Jernej Kozak
Search
Navigation
Main Page
Teaching
Exames Timetable
Research
Some Publications
Seminar on Numerical Analysis
Help
Wiki Help
Toolbox
What links here
Related changes
Special pages
View source
From Jernej Kozak
for
Some publications
Jump to:
navigation
,
search
<!--[[en:Some publications]]--> [[sl:Nekaj objav]] <!-- * Y.Y. Feng, J. Kozak, On the generalized Euler-Frobenius polynomial. J. Approx. Theory, 1981, let. 32, št. 4, pp. 327-338. * Y.Y. Feng, J. Kozak, L [sub] [infinity] -lower bound of L [sub] 2-projections onto splines on a geometric mesh. J. approx. theory, 1982, let. 35, št. 1, pp. 64-76. * J. Kozak, Shape preserving approximation. Comput. Ind., 7 (1986), pp. 435-440. * Y.Y. Feng, J. Kozak, An approach to the interpolation of nonuniformly spaced data, J. Comput. Appl. Math., 23 (1988), pp. 169-178. * Y.Y. Feng, J. Kozak, The convexity of families of adjoint patches for a Bézier triangular surface. J. Comput. Math., 1991, let. 9, št. 4, pp. 301-304. --> * Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/ASEX/ASEX.pdf Asymptotic expansion formula for Bernstein polynomials defined on a simplex], Constr. Approx., 8 (1992), pp. 49-58.<br> The original publication at [http://www.springerlink.com www.springerlink.com] as [http://www.springerlink.com/content/l364302xmx171691/ http://www.springerlink.com/content/l364302xmx171691/] * Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/GPOLC/GPOLC.pdf Cutting corners preserves Lipschitz continuity], Gao-xiao yingyong shuxue xuebao, 9 (1994), pp. 31-34. * F.L. Chen, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/INTER/INTER.pdf The intersection of a triangular Bézier patch and a plane], J. Comput. Math., 12 (1994), pp. 138-146.<br> The original publication at [http://www.jcm.ac.cn/qikan/epaper/zhaiyao.asp?bsid=16258 http://www.jcm.ac.cn/qikan/epaper/zhaiyao.asp?bsid=16258] <!-- * Y.Y. Feng, J. Kozak, On convexity and Schoenberg's variation diminishing splines. Zhongguo Kexue Jishu Daxue xueb., 1994, let. 24, št. 2, pp. 129-134. --> * J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/KNOTS/KNOTS.pdf On the choice of the exterior knots in the B-spline basis,] J. China Univ. Sci. Tech. 25 (1995), pp. 172--178. * Y.Y. Feng, J. Kozak, M. Zhang, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/DIMS1N/fengetal.pdf On the dimension of the C<sup>1</sup> spline space for the Morgan-Scott triangulation from the blossoming approach.] In: F. Fontanella, K. Jetter, J. P. Laurent (eds.), Advanced Topics in Multivariate Approximation, World Scientific, 1996, pp. 71-86. * Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/G2/G2.pdf On G<sup>2</sup> continuous interpolatory composite quadratic Bézier curves], J. Comput. Appl. Math., 72 (1996), pp. 141-159. * Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/BBPOL/BBPOL.pdf The theorem on the B-B polynomials defined on a simplex in the blossoming form], J. Comput. Math., 14 (1996), pp. 64-70. * F.L. Chen, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/NINTER/NINTER.pdf On computing zeros of a bivariate Bernstein polynomial], J. Comput. Math., 14 (1996), pp. 237-248. * Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/GG/GG.pdf On G<sup>2</sup> continuous cubic spline interpolation], BIT Numerical Mathematics, 27 (1997), pp. 312-332. The original publication at [http://www.springerlink.com www.springerlink.com] as [http://www.springerlink.com/content/c4364v87x776472k/ http://www.springerlink.com/content/c4364v87x776472k/] <!-- * F.L. Chen, Y.Y. Feng, J. Kozak, Tracing a planar algebraic curve. Gao-xiao yingyong shuxue xuebao, 12B (1997), pp. 15-24. --> * Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/GG3D/fengtex.pdf On spline interpolation of space data]. In: M. Dahlen, T. Lyche, L. L. Schumaker (eds.), Mathematical Methods for Curves and Surfaces II, Vanderbilt University Press, Nashville, 1998, pp. 167-174. * J. Kozak, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/SaintMalo/SMalo99.pdf On curve interpolation in R<sup>d</sup>]. In: A. Cohen, C. Rabut, L. L. Schumaker (eds.), Curve and Surface Fitting, Vanderbilt University Press, Nashville, 2000, pp. 263-272. * Z.B. Chen, Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/DIMS2N/DIMS2N.pdf The blossom approach to the dimension of the bivariate spline space], J. Comput. Math., 18 (2000), pp. 183-198. * J.S. Deng, Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Diener/DengFengKozak.pdf A note on the dimension of the bivariate spline space over the Morgan-Scott tringulation], SIAM J. Numer. Anal., 37 (2000), pp. 1021-1028.<br> The original publication [http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SJNAAM000037000003001021000001&idtype=cvips&gifs=yes at] * F. Forstnerič, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Franci/Handles7Orig01022003.pdf Strongly pseudoconvex handlebodies], J. Korean Math. Soc., 40 (2003), pp. 727-745.<br> The original publication [http://www.mathnet.or.kr/mathnet/kms_content.php?no=365212 at] * J. Kozak, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/G2InR3/ginter-revised-last.pdf On geometric interpolation by polynomial curves], SIAM J. Numer. Anal., 42 (2004), pp. 953-967.<br> The original publication at [http://epubs.siam.org/sam-bin/dbq/article/42207 http://epubs.siam.org/sam-bin/dbq/article/42207] * G. Jaklič, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Brijuni2003/s31cut-v13.pdf On the dimension of bivariate spline space S<sub>3</sub><sup>1</sup>(Δ)]. In: Z. Drmač, M. Marušić, Z. Tutek (eds.), Proceedings of the Conference on Applied Mathematics and Scientific Computing, Springer, Dordrecht, 2005, pp. 245-252. The original publication at [http://www.springerlink.com www.springerlink.com] as [http://www.springerlink.com/content/w70300/ http://www.springerlink.com/content/w70300/] * J. Kozak, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Brijuni2003/brijuni03.pdf Geometric interpolation of data in R<sup>3</sup>]. In: Z. Drmač, M. Marušić, Z. Tutek (eds.), Proceedings of the Conference on Applied Mathematics and Scientific Computing, Springer, Dordrecht, 2005, pp. 245-252. The original publication at [http://www.springerlink.com www.springerlink.com] as [http://www.springerlink.com/content/w70300/ http://www.springerlink.com/content/w70300/] * J. Kozak, M. Krajnc, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/MarjetaCubicPolynomial/cubicGI_last-rev.pdf Geometric interpolation by planar cubic polynomial curves], Comput. Aided Geom. Des., 24 (2007), pp. 67-78.<br> The original publication at [http://dx.doi.org/10.1016/j.cagd.2006.11.002 http://dx.doi.org/10.1016/j.cagd.2006.11.002] * G. Jaklič, J. Kozak,, M. Krajnc, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/CircleLikeCurves/GCI-last-rev-2.pdf On geometric interpolation of circle-like curves], Comput. Aided Geom. Des., 24 (2007), pp. 241-251.<br> The original publication at [http://dx.doi.org/10.1016/j.cagd.2007.03.002 http://dx.doi.org/10.1016/j.cagd.2007.03.002] * G. Jaklič, J. Kozak, M. Krajnc, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/GeometricCurveInterpolation/GIR2-accepted.pdf On geometric interpolation by planar parametric polynomial curves], Math. Comput., 76 (2007), pp. 1981-1993.<br> The original publication at [http://www.ams.org/mcom/2007-76-260/S0025-5718-07-01988-6/home.html http://www.ams.org/mcom/2007-76-260/S0025-5718-07-01988-6/home.html] * J. Kozak, M. Krajnc, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/MarjetaKubicniZlepek/G1Spline_Last.pdf Geometric interpolation by planar cubic G<sup>1</sup> splines], BIT Numerical Mathematics, ?(2007), pp. ?-?+16.<br> The original publication at [http://www.springerlink.com www.springerlink.com] as [http://www.springerlink.com/content/x2v8982642360680/ http://www.springerlink.com/content/x2v8982642360680/] * G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/PencilNets/NA-Lattice-revision.pdf Three-pencil lattices on triangulations], Numer. Algor., ? (2007), pp. ?-?+11.<br> The original publication at [http://www.springerlink.com www.springerlink.com] as [http://www.springerlink.com/content/ypw4g173p3207721/fulltext.pdf http://www.springerlink.com/content/ypw4g173p3207721/fulltext.pdf] * G. Jaklič, J. Kozak, M. Krajnc, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/AnnalidellUniversitadiFerrara/JaKrKoZa.pdf Approximation of circular arcs by parametric polynomial curves], to appear in Annali dellUniversita di Ferrara.
Return to
Some publications
.
Views
Page
Discussion
View source
History
Personal tools
3.128.171.15
Talk for this IP address
Log in