Rafael B. Andrist, Gaofeng Huang, Frank Kutzschebauch, and Josua Schott: Parametric Symplectic Jet Interpolation, Preprint (2024), available at arXiv:2407.17581
Rafael B. Andrist: On the connectedness of the boundary of pseudoconvex domains, Preprint (2024), available at arXiv:2407.11897
Rafael B. Andrist: On complete generators of certain Lie algebras on Danielewski surfaces, Preprint (2024), available at arXiv:2406.14702
Rafael B. Andrist and Gaofeng Huang: The density property for generalized Calogero–Moser spaces with inner degrees of freedom, Preprint (2023), available at arXiv:2312.15545
Rafael B. Andrist and Gaofeng Huang: The symplectic density property for Calogero–Moser spaces, Preprint (2023), available at arXiv:2301.09444
Rafael B. Andrist, Gene Freudenburg, Gaofeng Huang, Frank Kutzschebauch, and Josua Schott: A Criterion for the Density Property of Stein Manifolds, Michigan Mathematical Journal (accepted 2023), available at arXiv:2308.07015
Rafael B. Andrist and Frank Kutzschebauch: Algebraic overshear density property, Beiträge zur Algebra und Geometrie (2024), DOI 10.1007/s13366-023-00729-4
Rafael B. Andrist: Integrable generators of Lie algebras of vector fields on SL2(C) and on xy = z2 , J. Geom. Anal. 33 (2023), DOI 10.1007/s12220-023-01294-x
Rafael B. Andrist and Riccardo Ugolini: Tame sets in homogeneous spaces, Transf. Groups (2022), DOI 10.1007/s00031-022-09781-1
Rafael B. Andrist: The density property for Calogero–Moser spaces, Proc. Amer. Math. Soc. 149 (2021), no. 10, 4207–4218, DOI 10.1090/proc/15457
Rafael B. Andrist: Integrable generators of Lie algebras of vector fields on Cn, Forum Math. 31 (2019), no. 4, 943–949, DOI 10.1515/forum-2018-0204
Rafael B. Andrist and Riccardo Ugolini: A new notion of Tameness, J. Math. Anal. Appl. 472 (2019), 196–215, DOI 10.1016/j.jmaa.2018.11.018
Rafael B. Andrist: The density property for Gizatullin surfaces with reduced degenerate fibre, J. Geom. Anal. 28 (July 2018), no. 3, 2522 2538, DOI 10.1007/s12220-017-9916-y
Rafael B. Andrist and Frank Kutzschebauch: The fibred density property and the automorphism group of the spectral ball, Math. Ann. 370 (2018), no. 1-2, 917–936, DOI 10.1007/s00208-017-1520-8
Rafael B. Andrist: Complex surfaces with many holomorphic automorphisms, Geometric Complex Analysis: In Honor of Kang-Tae Kim’s 60th Birthday, Gyeongju, Korea, 2017 (Jisoo Byun et al., eds.), Springer Proceedings in Mathematics & Statistics, Springer Singapore, 2018, DOI 10.1007/978-981-13-1672-2_3
Rafael B. Andrist, Frank Kutzschebauch, and Pierre-Marie Poloni: The density property for Gizatullin surfaces completed by four rational curves, Proc. Amer. Math. Soc. 145 (2017), no. 12, 5097–5108, DOI 10.1090/proc/13665
Rafael Andrist, Franc Forstnerič, Tyson Ritter, and Erlend Fornæss Wold: Proper holomorphic embeddings into Stein manifolds with the density property, J. Anal. Math. 130 (2016), 135–150, DOI 10.1007/s11854-016-0031-y
Rafael B. Andrist, Nikolay Shcherbina, and Erlend F. Wold: The Hartogs extension theorem for holomorphic vector bundles and sprays, Ark. Mat. 54 (2016), no. 2, 299–319, DOI 10.1007/s11512-015-0226-y
Rafael B. Andrist: Lifting to the spectral ball with interpolation, J. Math. Anal. Appl. 435 (2016), no. 1, 315–320, DOI 10.1016/j.jmaa.2015.10.020
Rafael B. Andrist, Frank Kutzschebauch, and Andreas Lind: Holomorphic automorphisms of Danielewski surfaces II: Structure of the overshear group, J. Geom. Anal. 25 (2015), no. 3, 1859–1889, DOI 10.1007/s12220-014-9496-z
Rafael B. Andrist and Erlend Fornæss Wold: Free dense subgroups of holomorphic automorphisms, Math. Z. 280 (2015), no. 1-2, 335–346, DOI 10.1007/s00209-015-1425-8
Rafael B. Andrist and Erlend Fornæss Wold: Riemann surfaces in Stein manifolds with the density property, Ann. Inst. Fourier (Grenoble), 64 (2014), no. 2, 681–697, DOI 10.5802/aif.2862
Rafael B. Andrist and Hanspeter Kraft: Varieties characterized by their endomorphisms, Math. Res. Lett. 21 (2014), no. 2, 225–233, DOI 10.4310/MRL.2014.v21.n2.a1
Rafael B. Andrist: Stein spaces characterized by their endomorphisms, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2341–2355, DOI 10.1090/S0002-9947-2010-05104-9