm, Homotopy uniqueness of classifying spaces of compact connected Lie groups at primes dividing the order of the Weyl group, Topology 33 (1994), no. 2, 271-330.
[22] Z. Wojtkowiak, On maps from holim F to Z, in Algebraic Topology, Barcelona 1986, SLNM 1298, 227-236.

Aleš Vavpetič, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1111 Ljubljana, Slovenia.
ales.vavpetic@fmf.uni-lj.si

[^0]: The author was partially supported by the Ministry for Education, Science and Sport of the Republic of Slovenia research program No. P1-0292-0101-04 and research project No. J1-6128-010104.

